F‐Actin Polarization and Microtubule Integrity Direct Regeneration Patterns and Polarity of Cell Outgrowth in Wound‐Induced Reprogramming

Plants have developed a high regenerative capacity to repair damaged tissues and regenerate new organs in response to injury. When wounded, cells detect mechanical forces through their cytoskeletons and transmit molecular signals to the nucleus, triggering cell reprogramming. As mechanosensing and c...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment
Main Authors Huang, Yi‐Ting, Yen, Yun‐Ching, Vermeer, Joop E. M., Willemsen, Viola, Tang, Han
Format Journal Article
LanguageEnglish
Published United States 22.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plants have developed a high regenerative capacity to repair damaged tissues and regenerate new organs in response to injury. When wounded, cells detect mechanical forces through their cytoskeletons and transmit molecular signals to the nucleus, triggering cell reprogramming. As mechanosensing and cell reprogramming have been studied separately, the connection between these processes and the role of cytoskeletal networks in regeneration is still unclear. This study used Physcomitrium patens to investigate the spatiotemporal dynamics of actin filaments and microtubules during wound‐induced cell reprogramming. Upon laser‐induced wounding, we observed a rapid and localized accumulation of F‐actin at the plasma membrane of the neighboring cells next to the wounding site, whereas microtubules showed no immediate discernible changes. Disruption of F‐actin severely impaired overall regeneration, leading to significant reductions in the reprogramming rate. Perturbations of microtubules primarily impacted regenerative cell divisions. Depolymerization of cytoskeletal networks altered regeneration patterns, reflected in the higher ratio of cell outgrowth to division and the outgrowth polarity. These findings underscore the functional role of the cytoskeleton in regulating cell reprogramming. This study reveals that early cytoskeletal polarization after wounding guides the polarity of cell outgrowth, providing new insights into how plants regenerate from mechanical damage. This study establishes a precise wounding system in Physcomitrium patens leaves, enabling cellular‐level analysis of regeneration. We show that rapid F‐actin polarization and sustained microtubule integrity are both essential for guiding cell polarity and proper regeneration patterns.
AbstractList Plants have developed a high regenerative capacity to repair damaged tissues and regenerate new organs in response to injury. When wounded, cells detect mechanical forces through their cytoskeletons and transmit molecular signals to the nucleus, triggering cell reprogramming. As mechanosensing and cell reprogramming have been studied separately, the connection between these processes and the role of cytoskeletal networks in regeneration is still unclear. This study used Physcomitrium patens to investigate the spatiotemporal dynamics of actin filaments and microtubules during wound‐induced cell reprogramming. Upon laser‐induced wounding, we observed a rapid and localized accumulation of F‐actin at the plasma membrane of the neighboring cells next to the wounding site, whereas microtubules showed no immediate discernible changes. Disruption of F‐actin severely impaired overall regeneration, leading to significant reductions in the reprogramming rate. Perturbations of microtubules primarily impacted regenerative cell divisions. Depolymerization of cytoskeletal networks altered regeneration patterns, reflected in the higher ratio of cell outgrowth to division and the outgrowth polarity. These findings underscore the functional role of the cytoskeleton in regulating cell reprogramming. This study reveals that early cytoskeletal polarization after wounding guides the polarity of cell outgrowth, providing new insights into how plants regenerate from mechanical damage. This study establishes a precise wounding system in Physcomitrium patens leaves, enabling cellular‐level analysis of regeneration. We show that rapid F‐actin polarization and sustained microtubule integrity are both essential for guiding cell polarity and proper regeneration patterns.
Plants have developed a high regenerative capacity to repair damaged tissues and regenerate new organs in response to injury. When wounded, cells detect mechanical forces through their cytoskeletons and transmit molecular signals to the nucleus, triggering cell reprogramming. As mechanosensing and cell reprogramming have been studied separately, the connection between these processes and the role of cytoskeletal networks in regeneration is still unclear. This study used Physcomitrium patens to investigate the spatiotemporal dynamics of actin filaments and microtubules during wound-induced cell reprogramming. Upon laser-induced wounding, we observed a rapid and localized accumulation of F-actin at the plasma membrane of the neighboring cells next to the wounding site, whereas microtubules showed no immediate discernible changes. Disruption of F-actin severely impaired overall regeneration, leading to significant reductions in the reprogramming rate. Perturbations of microtubules primarily impacted regenerative cell divisions. Depolymerization of cytoskeletal networks altered regeneration patterns, reflected in the higher ratio of cell outgrowth to division and the outgrowth polarity. These findings underscore the functional role of the cytoskeleton in regulating cell reprogramming. This study reveals that early cytoskeletal polarization after wounding guides the polarity of cell outgrowth, providing new insights into how plants regenerate from mechanical damage.
Plants have developed a high regenerative capacity to repair damaged tissues and regenerate new organs in response to injury. When wounded, cells detect mechanical forces through their cytoskeletons and transmit molecular signals to the nucleus, triggering cell reprogramming. As mechanosensing and cell reprogramming have been studied separately, the connection between these processes and the role of cytoskeletal networks in regeneration is still unclear. This study used Physcomitrium patens to investigate the spatiotemporal dynamics of actin filaments and microtubules during wound-induced cell reprogramming. Upon laser-induced wounding, we observed a rapid and localized accumulation of F-actin at the plasma membrane of the neighboring cells next to the wounding site, whereas microtubules showed no immediate discernible changes. Disruption of F-actin severely impaired overall regeneration, leading to significant reductions in the reprogramming rate. Perturbations of microtubules primarily impacted regenerative cell divisions. Depolymerization of cytoskeletal networks altered regeneration patterns, reflected in the higher ratio of cell outgrowth to division and the outgrowth polarity. These findings underscore the functional role of the cytoskeleton in regulating cell reprogramming. This study reveals that early cytoskeletal polarization after wounding guides the polarity of cell outgrowth, providing new insights into how plants regenerate from mechanical damage.Plants have developed a high regenerative capacity to repair damaged tissues and regenerate new organs in response to injury. When wounded, cells detect mechanical forces through their cytoskeletons and transmit molecular signals to the nucleus, triggering cell reprogramming. As mechanosensing and cell reprogramming have been studied separately, the connection between these processes and the role of cytoskeletal networks in regeneration is still unclear. This study used Physcomitrium patens to investigate the spatiotemporal dynamics of actin filaments and microtubules during wound-induced cell reprogramming. Upon laser-induced wounding, we observed a rapid and localized accumulation of F-actin at the plasma membrane of the neighboring cells next to the wounding site, whereas microtubules showed no immediate discernible changes. Disruption of F-actin severely impaired overall regeneration, leading to significant reductions in the reprogramming rate. Perturbations of microtubules primarily impacted regenerative cell divisions. Depolymerization of cytoskeletal networks altered regeneration patterns, reflected in the higher ratio of cell outgrowth to division and the outgrowth polarity. These findings underscore the functional role of the cytoskeleton in regulating cell reprogramming. This study reveals that early cytoskeletal polarization after wounding guides the polarity of cell outgrowth, providing new insights into how plants regenerate from mechanical damage.
Author Huang, Yi‐Ting
Tang, Han
Willemsen, Viola
Yen, Yun‐Ching
Vermeer, Joop E. M.
Author_xml – sequence: 1
  givenname: Yi‐Ting
  surname: Huang
  fullname: Huang, Yi‐Ting
  organization: Graduate Institute of Biochemistry National Chung Hsing University Taichung ROC Taiwan
– sequence: 2
  givenname: Yun‐Ching
  surname: Yen
  fullname: Yen, Yun‐Ching
  organization: Graduate Institute of Biochemistry National Chung Hsing University Taichung ROC Taiwan
– sequence: 3
  givenname: Joop E. M.
  surname: Vermeer
  fullname: Vermeer, Joop E. M.
  organization: Laboratory of Molecular and Cell Biology, Institute of Biology University of Neuchâtel Neuchâtel Switzerland
– sequence: 4
  givenname: Viola
  surname: Willemsen
  fullname: Willemsen, Viola
  organization: Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology Wageningen University & Research Wageningen the Netherlands
– sequence: 5
  givenname: Han
  orcidid: 0000-0001-6152-6637
  surname: Tang
  fullname: Tang, Han
  organization: Graduate Institute of Biochemistry National Chung Hsing University Taichung ROC Taiwan, Advanced Plant and Food Crop Biotechnology Center National Chung Hsing University Taichung Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40545731$$D View this record in MEDLINE/PubMed
BookMark eNo9kc1KLDEQhYMoOv4sfAHJUhet6SSd2EsZ9TqgKKK4bJJ0TRvpTsYkjXhX9wUu-Iw-idFRa1NQfHVOUWcTrTrvAKHdkhyWuY4WBg4lIYyuoEnJRFUwwskqmpCSk0LKutxAmzE-EZIHsl5HG5xUvJKsnKD_5-__3k5Msg7f-F4F-1cl6x1WrsVX1gSfRj32gGcuQRdsesWnNoBJ-BY6cBCW9I1KCYKLX2tLnUz6OZ5C3-PrMXXBv6RHnF0e_Oja7Dlz7WigzTqL4LughsG6bhutzVUfYee7b6H787O76UVxef1nNj25LAzlMhVAyVwa0McCKGhBaNtKwWUljOK6kjWXWlDSChCy1sJIyqimlVK05kxVmrAttL_Uzd7PI8TUDDaafKty4MfYMEoZE7wqjzO6942OeoC2WQQ7qPDa_LwwAwdLID8rxgDzX6QkzWc8TY6n-YqHfQAc_4Wv
Cites_doi 10.1016/j.pbi.2017.08.004
10.1126/science.1165594
10.1105/tpc.108.061705
10.1242/dev.097444
10.1007/s11693-014-9142-x
10.1073/pnas.2003346117
10.1111/jmi.12395
10.1111/nph.19090
10.1242/dev.134668
10.1083/jcb.201802039
10.1093/dnares/7.1.9
10.1111/febs.16571
10.1016/j.tcb.2010.12.004
10.1038/nprot.2014.024
10.1016/j.pbi.2018.12.002
10.1016/j.pbi.2020.05.008
10.1016/j.cell.2008.01.040
10.1007/BF00265581
10.1038/s41477-019-0464-2
10.1105/tpc.111.088005
10.1093/plcell/koab230
10.1111/nph.18683
10.1007/s10265-015-0706-y
10.1105/tpc.19.00828
10.1016/j.devcel.2024.03.009
10.1073/pnas.0901170106
10.1093/pcp/pcaf008
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1111/pce.70032
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1365-3040
ExternalDocumentID 40545731
10_1111_pce_70032
Genre Journal Article
GrantInformation_xml – fundername: This study was supported by Taiwan National Science and Technology Council.
– fundername: This study was supported by the Taiwan National Science and Technology Council (NSTC 112-2311-B-005-008 -to H.T. and Y.T.H.).
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1OB
1OC
29O
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ACAHQ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
NPM
7X8
ID FETCH-LOGICAL-c247t-e20f7ceb86e2eb602dd764756ca4b57947b620d6e679b6c7232b25aa2943a5b03
ISSN 0140-7791
1365-3040
IngestDate Fri Jul 11 17:01:52 EDT 2025
Tue Jun 24 01:31:56 EDT 2025
Thu Jul 03 08:35:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords mechanosensing
polarization
wound‐induced cell reprogramming
P. patens
cytoskeletal networks
Language English
License 2025 John Wiley & Sons Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c247t-e20f7ceb86e2eb602dd764756ca4b57947b620d6e679b6c7232b25aa2943a5b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6152-6637
PMID 40545731
PQID 3223364518
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3223364518
pubmed_primary_40545731
crossref_primary_10_1111_pce_70032
PublicationCentury 2000
PublicationDate 2025-06-22
PublicationDateYYYYMMDD 2025-06-22
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2025
References Overdijk E. J. R. (e_1_2_8_19_1) 2016; 263
Ishikawa M. (e_1_2_8_14_1) 2011; 23
Sugimoto K. (e_1_2_8_22_1) 2011; 21
Ali O. (e_1_2_8_2_1) 2023; 238
Yan Y. (e_1_2_8_29_1) 2023; 239
Rensing S. A. (e_1_2_8_20_1) 2020; 32
Ashton N. W. (e_1_2_8_3_1) 1977; 154
Ma Z. (e_1_2_8_16_1) 2023; 290
Ikeuchi M. (e_1_2_8_12_1) 2016; 143
Sugimoto K. (e_1_2_8_23_1) 2019; 47
De Keijzer J. (e_1_2_8_15_1) 2014; 8
Nishiyama T. (e_1_2_8_18_1) 2000; 7
Ishikawa M. (e_1_2_8_13_1) 2019; 5
Hiwatashi Y. (e_1_2_8_9_1) 2008; 20
Hoermayer L. (e_1_2_8_10_1) 2020; 117
Boudaoud A. (e_1_2_8_5_1) 2014; 9
Codjoe J. M. (e_1_2_8_6_1) 2022; 34
Sakakibara K. (e_1_2_8_21_1) 2014; 141
Sugiyama M. (e_1_2_8_24_1) 2015; 128
Hamant O. (e_1_2_8_8_1) 2008; 322
McElroy D. (e_1_2_8_17_1) 1990; 2
Wu S. Z. (e_1_2_8_27_1) 2018; 217
Xu L. (e_1_2_8_28_1) 2018; 41
Hoermayer L. (e_1_2_8_11_1) 2024; 59
Birnbaum K. D. (e_1_2_8_4_1) 2008; 132
Du F. (e_1_2_8_7_1) 2020; 57
Tang H. (e_1_2_8_25_1) 2025; 66
Vidali L. (e_1_2_8_26_1) 2009; 106
References_xml – volume: 41
  start-page: 39
  year: 2018
  ident: e_1_2_8_28_1
  article-title: De Novo Root Regeneration From Leaf Explants: Wounding, Auxin, and Cell Fate Transition
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2017.08.004
– volume: 322
  start-page: 1650
  issue: 5908
  year: 2008
  ident: e_1_2_8_8_1
  article-title: Developmental Patterning by Mechanical Signals in Arabidopsis
  publication-title: Science
  doi: 10.1126/science.1165594
– volume: 20
  start-page: 3094
  issue: 11
  year: 2008
  ident: e_1_2_8_9_1
  article-title: Kinesins Are Indispensable for Interdigitation of Phragmoplast Microtubules in the Moss Physcomitrella patens
  publication-title: The Plant Cell
  doi: 10.1105/tpc.108.061705
– volume: 141
  start-page: 1660
  issue: 8
  year: 2014
  ident: e_1_2_8_21_1
  article-title: WOX13‐Like Genes Are Required for Reprogramming of Leaf and Protoplast Cells Into Stem Cells in the Moss Physcomitrella patens
  publication-title: Development
  doi: 10.1242/dev.097444
– volume: 8
  start-page: 187
  year: 2014
  ident: e_1_2_8_15_1
  article-title: Microtubule Networks for Plant Cell Division
  publication-title: Systems and Synthetic Biology
  doi: 10.1007/s11693-014-9142-x
– volume: 117
  start-page: 15322
  issue: 26
  year: 2020
  ident: e_1_2_8_10_1
  article-title: Wounding‐Induced Changes in Cellular Pressure and Localized Auxin Signalling Spatially Coordinate Restorative Divisions in Roots
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.2003346117
– volume: 263
  start-page: 171
  issue: 2
  year: 2016
  ident: e_1_2_8_19_1
  article-title: Interaction Between the Moss Physcomitrella patens and Phytophthora: A Novel Pathosystem for Live‐Cell Imaging of Subcellular Defence
  publication-title: Journal of Microscopy
  doi: 10.1111/jmi.12395
– volume: 239
  start-page: 1609
  issue: 5
  year: 2023
  ident: e_1_2_8_29_1
  article-title: Mechanical Regulation of Cortical Microtubules in Plant Cells
  publication-title: New Phytologist
  doi: 10.1111/nph.19090
– volume: 143
  start-page: 1442
  issue: 9
  year: 2016
  ident: e_1_2_8_12_1
  article-title: Plant Regeneration: Cellular Origins and Molecular Mechanisms
  publication-title: Development
  doi: 10.1242/dev.134668
– volume: 217
  start-page: 3531
  issue: 10
  year: 2018
  ident: e_1_2_8_27_1
  article-title: Actin and Microtubule Cross Talk Mediates Persistent Polarized Growth
  publication-title: Journal of Cell Biology
  doi: 10.1083/jcb.201802039
– volume: 7
  start-page: 9
  issue: 1
  year: 2000
  ident: e_1_2_8_18_1
  article-title: Tagged Mutagenesis and Gene‐Trap in the Moss, Physcomitrella patens by Shuttle Mutagenesis
  publication-title: DNA Research
  doi: 10.1093/dnares/7.1.9
– volume: 290
  start-page: 3336
  issue: 13
  year: 2023
  ident: e_1_2_8_16_1
  article-title: Molecular Condensation and Mechanoregulation of Plant Class I Formin, An Integrin‐Like Actin Nucleator
  publication-title: The FEBS journal
  doi: 10.1111/febs.16571
– volume: 21
  start-page: 212
  issue: 4
  year: 2011
  ident: e_1_2_8_22_1
  article-title: Regeneration in Plants and Animals: Dedifferentiation, Transdifferentiation, or Just Differentiation?
  publication-title: Trends in Cell Biology
  doi: 10.1016/j.tcb.2010.12.004
– volume: 9
  start-page: 457
  issue: 2
  year: 2014
  ident: e_1_2_8_5_1
  article-title: Fibriltool, an Imagej Plug‐In to Quantify Fibrillar Structures in Raw Microscopy Images
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2014.024
– volume: 2
  start-page: 163
  issue: 2
  year: 1990
  ident: e_1_2_8_17_1
  article-title: Isolation of an Efficient Actin Promoter for Use in Rice Transformation
  publication-title: The Plant Cell
– volume: 47
  start-page: 138
  year: 2019
  ident: e_1_2_8_23_1
  article-title: To Regenerate or Not to Regenerate: Factors That Drive Plant Regeneration
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2018.12.002
– volume: 57
  start-page: 16
  year: 2020
  ident: e_1_2_8_7_1
  article-title: Mechanical Control of Plant Morphogenesis: Concepts and Progress
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2020.05.008
– volume: 132
  start-page: 697
  issue: 4
  year: 2008
  ident: e_1_2_8_4_1
  article-title: Slicing Across Kingdoms: Regeneration in Plants and Animals
  publication-title: Cell
  doi: 10.1016/j.cell.2008.01.040
– volume: 154
  start-page: 87
  issue: 1
  year: 1977
  ident: e_1_2_8_3_1
  article-title: The Isolation and Preliminary Characterisation of Auxotrophic and Analogue Resistant Mutants of the Moss, Physcomitrella patens
  publication-title: Molecular and General Genetics MGG
  doi: 10.1007/BF00265581
– volume: 5
  start-page: 681
  issue: 7
  year: 2019
  ident: e_1_2_8_13_1
  article-title: Physcomitrella Stemin Transcription Factor Induces Stem Cell Formation With Epigenetic Reprogramming
  publication-title: Nature Plants
  doi: 10.1038/s41477-019-0464-2
– volume: 23
  start-page: 2924
  issue: 8
  year: 2011
  ident: e_1_2_8_14_1
  article-title: Physcomitrella Cyclin‐Dependent Kinase A Links Cell Cycle Reactivation to Other Cellular Changes During Reprogramming of Leaf Cells
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.088005
– volume: 34
  start-page: 129
  issue: 1
  year: 2022
  ident: e_1_2_8_6_1
  article-title: Plant Cell Mechanobiology: Greater Than the Sum of Its Parts
  publication-title: Plant Cell
  doi: 10.1093/plcell/koab230
– volume: 238
  start-page: 62
  issue: 1
  year: 2023
  ident: e_1_2_8_2_1
  article-title: Revisiting the Relationship Between Turgor Pressure and Plant Cell Growth
  publication-title: New Phytologist
  doi: 10.1111/nph.18683
– volume: 128
  start-page: 349
  issue: 3
  year: 2015
  ident: e_1_2_8_24_1
  article-title: Historical Review of Research on Plant Cell Dedifferentiation
  publication-title: Journal of Plant Research
  doi: 10.1007/s10265-015-0706-y
– volume: 32
  start-page: 1361
  issue: 5
  year: 2020
  ident: e_1_2_8_20_1
  article-title: The Moss Physcomitrium (Physcomitrella) Patens: A Model Organism for Non‐Seed Plants
  publication-title: Plant Cell
  doi: 10.1105/tpc.19.00828
– volume: 59
  start-page: 1333
  issue: 10
  year: 2024
  ident: e_1_2_8_11_1
  article-title: Mechanical Forces in Plant Tissue Matrix Orient Cell Divisions via Microtubule Stabilization
  publication-title: Developmental Cell
  doi: 10.1016/j.devcel.2024.03.009
– volume: 106
  start-page: 13341
  issue: 32
  year: 2009
  ident: e_1_2_8_26_1
  article-title: Rapid Formin‐Mediated Actin‐Filament Elongation Is Essential for Polarized Plant Cell Growth
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0901170106
– volume: 66
  start-page: 658
  issue: 4
  year: 2025
  ident: e_1_2_8_25_1
  article-title: Auxin Fluctuation and PIN Polarization in Moss Leaf Cell Reprogramming
  publication-title: Plant and Cell Physiology
  doi: 10.1093/pcp/pcaf008
SSID ssj0001479
Score 2.4714751
SecondaryResourceType online_first
Snippet Plants have developed a high regenerative capacity to repair damaged tissues and regenerate new organs in response to injury. When wounded, cells detect...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Title F‐Actin Polarization and Microtubule Integrity Direct Regeneration Patterns and Polarity of Cell Outgrowth in Wound‐Induced Reprogramming
URI https://www.ncbi.nlm.nih.gov/pubmed/40545731
https://www.proquest.com/docview/3223364518
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaWAhIXBOVv-ZNB3KqssrbjJMeCuqoqFRDalvYUZRxnValNVjQ5tCdeAIln4NF4EsZ24s0ClQqXaJVsxpHn04xn_HmGkDcpgGIQxUEqyzQQuSyChCsMVoopcFNPDGJzdnj_vdw9EHtH0dFo9GPAWmobmKjLv54r-R-t4j3Uqzkl-w-a9ULxBv5G_eIVNYzXa-l45qkK22i2KkNmw9DXHax0DApDt2taaE8dRXJhWtV1Zg5ndmFrTtt_f7R1NitXsdnJ6bgaJrn3oW0WGK83Nj3y2XRi8iOb3h-GQ4AreUf1OuudYbfkNW2RrKU3ewRW_OBw3QpVXd76-MRLnveCbErXWsfjtvKPTedv__wQHYx26Nur6-XWzmRrfzLMKemzLtV0eFKf5sNcB4sMJ4utpz9DjAdcf6-Jdibb8PR46Io-XeEQlkpPYrRfbOX1-p3-35yhpyj2wRG-mtlXb5CbDEMRG7Z_WpUomwpXz7H_sq56lWGL-VHX1zxXBDJ2QTO_R-52kQjddrC6T0a62iS3XW_Si01y622NccPFA_Jt9vPrd4svOsQXRU3SAb6oxxd1-KJDfNEeX_a1Hl-0LqnBF_X4ojiKxReO2SGLriHrITmY7czf7QZdE49AMRE3gWZhGSsNidRMgwxZUcRSxJFUuUAbkYoYJAsLqWWcglQ4wQxYlOcsFTyPIOSPyEZVV_oJoQClSkpgWkgQCYOUJSB4kZaaR7yI1Ji87qc5W7paLdkfahyTV70CMrSkBvp5pev2PEPXxs2m_DQZk8dOM14MhjUiivn06XWGeEburMD7nGw0X1r9ApeuDby02PkFi5acIA
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=F%E2%80%90Actin+Polarization+and+Microtubule+Integrity+Direct+Regeneration+Patterns+and+Polarity+of+Cell+Outgrowth+in+Wound%E2%80%90Induced+Reprogramming&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Huang%2C+Yi%E2%80%90Ting&rft.au=Yen%2C+Yun%E2%80%90Ching&rft.au=Vermeer%2C+Joop+E.+M.&rft.au=Willemsen%2C+Viola&rft.date=2025-06-22&rft.issn=0140-7791&rft.eissn=1365-3040&rft_id=info:doi/10.1111%2Fpce.70032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_pce_70032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon