GDDN: Graph Domain Disentanglement Network for Generalizable EEG Emotion Recognition
Cross-subject EEG emotion recognition suffers a major setback due to high inter-subject variability in emotional responses. Many prior studies have endeavored to alleviate the inter-subject discrepancies of EEG feature distributions, ignoring the variable EEG connectivity and prediction deviation ca...
Saved in:
Published in | IEEE transactions on affective computing Vol. 15; no. 3; pp. 1739 - 1753 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1949-3045 1949-3045 |
DOI | 10.1109/TAFFC.2024.3371540 |
Cover
Loading…
Abstract | Cross-subject EEG emotion recognition suffers a major setback due to high inter-subject variability in emotional responses. Many prior studies have endeavored to alleviate the inter-subject discrepancies of EEG feature distributions, ignoring the variable EEG connectivity and prediction deviation caused by individual differences, which may cause poor generalization to the unseen subject. This article proposes a graph domain disentanglement network (GDDN) to generalize EEG emotion recognition across subjects in terms of EEG connectivity, representation, and prediction. More specifically, a graph domain disentanglement module is proposed to extract common-specific characteristics on both EEG graph connectivity and graph representation, enabling a more comprehensive network transferability to the unseen individual. Meanwhile, to strengthen stable emotion prediction capability, a domain-adaptive classifier aggregation module is developed to facilitate adaptive emotional prediction for the unseen individual conditioned on the domain weights of the input individuals. Finally, an auxiliary supervision module is imposed to alleviate the domain discrepancy and reduce information loss during the disentanglement learning. Extensive experiments on three public EEG emotion datasets, i.e., SEED, SEED-IV, and MPED, validate the superior generalizability of GDDN compared with the state-of-the-art methods. |
---|---|
AbstractList | Cross-subject EEG emotion recognition suffers a major setback due to high inter-subject variability in emotional responses. Many prior studies have endeavored to alleviate the inter-subject discrepancies of EEG feature distributions, ignoring the variable EEG connectivity and prediction deviation caused by individual differences, which may cause poor generalization to the unseen subject. This article proposes a graph domain disentanglement network (GDDN) to generalize EEG emotion recognition across subjects in terms of EEG connectivity, representation, and prediction. More specifically, a graph domain disentanglement module is proposed to extract common-specific characteristics on both EEG graph connectivity and graph representation, enabling a more comprehensive network transferability to the unseen individual. Meanwhile, to strengthen stable emotion prediction capability, a domain-adaptive classifier aggregation module is developed to facilitate adaptive emotional prediction for the unseen individual conditioned on the domain weights of the input individuals. Finally, an auxiliary supervision module is imposed to alleviate the domain discrepancy and reduce information loss during the disentanglement learning. Extensive experiments on three public EEG emotion datasets, i.e., SEED, SEED-IV, and MPED, validate the superior generalizability of GDDN compared with the state-of-the-art methods. |
Author | Chen, C. L. Philip Chen, Bianna Zhang, Tong |
Author_xml | – sequence: 1 givenname: Bianna orcidid: 0009-0007-5646-3230 surname: Chen fullname: Chen, Bianna organization: Guangdong Provincial Key Laboratory of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: C. L. Philip orcidid: 0000-0001-5451-7230 surname: Chen fullname: Chen, C. L. Philip organization: Guangdong Provincial Key Laboratory of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 3 givenname: Tong orcidid: 0000-0002-7025-6365 surname: Zhang fullname: Zhang, Tong email: tony@scut.edu.cn organization: Guangdong Provincial Key Laboratory of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China |
BookMark | eNpNkMFOwkAQhjcGExF5AeNhE8_F3Z0tpd4ILdWEYGJ632yXKRbbXdyWGH16i3BgLvMf_m8m-W7JwDqLhNxzNuGcxU_5fLlcTAQTcgIQ8VCyKzLksYwDYDIcXOQbMm7bHesHAKYiGpI8S5L1M8283n_QxDW6sjSpWrSdttsamz7QNXbfzn_S0nmaoUWv6-pXFzXSNM1o2riucpa-o3FbWx3zHbkudd3i-LxHJF-m-eIlWL1lr4v5KjBCRl2A0wg2gKww2sy4YChNCEJyGRlpgLGCz0pkIRSx5gC40aERRrNZEQuxYQgj8ng6u_fu64Btp3bu4G3_UQFnPRKGU9m3xKllvGtbj6Xa-6rR_kdxpo7-1L8_dfSnzv566OEEVYh4AcgQYgnwB0V8bK4 |
CODEN | ITACBQ |
Cites_doi | 10.15171/icnj.2017.01 10.1109/ICASSP43922.2022.9747398 10.1109/MCI.2015.2501545 10.1145/3357384.3357951 10.1109/TCBB.2016.2616395 10.1109/TAFFC.2017.2712143 10.1146/annurev-psych-010213-115043 10.1007/978-3-030-36708-4_3 10.1109/TCYB.2018.2797176 10.1109/tmm.2024.3385676 10.1109/TAFFC.2019.2937768 10.1016/j.bspc.2023.104998 10.1146/annurev.ne.11.030188.001033 10.1007/978-3-030-04221-9_36 10.1109/TNN.2010.2091281 10.1109/TAFFC.2017.2714671 10.3389/fnins.2021.778488 10.1609/aaai.v32i1.11604 10.1023/A:1018628609742 10.1109/EMBC46164.2021.9630277 10.1109/TCYB.2017.2788081 10.1109/ICCV.2013.368 10.1609/aaai.v34i03.5656 10.1109/NER49283.2021.9441368 10.1088/1741-2552/ab260c 10.1109/TAFFC.2020.2994159 10.1002/hbm.23730 10.18653/v1/P19-1466 10.1109/TCYB.2022.3197127 10.1016/j.neuron.2018.03.035 10.1109/TAFFC.2018.2885474 10.1109/TAFFC.2018.2817622 10.3389/fnins.2021.611653 10.1016/j.neuroimage.2005.11.027 10.1016/j.neuron.2012.12.028 10.1109/TNN.2008.2005605 10.1145/1242572.1242668 10.1609/aaai.v35i1.16169 10.1016/j.neucom.2021.02.048 10.1109/tnnls.2022.3225855 10.1109/CVPR.2010.5539857 10.1109/TAFFC.2022.3170428 10.1109/TAMD.2015.2431497 10.1109/ACCESS.2019.2891579 10.5555/2946645.2946704 10.1109/TCDS.2020.2999337 10.1109/TAFFC.2021.3064940 10.1109/TBME.2010.2048568 10.1109/TCDS.2022.3147839 10.1016/j.bspc.2022.103687 10.1109/JBHI.2022.3210158 10.1159/000381950 10.3389/fpsyg.2017.01454 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TAFFC.2024.3371540 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1949-3045 |
EndPage | 1753 |
ExternalDocumentID | 10_1109_TAFFC_2024_3371540 10453943 |
Genre | orig-research |
GrantInformation_xml | – fundername: STI2030-Major Projects – fundername: Guangdong Natural Science Funds for Distinguished Young Scholar grantid: 2020B1515020041 – fundername: Key-Area Research and Development Program of Guangdong Province grantid: 2023B0303030001 – fundername: National Natural Science Foundation of China grantid: 62222603; 62076102; 92267203 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2019YFA0706200 – fundername: Program for Guangdong Introducing Innovative and Entrepreneurial Teams grantid: 2019ZT08X214 – fundername: Ministry of Science and Technology of the People's Republic of China grantid: 2021ZD0200700 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNI RZB AAYXX CITATION RIG 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c247t-e673d3e0bcac8120e4c5324147c4c300b18fe053b9a133eda5c2ca08b922d0e3 |
IEDL.DBID | RIE |
ISSN | 1949-3045 |
IngestDate | Mon Jun 30 16:34:09 EDT 2025 Tue Jul 01 05:10:25 EDT 2025 Wed Aug 27 02:03:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c247t-e673d3e0bcac8120e4c5324147c4c300b18fe053b9a133eda5c2ca08b922d0e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7025-6365 0009-0007-5646-3230 0000-0001-5451-7230 |
PQID | 3101335564 |
PQPubID | 2040414 |
PageCount | 15 |
ParticipantIDs | ieee_primary_10453943 crossref_primary_10_1109_TAFFC_2024_3371540 proquest_journals_3101335564 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on affective computing |
PublicationTitleAbbrev | TAFFC |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref14 ref58 ref53 ref52 Kingma (ref63) ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 Wagh (ref47) ref48 ref44 ref43 Briner (ref1) 2002 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Fey (ref62) Kanamori (ref64) 2009; 10 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 Veličković (ref46) ref2 ref39 ref38 Kipf (ref42) Defferrard (ref41) ref24 ref23 Van der Maaten (ref66) 2008; 9 ref26 ref25 Tzeng (ref59) 2014 ref20 ref22 ref21 ref65 ref27 ref29 Bruna (ref40) ref60 Zheng (ref28) ref61 Lu (ref45) |
References_xml | – start-page: 229 volume-title: Psychology at Work year: 2002 ident: ref1 article-title: The experience, expression and management of emotion at work – ident: ref5 doi: 10.15171/icnj.2017.01 – ident: ref19 doi: 10.1109/ICASSP43922.2022.9747398 – ident: ref27 doi: 10.1109/MCI.2015.2501545 – ident: ref36 doi: 10.1145/3357384.3357951 – volume: 9 issue: 11 year: 2008 ident: ref66 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – start-page: 1170 volume-title: Proc. 24th Int. Joint Conf. Artif. Intell. ident: ref45 article-title: Combining eye movements and EEG to enhance emotion recognition – start-page: 367 volume-title: Proc. Mach. Learn. Health Workshop ident: ref47 article-title: EEG-GCNN: Augmenting electroencephalogram-based neurological disease diagnosis using a domain-guided graph convolutional neural network – ident: ref24 doi: 10.1109/TCBB.2016.2616395 – ident: ref34 doi: 10.1109/TAFFC.2017.2712143 – ident: ref3 doi: 10.1146/annurev-psych-010213-115043 – ident: ref20 doi: 10.1007/978-3-030-36708-4_3 – ident: ref56 doi: 10.1109/TCYB.2018.2797176 – ident: ref32 doi: 10.1109/tmm.2024.3385676 – ident: ref13 doi: 10.1109/TAFFC.2019.2937768 – ident: ref58 doi: 10.1016/j.bspc.2023.104998 – ident: ref35 doi: 10.1146/annurev.ne.11.030188.001033 – volume: 10 start-page: 1391 year: 2009 ident: ref64 article-title: A least-squares approach to direct importance estimation publication-title: J. Mach. Learn. Res. – ident: ref29 doi: 10.1007/978-3-030-04221-9_36 – ident: ref52 doi: 10.1109/TNN.2010.2091281 – ident: ref6 doi: 10.1109/TAFFC.2017.2714671 – ident: ref17 doi: 10.3389/fnins.2021.778488 – ident: ref48 doi: 10.1609/aaai.v32i1.11604 – ident: ref26 doi: 10.1023/A:1018628609742 – ident: ref61 doi: 10.1109/EMBC46164.2021.9630277 – ident: ref11 doi: 10.1109/TCYB.2017.2788081 – ident: ref53 doi: 10.1109/ICCV.2013.368 – ident: ref21 doi: 10.1609/aaai.v34i03.5656 – ident: ref25 doi: 10.1109/NER49283.2021.9441368 – ident: ref9 doi: 10.1088/1741-2552/ab260c – ident: ref16 doi: 10.1109/TAFFC.2020.2994159 – start-page: 1 volume-title: Proc. 2nd Int. Conf. Learn. Representations ident: ref40 article-title: Spectral networks and locally connected networks on graphs – ident: ref10 doi: 10.1002/hbm.23730 – ident: ref37 doi: 10.18653/v1/P19-1466 – ident: ref38 doi: 10.1109/TCYB.2022.3197127 – ident: ref23 doi: 10.1016/j.neuron.2018.03.035 – start-page: 2732 volume-title: Proc. 25th Int. Joint Conf. Artif. Intell. ident: ref28 article-title: Personalizing EEG-based affective models with transfer learning – year: 2014 ident: ref59 article-title: Deep domain confusion: Maximizing for domain invariance – ident: ref14 doi: 10.1109/TAFFC.2018.2885474 – start-page: 3837 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref41 article-title: Convolutional neural networks on graphs with fast localized spectral filtering – ident: ref12 doi: 10.1109/TAFFC.2018.2817622 – ident: ref51 doi: 10.3389/fnins.2021.611653 – ident: ref4 doi: 10.1016/j.neuroimage.2005.11.027 – ident: ref31 doi: 10.1016/j.neuron.2012.12.028 – volume-title: Proc. 3rd Int. Conf. Learn. Representations ident: ref63 article-title: Adam: A method for stochastic optimization – ident: ref39 doi: 10.1109/TNN.2008.2005605 – start-page: 1 volume-title: Proc. ICLR Workshop Representation Learn. Graphs Manifolds ident: ref62 article-title: Fast graph representation learning with PyTorch geometric – ident: ref65 doi: 10.1145/1242572.1242668 – ident: ref18 doi: 10.1609/aaai.v35i1.16169 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representations ident: ref46 article-title: Graph attention networks – ident: ref60 doi: 10.1016/j.neucom.2021.02.048 – ident: ref33 doi: 10.1109/tnnls.2022.3225855 – ident: ref49 doi: 10.1109/CVPR.2010.5539857 – ident: ref44 doi: 10.1109/TAFFC.2022.3170428 – ident: ref55 doi: 10.1109/TAMD.2015.2431497 – ident: ref57 doi: 10.1109/ACCESS.2019.2891579 – ident: ref50 doi: 10.5555/2946645.2946704 – start-page: 1 volume-title: Proc. 5th Int. Conf. Learn. Representations ident: ref42 article-title: Semi-supervised classification with graph convolutional networks – ident: ref15 doi: 10.1109/TCDS.2020.2999337 – ident: ref22 doi: 10.1109/TAFFC.2021.3064940 – ident: ref8 doi: 10.1109/TBME.2010.2048568 – ident: ref43 doi: 10.1109/TCDS.2022.3147839 – ident: ref54 doi: 10.1016/j.bspc.2022.103687 – ident: ref30 doi: 10.1109/JBHI.2022.3210158 – ident: ref7 doi: 10.1159/000381950 – ident: ref2 doi: 10.3389/fpsyg.2017.01454 |
SSID | ssj0000333627 |
Score | 2.476884 |
Snippet | Cross-subject EEG emotion recognition suffers a major setback due to high inter-subject variability in emotional responses. Many prior studies have endeavored... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1739 |
SubjectTerms | Affective computing Brain modeling Computational modeling Disentanglement learning EEG connectivity Electroencephalography Emotion recognition Emotional factors Emotions generalizability Graph representations Graph theory Graphical representations inter-subject variability Modules Predictive models Training |
Title | GDDN: Graph Domain Disentanglement Network for Generalizable EEG Emotion Recognition |
URI | https://ieeexplore.ieee.org/document/10453943 https://www.proquest.com/docview/3101335564 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxaeRRQK8sCGEtzYaRK2qklaIZEBBalbFD-KKiBBkC78es52gioQEluG2Dr5fE9_d4fQVcgleLFKP7IKAgEKUU648rkjA1jgRaVgoa53vs8mi0d2t_SXbbG6qYVRShnwmXL1p3nLl7XY6FQZSDjzacRoD_UgcrPFWt8JFUIpKOOgK4wh0U0-TdMZhIAecykNxibBsWV8zDSVXyrY2JV0H2UdRRZO8uxuGu6Kzx_NGv9N8gHaaz1MPLVX4hDtqOoI7XfTG3ArzMcon8dxdovnumM1juvXcl3heG1qkaonCyrHmQWJY_BscdugWqPAXhROkjlO7Agg_NCBkOpqgPI0yWcLp52x4AiPBY2jJgGVVBEuSgG2nigmfPCxxiwQTFBC-Dhc6ekRPCohmlWy9IUnShLyyPMkUfQE9au6UqcIr5QMpAR9VULE6ImIR7CDKLnOaoBClUN03Z198WY7aRQmAiFRYThVaE4VLaeGaKAPc-tPe45DNOr4VbTS9lGAiwrE-f6Enf2x7Bzt6t0tznaE-s37Rl2AN9HwS3OLvgBZ0Mdv |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGGDhWUShgAc2lOLGTpOwVfTFoxlQkLpF8aOoAlIE7cKv52wnqAIhsWWIE8vnO9-dv-8O4DwSCr1YbS5ZJcUAhWovmgTCUyEO8ONc8sjwnUdJe_jIb8fBuCSrWy6M1tqCz3TTPNq7fDWTC5MqQw3nAYs5W4X1wLBxHV3rO6VCGUNzHFbUGBpfpp1-_xqDQJ83GQtbNsWxdPzYfiq_jLA9WfrbkFRzcoCS5-ZiLpry80e5xn9Pege2Sh-TdNym2IUVXezBdtW_gZTqvA_poNtNrsjA1Kwm3dlrPi1Id2rZSMWTg5WTxMHECfq2pCxRbXBgL5r0egPSc02AyEMFQ5oVNUj7vfR66JVdFjzp83Du6XbIFNNUyFziaU81lwF6WS0eSi4ZpaIVTUz_CBHnGM9qlQfSlzmNROz7imp2AGvFrNCHQCZahUqhxcoxZvRlLGL8gsyFyWugSVV1uKjWPntztTQyG4PQOLOSyoykslJSdaiZxVx6061jHRqVvLJS3z4ydFJxckHQ5kd_DDuDjWE6us_ub5K7Y9g0f3Ko2waszd8X-gR9i7k4tTvqC-uVyrc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GDDN%3A+Graph+Domain+Disentanglement+Network+for+Generalizable+EEG+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Chen%2C+Bianna&rft.au=Chen%2C+C.+L.+Philip&rft.au=Zhang%2C+Tong&rft.date=2024-07-01&rft.pub=IEEE&rft.eissn=1949-3045&rft.volume=15&rft.issue=3&rft.spage=1739&rft.epage=1753&rft_id=info:doi/10.1109%2FTAFFC.2024.3371540&rft.externalDocID=10453943 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon |