A novel EEG-based graph convolution network for depression detection: Incorporating secondary subject partitioning and attention mechanism
Saved in:
Published in | Expert systems with applications Vol. 239; p. 122356 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.04.2024
|
Online Access | Get full text |
Cover
Loading…
ArticleNumber | 122356 |
---|---|
Author | Jin, LiCheng Hou, Huirang Meng, Qinghao Wang, Hanguang Zhang, Zhongyi |
Author_xml | – sequence: 1 givenname: Zhongyi orcidid: 0009-0008-8204-0044 surname: Zhang fullname: Zhang, Zhongyi – sequence: 2 givenname: Qinghao surname: Meng fullname: Meng, Qinghao – sequence: 3 givenname: LiCheng surname: Jin fullname: Jin, LiCheng – sequence: 4 givenname: Hanguang orcidid: 0009-0003-8349-2476 surname: Wang fullname: Wang, Hanguang – sequence: 5 givenname: Huirang orcidid: 0000-0002-4608-273X surname: Hou fullname: Hou, Huirang |
BookMark | eNp9kM9OAjEQh3vAREBfwFNfYNf-WbbgjRBEEhIvem667SzsurSbtkB8BZ_arXjy4GmSme83mfkmaGSdBYQeKMkpoeVjm0O4qJwRxnPKGJ-VIzQmi5nICiqKWzQJoSWECkLEGH0tsXVn6PB6vckqFcDgvVf9AWtnz647xcZZbCFenP_AtfPYQO8hhNQ2EEEn4AlvrXa-d17Fxu5xgCFtlP_E4VS1A4N75WOT0DRW1mAVI9if5UfQB2WbcLxDN7XqAtz_1il6f16_rV6y3etmu1ruMs0KETNVA3CjCdO1KYmglAkObF4XGmpQ1LCSlpopUdGB54yWfEGZJqYyvNJzveBTNL_u1d6F4KGWuokq3RK9ajpJiUweZSuTR5k8yqvHIcr-RHvfHIdH_wt9A0K_gQ8 |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2024_120750 crossref_primary_10_1016_j_inffus_2025_102971 crossref_primary_10_3390_bioengineering11040358 crossref_primary_10_1007_s11517_025_03295_0 crossref_primary_10_3389_fnins_2024_1367212 crossref_primary_10_1016_j_bspc_2024_106930 crossref_primary_10_1016_j_ijcce_2024_07_002 crossref_primary_10_1177_01423312241263140 crossref_primary_10_1016_j_bspc_2024_106973 crossref_primary_10_3390_math12081180 crossref_primary_10_1093_cercor_bhae505 crossref_primary_10_1016_j_neucom_2024_128098 crossref_primary_10_1080_21642583_2024_2427028 crossref_primary_10_3934_mbe_2025024 crossref_primary_10_3390_diagnostics15020210 crossref_primary_10_1007_s00521_024_09437_z |
Cites_doi | 10.1159/000438457 10.1016/j.jneumeth.2022.109690 10.3389/fninf.2017.00067 10.1186/s40649-019-0069-y 10.1093/bioinformatics/btl242 10.1016/j.knosys.2022.110190 10.1007/s40273-021-01019-4 10.1016/j.asoc.2020.106153 10.1016/j.jad.2023.07.077 10.1016/j.cmpb.2023.107360 10.1016/j.eswa.2023.119711 10.1002/acr.20556 10.1016/j.compbiomed.2022.105690 10.1111/jsr.12169 10.1109/TNSRE.2021.3059429 10.1016/j.cmpb.2016.08.010 10.1109/TNSRE.2020.3043426 10.1088/1741-2552/aace8c 10.1016/j.compbiomed.2022.105815 10.1016/S0016-0032(96)00063-4 10.3390/brainsci12050630 10.1016/j.compbiomed.2023.106537 10.1016/j.bspc.2023.104923 10.1016/j.neunet.2019.07.008 10.1007/s00357-020-09362-5 10.1109/TNSRE.2019.2894423 10.3390/ijerph18126441 10.1046/j.1525-1497.2001.016009606.x 10.1109/JBHI.2020.3045718 10.1109/TNSRE.2011.2168542 10.1109/IEMBS.2005.1615701 10.1371/journal.pone.0171409 10.1016/j.compbiomed.2020.103757 10.1109/TAMD.2015.2431497 10.1016/j.eswa.2023.120306 10.1016/j.eswa.2021.116076 10.1109/CVPR.2018.00566 10.1109/TIM.2021.3053999 10.1007/s11071-020-05665-9 10.1007/s13246-020-00938-4 10.1155/2018/5238028 10.1016/j.eswa.2023.120227 10.1109/TNSRE.2021.3110665 10.1007/s11517-019-01959-2 10.1016/j.bspc.2022.103612 10.1109/ACCESS.2019.2944273 10.1109/TAFFC.2022.3210958 10.1007/s12559-022-10016-4 10.1109/TAFFC.2018.2885474 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2023.122356 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_eswa_2023_122356 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO AAYFN AAYWO AAYXX ABBOA ABFNM ABJNI ABKBG ABMAC ABMVD ABUCO ABWVN ABXDB ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV BNSAS CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSH SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- |
ID | FETCH-LOGICAL-c247t-afee3dc02cfd60711273e28f4cefea1d2616c2a7b1c2432163912c0dbd3bc8c93 |
ISSN | 0957-4174 |
IngestDate | Tue Jul 01 04:06:17 EDT 2025 Thu Apr 24 23:10:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c247t-afee3dc02cfd60711273e28f4cefea1d2616c2a7b1c2432163912c0dbd3bc8c93 |
ORCID | 0009-0003-8349-2476 0009-0008-8204-0044 0000-0002-4608-273X |
ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2023_122356 crossref_primary_10_1016_j_eswa_2023_122356 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-00 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-00 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2024 |
References | He (10.1016/j.eswa.2023.122356_b0090) 2023; 221 Jiang (10.1016/j.eswa.2023.122356_b0105) 2021; 29 Liu (10.1016/j.eswa.2023.122356_b0155) 2022; 12 Mohammed (10.1016/j.eswa.2023.122356_b0165) 2023; 85 Zheng (10.1016/j.eswa.2023.122356_b0315) 2015; 7 Zhang (10.1016/j.eswa.2023.122356_b0305) 2019; 6 Kroenke (10.1016/j.eswa.2023.122356_b0120) 2001; 16 Li (10.1016/j.eswa.2023.122356_b0150) 2018; 12 Saidi (10.1016/j.eswa.2023.122356_b0200) 2020 Ayodele (10.1016/j.eswa.2023.122356_b0015) 2020; 120 Jia (10.1016/j.eswa.2023.122356_b0100) 2021; 29 O'reilly (10.1016/j.eswa.2023.122356_b0180) 2014; 23 Mumtaz (10.1016/j.eswa.2023.122356_b0175) 2017; 12 10.1016/j.eswa.2023.122356_b0130 Huang (10.1016/j.eswa.2023.122356_b0095) 2022; 14 Gori (10.1016/j.eswa.2023.122356_b0080) 2005; 2 Yean (10.1016/j.eswa.2023.122356_b0295) 2018 Chen (10.1016/j.eswa.2023.122356_b0050) 2021; 18 Baygin (10.1016/j.eswa.2023.122356_b0020) 2023; 227 Yang (10.1016/j.eswa.2023.122356_b0285) 2023; 233 Rizzo (10.1016/j.eswa.2023.122356_b0195) 2016; 8 Sun (10.1016/j.eswa.2023.122356_b0235) 2019; 27 Wang (10.1016/j.eswa.2023.122356_b0255) 2023; 328 Tasci (10.1016/j.eswa.2023.122356_b0245) 2023; 260 World Health Organization (10.1016/j.eswa.2023.122356_b0275) 2017; No. WHO/MSD/MER/2017.2 Emsell (10.1016/j.eswa.2023.122356_b0065) 2022; 320 Peng (10.1016/j.eswa.2023.122356_b0190) 2023; 154 Li (10.1016/j.eswa.2023.122356_b0145) 2019; 57 Acharya (10.1016/j.eswa.2023.122356_b0005) 2015; 74 Jin (10.1016/j.eswa.2023.122356_b0110) 2019; 118 Menéndez (10.1016/j.eswa.2023.122356_b0160) 1997; 334 Shi (10.1016/j.eswa.2023.122356_b0220) 2013 Dai (10.1016/j.eswa.2023.122356_b0055) 2023; 339 10.1016/j.eswa.2023.122356_b0265 Zhang (10.1016/j.eswa.2023.122356_b0310) 2022; 147 10.1016/j.eswa.2023.122356_b0075 10.1016/j.eswa.2023.122356_b0030 Jin (10.1016/j.eswa.2023.122356_b0115) 2020; 90 Lawhern (10.1016/j.eswa.2023.122356_b0125) 2018; 15 Murtagh (10.1016/j.eswa.2023.122356_b0170) 2012; 2 Cavanagh (10.1016/j.eswa.2023.122356_b0040) 2017; 11 Aydemir (10.1016/j.eswa.2023.122356_b0010) 2021; 38 Li (10.1016/j.eswa.2023.122356_b0140) 2016; 136 Wang (10.1016/j.eswa.2023.122356_b0260) 2021 Shen (10.1016/j.eswa.2023.122356_b0215) 2020; 25 Zhang (10.1016/j.eswa.2023.122356_b0300) 2020; 29 Tam (10.1016/j.eswa.2023.122356_b0240) 2011; 19 Thoduparambil (10.1016/j.eswa.2023.122356_b0250) 2020; 43 Song (10.1016/j.eswa.2023.122356_b0230) 2022; 75 Wang (10.1016/j.eswa.2023.122356_b0270) 2019; 7 Zhu (10.1016/j.eswa.2023.122356_b0320) 2022; 148 Greenberg (10.1016/j.eswa.2023.122356_b0085) 2021; 39 Smarr (10.1016/j.eswa.2023.122356_b0225) 2011; 63 Li (10.1016/j.eswa.2023.122356_b0135) 2023; 228 Wu (10.1016/j.eswa.2023.122356_b0280) 2022; 381 Chen (10.1016/j.eswa.2023.122356_b0045) 2022; 13 Seal (10.1016/j.eswa.2023.122356_b0210) 2021; 70 Sardari (10.1016/j.eswa.2023.122356_b0205) 2022; 189 Ye (10.1016/j.eswa.2023.122356_b0290) 2021 Cai (10.1016/j.eswa.2023.122356_b0035) 2018; 2018 Borgwardt (10.1016/j.eswa.2023.122356_b0025) 2006; 22 Dang (10.1016/j.eswa.2023.122356_b0060) 2020; 102 Orgo (10.1016/j.eswa.2023.122356_b0185) 2017 |
References_xml | – volume: 74 start-page: 79 issue: 1–2 year: 2015 ident: 10.1016/j.eswa.2023.122356_b0005 article-title: A novel depression diagnosis index using nonlinear features in EEG signals publication-title: European neurology doi: 10.1159/000438457 – volume: 381 year: 2022 ident: 10.1016/j.eswa.2023.122356_b0280 article-title: The superiority verification of morphological features in the EEG-based assessment of depression publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2022.109690 – volume: 11 start-page: 67 year: 2017 ident: 10.1016/j.eswa.2023.122356_b0040 article-title: The patient repository for EEG data+ computational tools (PRED+ CT) publication-title: Frontiers in neuroinformatics doi: 10.3389/fninf.2017.00067 – start-page: 389 year: 2017 ident: 10.1016/j.eswa.2023.122356_b0185 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.eswa.2023.122356_b0305 article-title: Graph convolutional networks: A comprehensive review publication-title: Computational Social Networks doi: 10.1186/s40649-019-0069-y – volume: 22 start-page: e49 issue: 14 year: 2006 ident: 10.1016/j.eswa.2023.122356_b0025 article-title: Integrating structured biological data by kernel maximum mean discrepancy publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl242 – volume: 260 year: 2023 ident: 10.1016/j.eswa.2023.122356_b0245 article-title: Automated accurate detection of depression using twin Pascal’s triangles lattice pattern with EEG Signals publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2022.110190 – volume: 39 start-page: 653 issue: 6 year: 2021 ident: 10.1016/j.eswa.2023.122356_b0085 article-title: The economic burden of adults with major depressive disorder in the United States (2010 and 2018) publication-title: Pharmacoeconomics doi: 10.1007/s40273-021-01019-4 – volume: 90 year: 2020 ident: 10.1016/j.eswa.2023.122356_b0115 article-title: A novel vSLAM framework with unsupervised semantic segmentation based on adversarial transfer learning publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106153 – volume: 339 start-page: 511 year: 2023 ident: 10.1016/j.eswa.2023.122356_b0055 article-title: Classification of recurrent major depressive disorder using a new time series feature extraction method through multisite rs-fMRI data publication-title: Journal of Affective Disorders doi: 10.1016/j.jad.2023.07.077 – ident: 10.1016/j.eswa.2023.122356_b0075 – volume: 233 year: 2023 ident: 10.1016/j.eswa.2023.122356_b0285 article-title: Cross-subject classification of depression by using multiparadigm EEG feature fusion publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2023.107360 – volume: 221 year: 2023 ident: 10.1016/j.eswa.2023.122356_b0090 article-title: A novel unsupervised domain adaptation framework based on graph convolutional network and multi-level feature alignment for inter-subject ECG classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.119711 – volume: 63 start-page: S454 issue: S11 year: 2011 ident: 10.1016/j.eswa.2023.122356_b0225 publication-title: Arthritis care & research doi: 10.1002/acr.20556 – volume: 147 year: 2022 ident: 10.1016/j.eswa.2023.122356_b0310 article-title: Minimal EEG channel selection for depression detection with connectivity features during sleep publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2022.105690 – volume: 328 year: 2023 ident: 10.1016/j.eswa.2023.122356_b0255 article-title: Depression signal correlation identification from different EEG channels based on CNN feature extraction publication-title: Psychiatry Research: Neuroimaging – volume: 23 start-page: 628 issue: 6 year: 2014 ident: 10.1016/j.eswa.2023.122356_b0180 article-title: Montreal Archive of Sleep Studies: An open-access resource for instrument benchmarking and exploratory research publication-title: Journal of sleep research doi: 10.1111/jsr.12169 – volume: 8 start-page: 27 issue: 1 year: 2016 ident: 10.1016/j.eswa.2023.122356_b0195 article-title: Energy distance. wiley interdisciplinary reviews publication-title: Computational statistics – volume: 29 start-page: 566 year: 2021 ident: 10.1016/j.eswa.2023.122356_b0105 article-title: Enhancing EEG-based classification of depression patients using spatial information publication-title: IEEE transactions on neural systems and rehabilitation engineering doi: 10.1109/TNSRE.2021.3059429 – volume: 136 start-page: 151 year: 2016 ident: 10.1016/j.eswa.2023.122356_b0140 article-title: EEG-based mild depressive detection using feature selection methods and classifiers publication-title: Computer methods and programs in biomedicine doi: 10.1016/j.cmpb.2016.08.010 – volume: 29 start-page: 215 year: 2020 ident: 10.1016/j.eswa.2023.122356_b0300 article-title: Brain functional networks based on resting-state EEG data for major depressive disorder analysis and classification publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2020.3043426 – start-page: 2338 year: 2021 ident: 10.1016/j.eswa.2023.122356_b0260 – volume: 15 issue: 5 year: 2018 ident: 10.1016/j.eswa.2023.122356_b0125 article-title: EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces publication-title: Journal of neural engineering doi: 10.1088/1741-2552/aace8c – volume: 148 year: 2022 ident: 10.1016/j.eswa.2023.122356_b0320 article-title: EEG based depression recognition using improved graph convolutional neural network publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2022.105815 – volume: 334 start-page: 307 issue: 2 year: 1997 ident: 10.1016/j.eswa.2023.122356_b0160 article-title: The jensen-shannon divergence publication-title: Journal of the Franklin Institute doi: 10.1016/S0016-0032(96)00063-4 – volume: 12 start-page: 630 issue: 5 year: 2022 ident: 10.1016/j.eswa.2023.122356_b0155 article-title: A Depression Prediction Algorithm Based on Spatiotemporal Feature of EEG Signal publication-title: Brain Sciences doi: 10.3390/brainsci12050630 – volume: 154 year: 2023 ident: 10.1016/j.eswa.2023.122356_b0190 article-title: Temporal relative transformer encoding cooperating with channel attention for EEG emotion analysis publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2023.106537 – volume: 2 start-page: 86 issue: 1 year: 2012 ident: 10.1016/j.eswa.2023.122356_b0170 article-title: Algorithms for hierarchical clustering: An overview publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 320 year: 2022 ident: 10.1016/j.eswa.2023.122356_b0065 article-title: An optimized MRI and PET based clinical protocol for improving the differential diagnosis of geriatric depression and Alzheimer's disease publication-title: Psychiatry Research: Neuroimaging – volume: 85 year: 2023 ident: 10.1016/j.eswa.2023.122356_b0165 article-title: Improving EEG major depression disorder classification using FBSE coupled with domain adaptation method based machine learning algorithms publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2023.104923 – volume: 118 start-page: 262 year: 2019 ident: 10.1016/j.eswa.2023.122356_b0110 article-title: Correlation-based channel selection and regularized feature optimization for MI-based BCI publication-title: Neural Networks doi: 10.1016/j.neunet.2019.07.008 – start-page: 229 year: 2020 ident: 10.1016/j.eswa.2023.122356_b0200 – volume: 38 start-page: 16 year: 2021 ident: 10.1016/j.eswa.2023.122356_b0010 article-title: A new performance evaluation metric for classifiers: Polygon area metric publication-title: Journal of Classification doi: 10.1007/s00357-020-09362-5 – volume: 27 start-page: 429 issue: 3 year: 2019 ident: 10.1016/j.eswa.2023.122356_b0235 article-title: Graph theory analysis of functional connectivity in major depression disorder with high-density resting state EEG data publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2019.2894423 – volume: 18 start-page: 6441 issue: 12 year: 2021 ident: 10.1016/j.eswa.2023.122356_b0050 article-title: A convenient and low-cost model of depression screening and early warning based on voice data using for public mental health publication-title: International Journal of Environmental Research and Public Health doi: 10.3390/ijerph18126441 – volume: 16 start-page: 606 issue: 9 year: 2001 ident: 10.1016/j.eswa.2023.122356_b0120 article-title: The PHQ-9: Validity of a brief depression severity measure publication-title: Journal of general internal medicine doi: 10.1046/j.1525-1497.2001.016009606.x – volume: 2 start-page: 729 year: 2005 ident: 10.1016/j.eswa.2023.122356_b0080 article-title: A new model for learning in graph domains – volume: 25 start-page: 2545 issue: 7 year: 2020 ident: 10.1016/j.eswa.2023.122356_b0215 article-title: An optimal channel selection for EEG-based depression detection via kernel-target alignment publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2020.3045718 – volume: 19 start-page: 617 issue: 6 year: 2011 ident: 10.1016/j.eswa.2023.122356_b0240 article-title: A minimal set of electrodes for motor imagery BCI to control an assistive device in chronic stroke subjects: A multi-session study publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2011.2168542 – ident: 10.1016/j.eswa.2023.122356_b0265 doi: 10.1109/IEMBS.2005.1615701 – volume: 12 start-page: e0171409 issue: 2 year: 2017 ident: 10.1016/j.eswa.2023.122356_b0175 article-title: A wavelet-based technique to predict treatment outcome for major depressive disorder publication-title: PloS one doi: 10.1371/journal.pone.0171409 – volume: 120 year: 2020 ident: 10.1016/j.eswa.2023.122356_b0015 article-title: Supervised domain generalization for integration of disparate scalp EEG datasets for automatic epileptic seizure detection publication-title: Computers in biology and medicine doi: 10.1016/j.compbiomed.2020.103757 – volume: 7 start-page: 162 issue: 3 year: 2015 ident: 10.1016/j.eswa.2023.122356_b0315 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Transactions on autonomous mental development doi: 10.1109/TAMD.2015.2431497 – volume: 227 year: 2023 ident: 10.1016/j.eswa.2023.122356_b0020 article-title: Automated mental arithmetic performance detection using quantum pattern-and triangle pooling techniques with EEG signals publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.120306 – volume: 189 year: 2022 ident: 10.1016/j.eswa.2023.122356_b0205 article-title: Audio based depression detection using Convolutional Autoencoder publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.116076 – ident: 10.1016/j.eswa.2023.122356_b0130 doi: 10.1109/CVPR.2018.00566 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.eswa.2023.122356_b0210 article-title: DeprNet: A deep convolution neural network framework for detecting depression using EEG publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2021.3053999 – volume: 102 start-page: 667 issue: 2 year: 2020 ident: 10.1016/j.eswa.2023.122356_b0060 article-title: Multilayer brain network combined with deep convolutional neural network for detecting major depressive disorder publication-title: Nonlinear Dynamics doi: 10.1007/s11071-020-05665-9 – volume: 43 start-page: 1349 year: 2020 ident: 10.1016/j.eswa.2023.122356_b0250 article-title: EEG-based deep learning model for the automatic detection of clinical depression publication-title: Physical and Engineering Sciences in Medicine doi: 10.1007/s13246-020-00938-4 – volume: No. WHO/MSD/MER/2017.2 year: 2017 ident: 10.1016/j.eswa.2023.122356_b0275 – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.eswa.2023.122356_b0035 article-title: A pervasive approach to EEG-based depression detection publication-title: Complexity doi: 10.1155/2018/5238028 – start-page: 1140 year: 2021 ident: 10.1016/j.eswa.2023.122356_b0290 – volume: 228 year: 2023 ident: 10.1016/j.eswa.2023.122356_b0135 article-title: GCNs–FSMI: EEG recognition of mental illness based on fine-grained signal features and graph mutual information maximization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.120227 – volume: 29 start-page: 1977 year: 2021 ident: 10.1016/j.eswa.2023.122356_b0100 article-title: Multi-view spatial-temporal graph convolutional networks with domain generalization for sleep stage classification publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2021.3110665 – volume: 57 start-page: 1341 year: 2019 ident: 10.1016/j.eswa.2023.122356_b0145 article-title: EEG-based mild depression recognition using convolutional neural network publication-title: Medical & biological engineering & computing doi: 10.1007/s11517-019-01959-2 – volume: 75 year: 2022 ident: 10.1016/j.eswa.2023.122356_b0230 article-title: LSDD-EEGNet: An efficient end-to-end framework for EEG-based depression detection publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2022.103612 – volume: 7 start-page: 143303 year: 2019 ident: 10.1016/j.eswa.2023.122356_b0270 article-title: Channel selection method for EEG emotion recognition using normalized mutual information publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944273 – ident: 10.1016/j.eswa.2023.122356_b0030 – start-page: 1 year: 2018 ident: 10.1016/j.eswa.2023.122356_b0295 – start-page: 6627 year: 2013 ident: 10.1016/j.eswa.2023.122356_b0220 – volume: 13 start-page: 2106 issue: 4 year: 2022 ident: 10.1016/j.eswa.2023.122356_b0045 article-title: Exploring Self-Attention Graph Pooling With EEG-Based Topological Structure and Soft Label for Depression Detection publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2022.3210958 – volume: 14 start-page: 1316 issue: 4 year: 2022 ident: 10.1016/j.eswa.2023.122356_b0095 article-title: Generator-based domain adaptation method with knowledge free for cross-subject eeg emotion recognition publication-title: Cognitive Computation doi: 10.1007/s12559-022-10016-4 – volume: 12 start-page: 494 issue: 2 year: 2018 ident: 10.1016/j.eswa.2023.122356_b0150 article-title: A bi-hemisphere domain adversarial neural network model for EEG emotion recognition publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2018.2885474 |
SSID | ssj0017007 |
Score | 2.595166 |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 122356 |
Title | A novel EEG-based graph convolution network for depression detection: Incorporating secondary subject partitioning and attention mechanism |
Volume | 239 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcuHCG1Fe8oFblFXiuPGG26paWBAgIbVSxSWK7THbVcmiNtsKDvwAfgM_lvEj3rQFRLlEK8trR5kv4_Hkm8-EPJeZFJNGsrTURZlyARW-UqpIG5OrqslMyYUtcH73vpzv8zcHOwej0c8Ba2ndybH69tu6kv-xKrahXW2V7BUsGwfFBvyN9sUrWhiv_2TjadKuTuEomc1epXY50onTn3ZU8jBx0nqet6MTRtqrZcB2joTliB2vrZilEzR22QW7R9aWTXeylkunbWzn7jO3Tt216wJN8jPY0uFeh3AZiX1w3AWV6L5-bvCl_FK2-uNi1X76ehitD775A863aFaR5eP1Dt4e7i4gLLjuU4DvPHeZ19Ae8hhsSH_pE5Ii5bk_s6f3zcwrHQXvmmMs42XILzl-n4NYjuHkzKpJsWK86XxeZfvC6hc5iT3dbVnbMWo7Ru3HuEauM9yEWC86_h4JRFbYUHglR3_foSTLswcv3scg7BnEL3u3yc2w8aBTj6I7ZATtXXKrP9SDBh9_j_yYUgcqGkFFHajoAFQ0gIoiqOgGVDSC6gU9BykaIUUDpOgQUhQhRSOkaITUfbL_cra3O0_DgR2pYlx0-IIDFFplTBltdQtzjI2BTQxXYKDJNe7WS8UaIXPsXzDcClQ5U5mWupBqoqriAdlqVy08JHQiBZcZFFAZxQ1nEippOAjTZFILKbZJ3j_PWgU1e3uoylH9ZztukyT-54vXcvlL70dX6v2Y3NiA-gnZ6o7X8BTD1U4-c6j5BWgSnz0 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+EEG-based+graph+convolution+network+for+depression+detection%3A+Incorporating+secondary+subject+partitioning+and+attention+mechanism&rft.jtitle=Expert+systems+with+applications&rft.au=Zhang%2C+Zhongyi&rft.au=Meng%2C+Qinghao&rft.au=Jin%2C+LiCheng&rft.au=Wang%2C+Hanguang&rft.date=2024-04-01&rft.issn=0957-4174&rft.volume=239&rft.spage=122356&rft_id=info:doi/10.1016%2Fj.eswa.2023.122356&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2023_122356 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |