Industrial Anomaly Detection System: A Multicase Algorithm Leveraging Feature Information and Memory Bank

The conventional anomaly detection (AD) methods typically rely on training normal samples without defects to identify deviations from the background. However, these methods suffer from issues, such as missing detection or false detection. Although subsequent research has attempted to improve algorit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 9
Main Authors Shi, Yunhan, Gao, Bin, Yang, Geng, Li, Haoran, Lok Woo, Wai
Format Journal Article
LanguageEnglish
Published New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The conventional anomaly detection (AD) methods typically rely on training normal samples without defects to identify deviations from the background. However, these methods suffer from issues, such as missing detection or false detection. Although subsequent research has attempted to improve algorithm performance, this often results in overfitting to specific cases within the AD framework. To address these challenges, this article proposes a semi-supervised AD algorithm that combines improved metric learning techniques with a memory bank (MB) update module. In order to enhance the algorithm's generalization capabilities across different cases, a multicases MB inheritance approach is introduced. This approach facilitates rapid generalization to unknown test cases with minimal iterative learning (<inline-formula> <tex-math notation="LaTeX">\le 5 </tex-math></inline-formula> epochs). Additionally, a bank-case matching module is designed to select the appropriate MB and calculate anomaly scores within our framework. The effectiveness of the proposed algorithm has been validated through real industrial tests and ablation experiments, demonstrating its capability in detecting anomalies accurately and reliably. Code is available on: https://github.com/FrankCloud-UESTC/Multi-case-AD .
AbstractList The conventional anomaly detection (AD) methods typically rely on training normal samples without defects to identify deviations from the background. However, these methods suffer from issues, such as missing detection or false detection. Although subsequent research has attempted to improve algorithm performance, this often results in overfitting to specific cases within the AD framework. To address these challenges, this article proposes a semi-supervised AD algorithm that combines improved metric learning techniques with a memory bank (MB) update module. In order to enhance the algorithm's generalization capabilities across different cases, a multicases MB inheritance approach is introduced. This approach facilitates rapid generalization to unknown test cases with minimal iterative learning (<inline-formula> <tex-math notation="LaTeX">\le 5 </tex-math></inline-formula> epochs). Additionally, a bank-case matching module is designed to select the appropriate MB and calculate anomaly scores within our framework. The effectiveness of the proposed algorithm has been validated through real industrial tests and ablation experiments, demonstrating its capability in detecting anomalies accurately and reliably. Code is available on: https://github.com/FrankCloud-UESTC/Multi-case-AD .
The conventional anomaly detection (AD) methods typically rely on training normal samples without defects to identify deviations from the background. However, these methods suffer from issues, such as missing detection or false detection. Although subsequent research has attempted to improve algorithm performance, this often results in overfitting to specific cases within the AD framework. To address these challenges, this article proposes a semi-supervised AD algorithm that combines improved metric learning techniques with a memory bank (MB) update module. In order to enhance the algorithm’s generalization capabilities across different cases, a multicases MB inheritance approach is introduced. This approach facilitates rapid generalization to unknown test cases with minimal iterative learning ([Formula Omitted] epochs). Additionally, a bank-case matching module is designed to select the appropriate MB and calculate anomaly scores within our framework. The effectiveness of the proposed algorithm has been validated through real industrial tests and ablation experiments, demonstrating its capability in detecting anomalies accurately and reliably. Code is available on: https://github.com/FrankCloud-UESTC/Multi-case-AD .
Author Li, Haoran
Lok Woo, Wai
Gao, Bin
Shi, Yunhan
Yang, Geng
Author_xml – sequence: 1
  givenname: Yunhan
  orcidid: 0000-0002-6919-0776
  surname: Shi
  fullname: Shi, Yunhan
  organization: School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 2
  givenname: Bin
  orcidid: 0000-0003-3377-6895
  surname: Gao
  fullname: Gao, Bin
  email: bin_gao@uestc.edu.cn
  organization: School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 3
  givenname: Geng
  orcidid: 0009-0000-6370-7255
  surname: Yang
  fullname: Yang, Geng
  organization: School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 4
  givenname: Haoran
  orcidid: 0000-0002-2453-1995
  surname: Li
  fullname: Li, Haoran
  organization: School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China
– sequence: 5
  givenname: Wai
  orcidid: 0000-0002-8698-7605
  surname: Lok Woo
  fullname: Lok Woo, Wai
  organization: Northumbria University, Newcastle upon Tyne, U.K
BookMark eNpNkMFPwjAUhxujiYDePXho4nnYdmu7ekMUJYF4EM9L2V5xuLXYdib89w7h4Oldvu_3km-Izq2zgNANJWNKibpfzZdjRhgfp5zTnLMzNKCcy0QJwc7RgBCaJyrj4hINQ9gSQqTI5ADVc1t1IfpaN3hiXaubPX6CCGWsncXv-xChfcATvOyaWJc6AJ40G-fr-NniBfyA15vabvAMdOw84Lk1zrf6T9a2wktond_jR22_rtCF0U2A69MdoY_Z82r6mizeXubTySIpWSZjonNYE5bmlBkqmDKgCEiiKadCkzQTgldppSpDTS65EtQQsy7XkPESKirzMh2hu-PuzrvvDkIstq7ztn9ZpH2YNJOUiJ4iR6r0LgQPptj5utV-X1BSHIIWfdDiELQ4Be2V26NSA8A_XDElpEh_Afsoc_k
CODEN IEIMAO
Cites_doi 10.1109/ICCV48922.2021.00822
10.1109/CVPR.2019.00982
10.3390/sym11091066
10.1109/tii.2023.3280246
10.1109/TIM.2022.3196436
10.1109/tie.2019.2907441
10.1109/iccv.2019.00179
10.1109/TPAMI.2021.3057446
10.1109/WACV51458.2022.00188
10.1109/TII.2020.2997836
10.1109/WACV56688.2023.00262
10.1109/tie.2021.3094452
10.1109/CVPR42600.2020.01438
10.1007/978-3-030-68799-1_35
10.1109/CVPR.2015.7298682
10.1109/tie.2021.3101001
10.1007/978-3-319-24261-3_7
10.1109/jsen.2021.3112698
10.1109/tii.2022.3182385
10.1007/978-3-030-69544-6_23
10.1109/WACV51458.2022.00189
10.1109/cvpr52688.2022.01392
10.1109/tii.2022.3142326
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2025.3551852
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 9
ExternalDocumentID 10_1109_TIM_2025_3551852
10929676
Genre orig-research
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2024YFC3014900; 2022YFC3005003
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c247t-a8eb023812f1629fe90e70a1516a034665d3d9df1f875961f0fbcbe45ced178c3
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:07:33 EDT 2025
Tue Jul 01 05:10:36 EDT 2025
Wed Aug 27 02:05:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-a8eb023812f1629fe90e70a1516a034665d3d9df1f875961f0fbcbe45ced178c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8698-7605
0000-0002-6919-0776
0000-0003-3377-6895
0009-0000-6370-7255
0000-0002-2453-1995
PQID 3185347106
PQPubID 85462
PageCount 9
ParticipantIDs ieee_primary_10929676
crossref_primary_10_1109_TIM_2025_3551852
proquest_journals_3185347106
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref1
ref17
ref16
ref18
Cohen (ref20) 2020
ref24
ref23
ref26
ref25
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Xing (ref19)
Xu (ref2) 2021
References_xml – ident: ref8
  doi: 10.1109/ICCV48922.2021.00822
– ident: ref25
  doi: 10.1109/CVPR.2019.00982
– ident: ref16
  doi: 10.3390/sym11091066
– ident: ref7
  doi: 10.1109/tii.2023.3280246
– ident: ref14
  doi: 10.1109/TIM.2022.3196436
– ident: ref3
  doi: 10.1109/tie.2019.2907441
– ident: ref10
  doi: 10.1109/iccv.2019.00179
– ident: ref15
  doi: 10.1109/TPAMI.2021.3057446
– ident: ref26
  doi: 10.1109/WACV51458.2022.00188
– ident: ref24
  doi: 10.1109/TII.2020.2997836
– ident: ref23
  doi: 10.1109/WACV56688.2023.00262
– ident: ref4
  doi: 10.1109/tie.2021.3094452
– year: 2021
  ident: ref2
  article-title: Spatial–temporal context cached interleaved convolutional neural networks for video defect detection
– ident: ref11
  doi: 10.1109/CVPR42600.2020.01438
– ident: ref22
  doi: 10.1007/978-3-030-68799-1_35
– ident: ref17
  doi: 10.1109/CVPR.2015.7298682
– ident: ref5
  doi: 10.1109/tie.2021.3101001
– ident: ref18
  doi: 10.1007/978-3-319-24261-3_7
– ident: ref13
  doi: 10.1109/jsen.2021.3112698
– ident: ref1
  doi: 10.1109/tii.2022.3182385
– ident: ref9
  doi: 10.1007/978-3-030-69544-6_23
– start-page: 521
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref19
  article-title: Distance metric learning with application to clustering with side-information
– year: 2020
  ident: ref20
  article-title: Sub-image anomaly detection with deep pyramid correspondences
  publication-title: arXiv:2005.02357
– ident: ref21
  doi: 10.1109/WACV51458.2022.00189
– ident: ref12
  doi: 10.1109/cvpr52688.2022.01392
– ident: ref6
  doi: 10.1109/tii.2022.3142326
SSID ssj0007647
Score 2.4238296
Snippet The conventional anomaly detection (AD) methods typically rely on training normal samples without defects to identify deviations from the background. However,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Ablation
Algorithms
Anomalies
Anomaly detection
Anomaly detection (AD)
Clustering algorithms
defect localization and segmentation
Extraterrestrial measurements
Feature extraction
Input variables
Learning
Measurement
metric learning
Modules
multicase generalization
nondestructive testing
Overfitting
Testing
Training
Vectors
Title Industrial Anomaly Detection System: A Multicase Algorithm Leveraging Feature Information and Memory Bank
URI https://ieeexplore.ieee.org/document/10929676
https://www.proquest.com/docview/3185347106
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8QwDLYACQkG3ojjpQwsDD3SV9qwHS8B4phAYqvSxAEE9NDRG-DX46Q9nkJi61BHkR3HduzPBtiJ0IZ57nKGIVKAkkseKFnGQZKkJrXkbxgPF-tfitPr5PwmvWnB6h4Lg4i--Ay77tPn8s1Aj9xTGWk4GXORiUmYpMitAWt9XLuZSJoGmSFpMLkF45wkl3tXZ32KBKO0G7v-Y2n0zQb5oSq_bmJvXk7m4XK8saaq5KE7qsuufvvRs_HfO1-AudbRZL3mZCzCBFZLMPul_eASTPvyT_2yDPefEzxYrxo8qcdXdoS1L9OqWNPVfJ_1mIfrajJ8rPd4Oxje13dP7AJJG_ysI-b8ydEQWYtx8sSqMqzvynlf2YGqHlbg-uT46vA0aIcwBDpKsjpQOZberkc2FJG0KDlmXJGjIBSPEyFSExtpbGgp8pEitNyWusQk1WjCLNfxKkxVgwrXgAmrc26JEbRmok2kDFeWSLlWccYldmB3LJbiuem1UfgYhcuCRFg4ERatCDuw4rj85b-GwR3YHAuyaLXxpXAI8ZisMBfrf5BtwIxbvXlb2YSpejjCLfI26nLbn7J3d0bRMw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5RUFU4QMtDbHn50EsP2TovJ-5teWmhu3taJG6RY48BAVm0ZA_w6xk72RaKKvWWQ5xYHo-_Gc98MwDfIrRhnruYYYjkoOSSB0qWcZAkqUkt2RvG08WGI9G_SM4v08uWrO65MIjok8-w6x59LN9M9MxdlZGGE5iLTHyAJQL-NGzoWr8P3kwkTYnMkHSYDIN5VJLLH-OzIfmCUdqNXQWyNHqDQr6tyruz2APM6RqM5lNr8kpuu7O67Ornv6o2_vfcP8Nqa2qyXrM3vsACVuuw8qoA4Tp89Amg-nEDbv708GC9anKv7p7YMdY-UatiTV3zn6zHPGFXE_Sx3t3VZHpTX9-zAZI--G5HzFmUsymyluXkB6vKsKFL6H1ih6q63YSL05PxUT9o2zAEOkqyOlA5lh7ZIxuKSFqUHDOuyFQQiseJEKmJjTQ2tOT7SBFabktdYpJqNGGW63gLFqtJhdvAhNU5t7QQ9M1Em0gZriwN5VrFGZfYge9zsRQPTbWNwnspXBYkwsKJsGhF2IFNt8qv3msWuAO7c0EWrT4-Fo4jHhMOc_H1H8MO4FN_PBwUg7PRrx1Ydn9qblp2YbGeznCPbI-63Pc77gWKpdR8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Industrial+Anomaly+Detection+System%3A+A+Multicase+Algorithm+Leveraging+Feature+Information+and+Memory+Bank&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Shi%2C+Yunhan&rft.au=Gao%2C+Bin&rft.au=Yang%2C+Geng&rft.au=Li%2C+Haoran&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=74&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FTIM.2025.3551852&rft.externalDocID=10929676
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon