Industrial Anomaly Detection System: A Multicase Algorithm Leveraging Feature Information and Memory Bank
The conventional anomaly detection (AD) methods typically rely on training normal samples without defects to identify deviations from the background. However, these methods suffer from issues, such as missing detection or false detection. Although subsequent research has attempted to improve algorit...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 9 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The conventional anomaly detection (AD) methods typically rely on training normal samples without defects to identify deviations from the background. However, these methods suffer from issues, such as missing detection or false detection. Although subsequent research has attempted to improve algorithm performance, this often results in overfitting to specific cases within the AD framework. To address these challenges, this article proposes a semi-supervised AD algorithm that combines improved metric learning techniques with a memory bank (MB) update module. In order to enhance the algorithm's generalization capabilities across different cases, a multicases MB inheritance approach is introduced. This approach facilitates rapid generalization to unknown test cases with minimal iterative learning (<inline-formula> <tex-math notation="LaTeX">\le 5 </tex-math></inline-formula> epochs). Additionally, a bank-case matching module is designed to select the appropriate MB and calculate anomaly scores within our framework. The effectiveness of the proposed algorithm has been validated through real industrial tests and ablation experiments, demonstrating its capability in detecting anomalies accurately and reliably. Code is available on: https://github.com/FrankCloud-UESTC/Multi-case-AD . |
---|---|
AbstractList | The conventional anomaly detection (AD) methods typically rely on training normal samples without defects to identify deviations from the background. However, these methods suffer from issues, such as missing detection or false detection. Although subsequent research has attempted to improve algorithm performance, this often results in overfitting to specific cases within the AD framework. To address these challenges, this article proposes a semi-supervised AD algorithm that combines improved metric learning techniques with a memory bank (MB) update module. In order to enhance the algorithm's generalization capabilities across different cases, a multicases MB inheritance approach is introduced. This approach facilitates rapid generalization to unknown test cases with minimal iterative learning (<inline-formula> <tex-math notation="LaTeX">\le 5 </tex-math></inline-formula> epochs). Additionally, a bank-case matching module is designed to select the appropriate MB and calculate anomaly scores within our framework. The effectiveness of the proposed algorithm has been validated through real industrial tests and ablation experiments, demonstrating its capability in detecting anomalies accurately and reliably. Code is available on: https://github.com/FrankCloud-UESTC/Multi-case-AD . The conventional anomaly detection (AD) methods typically rely on training normal samples without defects to identify deviations from the background. However, these methods suffer from issues, such as missing detection or false detection. Although subsequent research has attempted to improve algorithm performance, this often results in overfitting to specific cases within the AD framework. To address these challenges, this article proposes a semi-supervised AD algorithm that combines improved metric learning techniques with a memory bank (MB) update module. In order to enhance the algorithm’s generalization capabilities across different cases, a multicases MB inheritance approach is introduced. This approach facilitates rapid generalization to unknown test cases with minimal iterative learning ([Formula Omitted] epochs). Additionally, a bank-case matching module is designed to select the appropriate MB and calculate anomaly scores within our framework. The effectiveness of the proposed algorithm has been validated through real industrial tests and ablation experiments, demonstrating its capability in detecting anomalies accurately and reliably. Code is available on: https://github.com/FrankCloud-UESTC/Multi-case-AD . |
Author | Li, Haoran Lok Woo, Wai Gao, Bin Shi, Yunhan Yang, Geng |
Author_xml | – sequence: 1 givenname: Yunhan orcidid: 0000-0002-6919-0776 surname: Shi fullname: Shi, Yunhan organization: School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 2 givenname: Bin orcidid: 0000-0003-3377-6895 surname: Gao fullname: Gao, Bin email: bin_gao@uestc.edu.cn organization: School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 3 givenname: Geng orcidid: 0009-0000-6370-7255 surname: Yang fullname: Yang, Geng organization: School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 4 givenname: Haoran orcidid: 0000-0002-2453-1995 surname: Li fullname: Li, Haoran organization: School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China – sequence: 5 givenname: Wai orcidid: 0000-0002-8698-7605 surname: Lok Woo fullname: Lok Woo, Wai organization: Northumbria University, Newcastle upon Tyne, U.K |
BookMark | eNpNkMFPwjAUhxujiYDePXho4nnYdmu7ekMUJYF4EM9L2V5xuLXYdib89w7h4Oldvu_3km-Izq2zgNANJWNKibpfzZdjRhgfp5zTnLMzNKCcy0QJwc7RgBCaJyrj4hINQ9gSQqTI5ADVc1t1IfpaN3hiXaubPX6CCGWsncXv-xChfcATvOyaWJc6AJ40G-fr-NniBfyA15vabvAMdOw84Lk1zrf6T9a2wktond_jR22_rtCF0U2A69MdoY_Z82r6mizeXubTySIpWSZjonNYE5bmlBkqmDKgCEiiKadCkzQTgldppSpDTS65EtQQsy7XkPESKirzMh2hu-PuzrvvDkIstq7ztn9ZpH2YNJOUiJ4iR6r0LgQPptj5utV-X1BSHIIWfdDiELQ4Be2V26NSA8A_XDElpEh_Afsoc_k |
CODEN | IEIMAO |
Cites_doi | 10.1109/ICCV48922.2021.00822 10.1109/CVPR.2019.00982 10.3390/sym11091066 10.1109/tii.2023.3280246 10.1109/TIM.2022.3196436 10.1109/tie.2019.2907441 10.1109/iccv.2019.00179 10.1109/TPAMI.2021.3057446 10.1109/WACV51458.2022.00188 10.1109/TII.2020.2997836 10.1109/WACV56688.2023.00262 10.1109/tie.2021.3094452 10.1109/CVPR42600.2020.01438 10.1007/978-3-030-68799-1_35 10.1109/CVPR.2015.7298682 10.1109/tie.2021.3101001 10.1007/978-3-319-24261-3_7 10.1109/jsen.2021.3112698 10.1109/tii.2022.3182385 10.1007/978-3-030-69544-6_23 10.1109/WACV51458.2022.00189 10.1109/cvpr52688.2022.01392 10.1109/tii.2022.3142326 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2025.3551852 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 9 |
ExternalDocumentID | 10_1109_TIM_2025_3551852 10929676 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2024YFC3014900; 2022YFC3005003 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c247t-a8eb023812f1629fe90e70a1516a034665d3d9df1f875961f0fbcbe45ced178c3 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:07:33 EDT 2025 Tue Jul 01 05:10:36 EDT 2025 Wed Aug 27 02:05:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c247t-a8eb023812f1629fe90e70a1516a034665d3d9df1f875961f0fbcbe45ced178c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8698-7605 0000-0002-6919-0776 0000-0003-3377-6895 0009-0000-6370-7255 0000-0002-2453-1995 |
PQID | 3185347106 |
PQPubID | 85462 |
PageCount | 9 |
ParticipantIDs | ieee_primary_10929676 crossref_primary_10_1109_TIM_2025_3551852 proquest_journals_3185347106 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref1 ref17 ref16 ref18 Cohen (ref20) 2020 ref24 ref23 ref26 ref25 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Xing (ref19) Xu (ref2) 2021 |
References_xml | – ident: ref8 doi: 10.1109/ICCV48922.2021.00822 – ident: ref25 doi: 10.1109/CVPR.2019.00982 – ident: ref16 doi: 10.3390/sym11091066 – ident: ref7 doi: 10.1109/tii.2023.3280246 – ident: ref14 doi: 10.1109/TIM.2022.3196436 – ident: ref3 doi: 10.1109/tie.2019.2907441 – ident: ref10 doi: 10.1109/iccv.2019.00179 – ident: ref15 doi: 10.1109/TPAMI.2021.3057446 – ident: ref26 doi: 10.1109/WACV51458.2022.00188 – ident: ref24 doi: 10.1109/TII.2020.2997836 – ident: ref23 doi: 10.1109/WACV56688.2023.00262 – ident: ref4 doi: 10.1109/tie.2021.3094452 – year: 2021 ident: ref2 article-title: Spatial–temporal context cached interleaved convolutional neural networks for video defect detection – ident: ref11 doi: 10.1109/CVPR42600.2020.01438 – ident: ref22 doi: 10.1007/978-3-030-68799-1_35 – ident: ref17 doi: 10.1109/CVPR.2015.7298682 – ident: ref5 doi: 10.1109/tie.2021.3101001 – ident: ref18 doi: 10.1007/978-3-319-24261-3_7 – ident: ref13 doi: 10.1109/jsen.2021.3112698 – ident: ref1 doi: 10.1109/tii.2022.3182385 – ident: ref9 doi: 10.1007/978-3-030-69544-6_23 – start-page: 521 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref19 article-title: Distance metric learning with application to clustering with side-information – year: 2020 ident: ref20 article-title: Sub-image anomaly detection with deep pyramid correspondences publication-title: arXiv:2005.02357 – ident: ref21 doi: 10.1109/WACV51458.2022.00189 – ident: ref12 doi: 10.1109/cvpr52688.2022.01392 – ident: ref6 doi: 10.1109/tii.2022.3142326 |
SSID | ssj0007647 |
Score | 2.4238296 |
Snippet | The conventional anomaly detection (AD) methods typically rely on training normal samples without defects to identify deviations from the background. However,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Ablation Algorithms Anomalies Anomaly detection Anomaly detection (AD) Clustering algorithms defect localization and segmentation Extraterrestrial measurements Feature extraction Input variables Learning Measurement metric learning Modules multicase generalization nondestructive testing Overfitting Testing Training Vectors |
Title | Industrial Anomaly Detection System: A Multicase Algorithm Leveraging Feature Information and Memory Bank |
URI | https://ieeexplore.ieee.org/document/10929676 https://www.proquest.com/docview/3185347106 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8QwDLYACQkG3ojjpQwsDD3SV9qwHS8B4phAYqvSxAEE9NDRG-DX46Q9nkJi61BHkR3HduzPBtiJ0IZ57nKGIVKAkkseKFnGQZKkJrXkbxgPF-tfitPr5PwmvWnB6h4Lg4i--Ay77tPn8s1Aj9xTGWk4GXORiUmYpMitAWt9XLuZSJoGmSFpMLkF45wkl3tXZ32KBKO0G7v-Y2n0zQb5oSq_bmJvXk7m4XK8saaq5KE7qsuufvvRs_HfO1-AudbRZL3mZCzCBFZLMPul_eASTPvyT_2yDPefEzxYrxo8qcdXdoS1L9OqWNPVfJ_1mIfrajJ8rPd4Oxje13dP7AJJG_ysI-b8ydEQWYtx8sSqMqzvynlf2YGqHlbg-uT46vA0aIcwBDpKsjpQOZberkc2FJG0KDlmXJGjIBSPEyFSExtpbGgp8pEitNyWusQk1WjCLNfxKkxVgwrXgAmrc26JEbRmok2kDFeWSLlWccYldmB3LJbiuem1UfgYhcuCRFg4ERatCDuw4rj85b-GwR3YHAuyaLXxpXAI8ZisMBfrf5BtwIxbvXlb2YSpejjCLfI26nLbn7J3d0bRMw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RUFU4QMtDbHn50EsP2TovJ-5teWmhu3taJG6RY48BAVm0ZA_w6xk72RaKKvWWQ5xYHo-_Gc98MwDfIrRhnruYYYjkoOSSB0qWcZAkqUkt2RvG08WGI9G_SM4v08uWrO65MIjok8-w6x59LN9M9MxdlZGGE5iLTHyAJQL-NGzoWr8P3kwkTYnMkHSYDIN5VJLLH-OzIfmCUdqNXQWyNHqDQr6tyruz2APM6RqM5lNr8kpuu7O67Ornv6o2_vfcP8Nqa2qyXrM3vsACVuuw8qoA4Tp89Amg-nEDbv708GC9anKv7p7YMdY-UatiTV3zn6zHPGFXE_Sx3t3VZHpTX9-zAZI--G5HzFmUsymyluXkB6vKsKFL6H1ih6q63YSL05PxUT9o2zAEOkqyOlA5lh7ZIxuKSFqUHDOuyFQQiseJEKmJjTQ2tOT7SBFabktdYpJqNGGW63gLFqtJhdvAhNU5t7QQ9M1Em0gZriwN5VrFGZfYge9zsRQPTbWNwnspXBYkwsKJsGhF2IFNt8qv3msWuAO7c0EWrT4-Fo4jHhMOc_H1H8MO4FN_PBwUg7PRrx1Ydn9qblp2YbGeznCPbI-63Pc77gWKpdR8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Industrial+Anomaly+Detection+System%3A+A+Multicase+Algorithm+Leveraging+Feature+Information+and+Memory+Bank&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Shi%2C+Yunhan&rft.au=Gao%2C+Bin&rft.au=Yang%2C+Geng&rft.au=Li%2C+Haoran&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=74&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FTIM.2025.3551852&rft.externalDocID=10929676 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |