GDDN: Graph Domain Disentanglement Network for Generalizable EEG Emotion Recognition

Cross-subject EEG emotion recognition suffers a major setback due to high inter-subject variability in emotional responses. Many prior studies have endeavored to alleviate the inter-subject discrepancies of EEG feature distributions, ignoring the variable EEG connectivity and prediction deviation ca...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on affective computing Vol. 15; no. 3; pp. 1739 - 1753
Main Authors Chen, Bianna, Chen, C. L. Philip, Zhang, Tong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1949-3045
1949-3045
DOI10.1109/TAFFC.2024.3371540

Cover

Loading…
Abstract Cross-subject EEG emotion recognition suffers a major setback due to high inter-subject variability in emotional responses. Many prior studies have endeavored to alleviate the inter-subject discrepancies of EEG feature distributions, ignoring the variable EEG connectivity and prediction deviation caused by individual differences, which may cause poor generalization to the unseen subject. This article proposes a graph domain disentanglement network (GDDN) to generalize EEG emotion recognition across subjects in terms of EEG connectivity, representation, and prediction. More specifically, a graph domain disentanglement module is proposed to extract common-specific characteristics on both EEG graph connectivity and graph representation, enabling a more comprehensive network transferability to the unseen individual. Meanwhile, to strengthen stable emotion prediction capability, a domain-adaptive classifier aggregation module is developed to facilitate adaptive emotional prediction for the unseen individual conditioned on the domain weights of the input individuals. Finally, an auxiliary supervision module is imposed to alleviate the domain discrepancy and reduce information loss during the disentanglement learning. Extensive experiments on three public EEG emotion datasets, i.e., SEED, SEED-IV, and MPED, validate the superior generalizability of GDDN compared with the state-of-the-art methods.
AbstractList Cross-subject EEG emotion recognition suffers a major setback due to high inter-subject variability in emotional responses. Many prior studies have endeavored to alleviate the inter-subject discrepancies of EEG feature distributions, ignoring the variable EEG connectivity and prediction deviation caused by individual differences, which may cause poor generalization to the unseen subject. This article proposes a graph domain disentanglement network (GDDN) to generalize EEG emotion recognition across subjects in terms of EEG connectivity, representation, and prediction. More specifically, a graph domain disentanglement module is proposed to extract common-specific characteristics on both EEG graph connectivity and graph representation, enabling a more comprehensive network transferability to the unseen individual. Meanwhile, to strengthen stable emotion prediction capability, a domain-adaptive classifier aggregation module is developed to facilitate adaptive emotional prediction for the unseen individual conditioned on the domain weights of the input individuals. Finally, an auxiliary supervision module is imposed to alleviate the domain discrepancy and reduce information loss during the disentanglement learning. Extensive experiments on three public EEG emotion datasets, i.e., SEED, SEED-IV, and MPED, validate the superior generalizability of GDDN compared with the state-of-the-art methods.
Author Chen, C. L. Philip
Chen, Bianna
Zhang, Tong
Author_xml – sequence: 1
  givenname: Bianna
  orcidid: 0009-0007-5646-3230
  surname: Chen
  fullname: Chen, Bianna
  organization: Guangdong Provincial Key Laboratory of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: C. L. Philip
  orcidid: 0000-0001-5451-7230
  surname: Chen
  fullname: Chen, C. L. Philip
  organization: Guangdong Provincial Key Laboratory of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Tong
  orcidid: 0000-0002-7025-6365
  surname: Zhang
  fullname: Zhang, Tong
  email: tony@scut.edu.cn
  organization: Guangdong Provincial Key Laboratory of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
BookMark eNpNkMFOwkAQhjcGExF5AeNhE8_F3Z0tpd4ILdWEYGJ632yXKRbbXdyWGH16i3BgLvMf_m8m-W7JwDqLhNxzNuGcxU_5fLlcTAQTcgIQ8VCyKzLksYwDYDIcXOQbMm7bHesHAKYiGpI8S5L1M8283n_QxDW6sjSpWrSdttsamz7QNXbfzn_S0nmaoUWv6-pXFzXSNM1o2riucpa-o3FbWx3zHbkudd3i-LxHJF-m-eIlWL1lr4v5KjBCRl2A0wg2gKww2sy4YChNCEJyGRlpgLGCz0pkIRSx5gC40aERRrNZEQuxYQgj8ng6u_fu64Btp3bu4G3_UQFnPRKGU9m3xKllvGtbj6Xa-6rR_kdxpo7-1L8_dfSnzv566OEEVYh4AcgQYgnwB0V8bK4
CODEN ITACBQ
Cites_doi 10.15171/icnj.2017.01
10.1109/ICASSP43922.2022.9747398
10.1109/MCI.2015.2501545
10.1145/3357384.3357951
10.1109/TCBB.2016.2616395
10.1109/TAFFC.2017.2712143
10.1146/annurev-psych-010213-115043
10.1007/978-3-030-36708-4_3
10.1109/TCYB.2018.2797176
10.1109/tmm.2024.3385676
10.1109/TAFFC.2019.2937768
10.1016/j.bspc.2023.104998
10.1146/annurev.ne.11.030188.001033
10.1007/978-3-030-04221-9_36
10.1109/TNN.2010.2091281
10.1109/TAFFC.2017.2714671
10.3389/fnins.2021.778488
10.1609/aaai.v32i1.11604
10.1023/A:1018628609742
10.1109/EMBC46164.2021.9630277
10.1109/TCYB.2017.2788081
10.1109/ICCV.2013.368
10.1609/aaai.v34i03.5656
10.1109/NER49283.2021.9441368
10.1088/1741-2552/ab260c
10.1109/TAFFC.2020.2994159
10.1002/hbm.23730
10.18653/v1/P19-1466
10.1109/TCYB.2022.3197127
10.1016/j.neuron.2018.03.035
10.1109/TAFFC.2018.2885474
10.1109/TAFFC.2018.2817622
10.3389/fnins.2021.611653
10.1016/j.neuroimage.2005.11.027
10.1016/j.neuron.2012.12.028
10.1109/TNN.2008.2005605
10.1145/1242572.1242668
10.1609/aaai.v35i1.16169
10.1016/j.neucom.2021.02.048
10.1109/tnnls.2022.3225855
10.1109/CVPR.2010.5539857
10.1109/TAFFC.2022.3170428
10.1109/TAMD.2015.2431497
10.1109/ACCESS.2019.2891579
10.5555/2946645.2946704
10.1109/TCDS.2020.2999337
10.1109/TAFFC.2021.3064940
10.1109/TBME.2010.2048568
10.1109/TCDS.2022.3147839
10.1016/j.bspc.2022.103687
10.1109/JBHI.2022.3210158
10.1159/000381950
10.3389/fpsyg.2017.01454
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TAFFC.2024.3371540
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1949-3045
EndPage 1753
ExternalDocumentID 10_1109_TAFFC_2024_3371540
10453943
Genre orig-research
GrantInformation_xml – fundername: STI2030-Major Projects
– fundername: Guangdong Natural Science Funds for Distinguished Young Scholar
  grantid: 2020B1515020041
– fundername: Key-Area Research and Development Program of Guangdong Province
  grantid: 2023B0303030001
– fundername: National Natural Science Foundation of China
  grantid: 62222603; 62076102; 92267203
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2019YFA0706200
– fundername: Program for Guangdong Introducing Innovative and Entrepreneurial Teams
  grantid: 2019ZT08X214
– fundername: Ministry of Science and Technology of the People's Republic of China
  grantid: 2021ZD0200700
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNI
RZB
AAYXX
CITATION
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c247t-e673d3e0bcac8120e4c5324147c4c300b18fe053b9a133eda5c2ca08b922d0e3
IEDL.DBID RIE
ISSN 1949-3045
IngestDate Mon Jun 30 16:34:09 EDT 2025
Tue Jul 01 05:10:25 EDT 2025
Wed Aug 27 02:03:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-e673d3e0bcac8120e4c5324147c4c300b18fe053b9a133eda5c2ca08b922d0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7025-6365
0009-0007-5646-3230
0000-0001-5451-7230
PQID 3101335564
PQPubID 2040414
PageCount 15
ParticipantIDs ieee_primary_10453943
crossref_primary_10_1109_TAFFC_2024_3371540
proquest_journals_3101335564
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on affective computing
PublicationTitleAbbrev TAFFC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref53
ref52
Kingma (ref63)
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
Wagh (ref47)
ref48
ref44
ref43
Briner (ref1) 2002
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Fey (ref62)
Kanamori (ref64) 2009; 10
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
Veličković (ref46)
ref2
ref39
ref38
Kipf (ref42)
Defferrard (ref41)
ref24
ref23
Van der Maaten (ref66) 2008; 9
ref26
ref25
Tzeng (ref59) 2014
ref20
ref22
ref21
ref65
ref27
ref29
Bruna (ref40)
ref60
Zheng (ref28)
ref61
Lu (ref45)
References_xml – start-page: 229
  volume-title: Psychology at Work
  year: 2002
  ident: ref1
  article-title: The experience, expression and management of emotion at work
– ident: ref5
  doi: 10.15171/icnj.2017.01
– ident: ref19
  doi: 10.1109/ICASSP43922.2022.9747398
– ident: ref27
  doi: 10.1109/MCI.2015.2501545
– ident: ref36
  doi: 10.1145/3357384.3357951
– volume: 9
  issue: 11
  year: 2008
  ident: ref66
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– start-page: 1170
  volume-title: Proc. 24th Int. Joint Conf. Artif. Intell.
  ident: ref45
  article-title: Combining eye movements and EEG to enhance emotion recognition
– start-page: 367
  volume-title: Proc. Mach. Learn. Health Workshop
  ident: ref47
  article-title: EEG-GCNN: Augmenting electroencephalogram-based neurological disease diagnosis using a domain-guided graph convolutional neural network
– ident: ref24
  doi: 10.1109/TCBB.2016.2616395
– ident: ref34
  doi: 10.1109/TAFFC.2017.2712143
– ident: ref3
  doi: 10.1146/annurev-psych-010213-115043
– ident: ref20
  doi: 10.1007/978-3-030-36708-4_3
– ident: ref56
  doi: 10.1109/TCYB.2018.2797176
– ident: ref32
  doi: 10.1109/tmm.2024.3385676
– ident: ref13
  doi: 10.1109/TAFFC.2019.2937768
– ident: ref58
  doi: 10.1016/j.bspc.2023.104998
– ident: ref35
  doi: 10.1146/annurev.ne.11.030188.001033
– volume: 10
  start-page: 1391
  year: 2009
  ident: ref64
  article-title: A least-squares approach to direct importance estimation
  publication-title: J. Mach. Learn. Res.
– ident: ref29
  doi: 10.1007/978-3-030-04221-9_36
– ident: ref52
  doi: 10.1109/TNN.2010.2091281
– ident: ref6
  doi: 10.1109/TAFFC.2017.2714671
– ident: ref17
  doi: 10.3389/fnins.2021.778488
– ident: ref48
  doi: 10.1609/aaai.v32i1.11604
– ident: ref26
  doi: 10.1023/A:1018628609742
– ident: ref61
  doi: 10.1109/EMBC46164.2021.9630277
– ident: ref11
  doi: 10.1109/TCYB.2017.2788081
– ident: ref53
  doi: 10.1109/ICCV.2013.368
– ident: ref21
  doi: 10.1609/aaai.v34i03.5656
– ident: ref25
  doi: 10.1109/NER49283.2021.9441368
– ident: ref9
  doi: 10.1088/1741-2552/ab260c
– ident: ref16
  doi: 10.1109/TAFFC.2020.2994159
– start-page: 1
  volume-title: Proc. 2nd Int. Conf. Learn. Representations
  ident: ref40
  article-title: Spectral networks and locally connected networks on graphs
– ident: ref10
  doi: 10.1002/hbm.23730
– ident: ref37
  doi: 10.18653/v1/P19-1466
– ident: ref38
  doi: 10.1109/TCYB.2022.3197127
– ident: ref23
  doi: 10.1016/j.neuron.2018.03.035
– start-page: 2732
  volume-title: Proc. 25th Int. Joint Conf. Artif. Intell.
  ident: ref28
  article-title: Personalizing EEG-based affective models with transfer learning
– year: 2014
  ident: ref59
  article-title: Deep domain confusion: Maximizing for domain invariance
– ident: ref14
  doi: 10.1109/TAFFC.2018.2885474
– start-page: 3837
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref41
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– ident: ref12
  doi: 10.1109/TAFFC.2018.2817622
– ident: ref51
  doi: 10.3389/fnins.2021.611653
– ident: ref4
  doi: 10.1016/j.neuroimage.2005.11.027
– ident: ref31
  doi: 10.1016/j.neuron.2012.12.028
– volume-title: Proc. 3rd Int. Conf. Learn. Representations
  ident: ref63
  article-title: Adam: A method for stochastic optimization
– ident: ref39
  doi: 10.1109/TNN.2008.2005605
– start-page: 1
  volume-title: Proc. ICLR Workshop Representation Learn. Graphs Manifolds
  ident: ref62
  article-title: Fast graph representation learning with PyTorch geometric
– ident: ref65
  doi: 10.1145/1242572.1242668
– ident: ref18
  doi: 10.1609/aaai.v35i1.16169
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref46
  article-title: Graph attention networks
– ident: ref60
  doi: 10.1016/j.neucom.2021.02.048
– ident: ref33
  doi: 10.1109/tnnls.2022.3225855
– ident: ref49
  doi: 10.1109/CVPR.2010.5539857
– ident: ref44
  doi: 10.1109/TAFFC.2022.3170428
– ident: ref55
  doi: 10.1109/TAMD.2015.2431497
– ident: ref57
  doi: 10.1109/ACCESS.2019.2891579
– ident: ref50
  doi: 10.5555/2946645.2946704
– start-page: 1
  volume-title: Proc. 5th Int. Conf. Learn. Representations
  ident: ref42
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref15
  doi: 10.1109/TCDS.2020.2999337
– ident: ref22
  doi: 10.1109/TAFFC.2021.3064940
– ident: ref8
  doi: 10.1109/TBME.2010.2048568
– ident: ref43
  doi: 10.1109/TCDS.2022.3147839
– ident: ref54
  doi: 10.1016/j.bspc.2022.103687
– ident: ref30
  doi: 10.1109/JBHI.2022.3210158
– ident: ref7
  doi: 10.1159/000381950
– ident: ref2
  doi: 10.3389/fpsyg.2017.01454
SSID ssj0000333627
Score 2.476884
Snippet Cross-subject EEG emotion recognition suffers a major setback due to high inter-subject variability in emotional responses. Many prior studies have endeavored...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1739
SubjectTerms Affective computing
Brain modeling
Computational modeling
Disentanglement learning
EEG connectivity
Electroencephalography
Emotion recognition
Emotional factors
Emotions
generalizability
Graph representations
Graph theory
Graphical representations
inter-subject variability
Modules
Predictive models
Training
Title GDDN: Graph Domain Disentanglement Network for Generalizable EEG Emotion Recognition
URI https://ieeexplore.ieee.org/document/10453943
https://www.proquest.com/docview/3101335564
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxaeRRQK8sCGEtzYaRK2qklaIZEBBalbFD-KKiBBkC78es52gioQEluG2Dr5fE9_d4fQVcgleLFKP7IKAgEKUU648rkjA1jgRaVgoa53vs8mi0d2t_SXbbG6qYVRShnwmXL1p3nLl7XY6FQZSDjzacRoD_UgcrPFWt8JFUIpKOOgK4wh0U0-TdMZhIAecykNxibBsWV8zDSVXyrY2JV0H2UdRRZO8uxuGu6Kzx_NGv9N8gHaaz1MPLVX4hDtqOoI7XfTG3ArzMcon8dxdovnumM1juvXcl3heG1qkaonCyrHmQWJY_BscdugWqPAXhROkjlO7Agg_NCBkOpqgPI0yWcLp52x4AiPBY2jJgGVVBEuSgG2nigmfPCxxiwQTFBC-Dhc6ekRPCohmlWy9IUnShLyyPMkUfQE9au6UqcIr5QMpAR9VULE6ImIR7CDKLnOaoBClUN03Z198WY7aRQmAiFRYThVaE4VLaeGaKAPc-tPe45DNOr4VbTS9lGAiwrE-f6Enf2x7Bzt6t0tznaE-s37Rl2AN9HwS3OLvgBZ0Mdv
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGGDhWUShgAc2lOLGTpOwVfTFoxlQkLpF8aOoAlIE7cKv52wnqAIhsWWIE8vnO9-dv-8O4DwSCr1YbS5ZJcUAhWovmgTCUyEO8ONc8sjwnUdJe_jIb8fBuCSrWy6M1tqCz3TTPNq7fDWTC5MqQw3nAYs5W4X1wLBxHV3rO6VCGUNzHFbUGBpfpp1-_xqDQJ83GQtbNsWxdPzYfiq_jLA9WfrbkFRzcoCS5-ZiLpry80e5xn9Pege2Sh-TdNym2IUVXezBdtW_gZTqvA_poNtNrsjA1Kwm3dlrPi1Id2rZSMWTg5WTxMHECfq2pCxRbXBgL5r0egPSc02AyEMFQ5oVNUj7vfR66JVdFjzp83Du6XbIFNNUyFziaU81lwF6WS0eSi4ZpaIVTUz_CBHnGM9qlQfSlzmNROz7imp2AGvFrNCHQCZahUqhxcoxZvRlLGL8gsyFyWugSVV1uKjWPntztTQyG4PQOLOSyoykslJSdaiZxVx6061jHRqVvLJS3z4ydFJxckHQ5kd_DDuDjWE6us_ub5K7Y9g0f3Ko2waszd8X-gR9i7k4tTvqC-uVyrc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GDDN%3A+Graph+Domain+Disentanglement+Network+for+Generalizable+EEG+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Chen%2C+Bianna&rft.au=Chen%2C+C.+L.+Philip&rft.au=Zhang%2C+Tong&rft.date=2024-07-01&rft.pub=IEEE&rft.eissn=1949-3045&rft.volume=15&rft.issue=3&rft.spage=1739&rft.epage=1753&rft_id=info:doi/10.1109%2FTAFFC.2024.3371540&rft.externalDocID=10453943
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon