Small-Object-Oriented Pose Estimation With Structural Similarity Constraint

Remote measurement of animal pose and motion is essential in neuroscience and robotics. However, subjects like rats often appear as small objects in open environments, occupying a minimal field of view. The scarcity of visual information and high susceptibility to errors present significant challeng...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 12
Main Authors Han, Le, Zhao, Lei, Zhang, Han, Song, Zhiying, Wang, Pengfei, Zheng, Nenggan
Format Journal Article
LanguageEnglish
Published New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Remote measurement of animal pose and motion is essential in neuroscience and robotics. However, subjects like rats often appear as small objects in open environments, occupying a minimal field of view. The scarcity of visual information and high susceptibility to errors present significant challenges for remote measurement of the pose of these objects. This study introduces SalPose, a pose estimation model designed for small objects, addressing these challenges through rapid perception of small objects and keypoints' structural information mining. First, we enhance the perception of weak visual features by integrating saliency detection and constructing pseudosaliency maps with annotated keypoints. Second, a scale-invariant structural similarity constraint is developed to facilitate the learning of intrinsic keypoint features and reduce the impact of small object size. In addition, to address the crucial gap in small-sized animal behavior analysis datasets in open environments, we introduce RP-5.7K, a rat pose dataset comprising exclusively small object data from the aerial perspective. Extensive experiments on the proposed dataset and two public datasets demonstrate the superiority of the proposed model. This study presents a novel method for remote motion measurement using visual information, mitigating the high sensitivity of small objects to distance-based measurement errors. The contributed dataset is valuable for visual measurement tasks involving small objects and animal behavior analysis. The RP-5.7K dataset is available at https://github.com/CSDLLab/RP-5.7K
AbstractList Remote measurement of animal pose and motion is essential in neuroscience and robotics. However, subjects like rats often appear as small objects in open environments, occupying a minimal field of view. The scarcity of visual information and high susceptibility to errors present significant challenges for remote measurement of the pose of these objects. This study introduces SalPose, a pose estimation model designed for small objects, addressing these challenges through rapid perception of small objects and keypoints’ structural information mining. First, we enhance the perception of weak visual features by integrating saliency detection and constructing pseudosaliency maps with annotated keypoints. Second, a scale-invariant structural similarity constraint is developed to facilitate the learning of intrinsic keypoint features and reduce the impact of small object size. In addition, to address the crucial gap in small-sized animal behavior analysis datasets in open environments, we introduce RP-5.7K, a rat pose dataset comprising exclusively small object data from the aerial perspective. Extensive experiments on the proposed dataset and two public datasets demonstrate the superiority of the proposed model. This study presents a novel method for remote motion measurement using visual information, mitigating the high sensitivity of small objects to distance-based measurement errors. The contributed dataset is valuable for visual measurement tasks involving small objects and animal behavior analysis. The RP-5.7K dataset is available at https://github.com/CSDLLab/RP-5.7K
Author Zhang, Han
Zheng, Nenggan
Han, Le
Zhao, Lei
Wang, Pengfei
Song, Zhiying
Author_xml – sequence: 1
  givenname: Le
  orcidid: 0000-0003-3414-315X
  surname: Han
  fullname: Han, Le
  email: hanle@zju.edu.cn
  organization: Qiushi Academy for Advanced Studies (QAAS) and the College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
– sequence: 2
  givenname: Lei
  orcidid: 0009-0006-9177-1901
  surname: Zhao
  fullname: Zhao, Lei
  email: zlchn@zju.edu.cn
  organization: Qiushi Academy for Advanced Studies (QAAS) and the College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
– sequence: 3
  givenname: Han
  orcidid: 0009-0007-3407-1703
  surname: Zhang
  fullname: Zhang, Han
  email: benniehan@zju.edu.cn
  organization: Qiushi Academy for Advanced Studies (QAAS) and the College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
– sequence: 4
  givenname: Zhiying
  orcidid: 0000-0003-3786-653X
  surname: Song
  fullname: Song, Zhiying
  email: zhiysong@zju.edu.cn
  organization: Qiushi Academy for Advanced Studies (QAAS) and the College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
– sequence: 5
  givenname: Pengfei
  orcidid: 0000-0001-7251-7349
  surname: Wang
  fullname: Wang, Pengfei
  email: pfei@zju.edu.cn
  organization: School of Software Technology, Zhejiang University, Ningbo, China
– sequence: 6
  givenname: Nenggan
  orcidid: 0000-0002-0211-8817
  surname: Zheng
  fullname: Zheng, Nenggan
  email: zng@cs.zju.edu.cn
  organization: Qiushi Academy for Advanced Studies (QAAS) and the State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China
BookMark eNpFkM9LwzAYhoNMcJvePXgoeM7M77RHGVOHkwmbeAxp-xUzunQm6WH_vR0beHovz_t9vM8EjXznAaF7SmaUkuJpu_yYMcLkjEutCimv0JhKqXGhFBuhMSE0x4WQ6gZNYtwRQrQSeozeN3vbtnhd7qBKeB0c-AR19tlFyBYxub1NrvPZt0s_2SaFvkp9sG22cXvX2uDSMZt3PqZgnU-36LqxbYS7S07R18tiO3_Dq_Xrcv68whUTOmGbQwGitAIkBagEayiXvNFF2XCmGplrXiumSktVXUJe1aUogEgGtCGU15xP0eP57iF0vz3EZHZdH_zw0nDGmNJUkBNFzlQVuhgDNOYQhjnhaCgxJ2VmUGZOysxF2VB5OFccAPzjlDCVK83_ALA2ags
CODEN IEIMAO
Cites_doi 10.1109/MCI.2015.2405318
10.1109/CVPR.2014.471
10.1007/978-3-030-87589-3_28
10.1109/TPAMI.2008.128
10.1109/TPAMI.2020.2983686
10.1109/TIM.2023.3244220
10.1109/TGRS.2021.3133956
10.1109/TIP.2022.3175432
10.1371/journal.pone.0158748
10.1609/aaai.v38i2.27826
10.1109/TCSVT.2021.3098497
10.1145/3394171.3413569
10.1109/TIP.2020.2976856
10.1007/978-3-319-46484-8_29
10.1038/417037a
10.1109/TIM.2022.3200438
10.1016/j.compag.2020.105863
10.1109/TIM.2024.3415793
10.1109/TIM.2024.3379090
10.1109/CVPR.2014.214
10.1134/S1054661813030036
10.48550/ARXIV.1807.06521
10.1109/ICCV.2019.00959
10.4324/9781315134468
10.1007/978-3-031-20068-7_6
10.1109/CVPR.2017.495
10.1109/TGRS.2023.3298661
10.1007/978-3-319-24574-4_28
10.1109/TPAMI.2012.89
10.1109/CVPR42600.2020.01240
10.1109/ICME.2019.00256
10.1109/TIM.2022.3185323
10.1109/TGRS.2023.3267271
10.1109/TIM.2022.3153997
10.1016/j.neuron.2017.06.011
10.5244/C.24.12
10.1109/ACCESS.2019.2910572
10.1038/s41593-018-0209-y
10.1007/978-3-319-10602-1_48
10.1109/CVMI61877.2024.10782648
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2025.3576955
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 12
ExternalDocumentID 10_1109_TIM_2025_3576955
11026867
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: T2293723
  funderid: 10.13039/501100001809
– fundername: Excellent Research Innovation Team of Anhui Provincial Education Department
  grantid: 2024AH010018
– fundername: Zhejiang Provincial Government (ZJU) Kunpeng and Ascend Center of Excellence
  funderid: 10.13039/100017940
– fundername: Natural Science Foundation of Zhejiang Province; Zhejiang Provincial Natural Science Foundation
  grantid: LZ24F020003
  funderid: 10.13039/501100004731
– fundername: Leading Goose Research and Development Program of Zhejiang Province
  grantid: 2025C02045
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c247t-a8e9e4ba4e51eec42f1353f79bf326f5873d626ba16dbe8cdb49e052e1f013d33
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Tue Jul 22 18:41:13 EDT 2025
Thu Jul 03 08:16:40 EDT 2025
Wed Aug 27 01:46:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-a8e9e4ba4e51eec42f1353f79bf326f5873d626ba16dbe8cdb49e052e1f013d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3786-653X
0000-0003-3414-315X
0009-0006-9177-1901
0009-0007-3407-1703
0000-0002-0211-8817
0000-0001-7251-7349
PQID 3222671403
PQPubID 85462
PageCount 12
ParticipantIDs proquest_journals_3222671403
crossref_primary_10_1109_TIM_2025_3576955
ieee_primary_11026867
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref34
ref15
ref37
ref14
ref36
ref31
Yang (ref40)
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
Yu (ref12)
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
Howard (ref28) 2017
ref27
Gao (ref3) 2021; 36
ref29
ref8
ref7
ref9
ref4
ref6
ref5
References_xml – ident: ref20
  doi: 10.1109/MCI.2015.2405318
– ident: ref36
  doi: 10.1109/CVPR.2014.471
– ident: ref44
  doi: 10.1007/978-3-030-87589-3_28
– ident: ref27
  doi: 10.1109/TPAMI.2008.128
– ident: ref8
  doi: 10.1109/TPAMI.2020.2983686
– ident: ref11
  doi: 10.1109/TIM.2023.3244220
– ident: ref30
  doi: 10.1109/TGRS.2021.3133956
– ident: ref33
  doi: 10.1109/TIP.2022.3175432
– ident: ref14
  doi: 10.1371/journal.pone.0158748
– volume: 36
  start-page: 391
  year: 2021
  ident: ref3
  article-title: Recent advances in small object detection
  publication-title: J. Data Acquisition Process.
– ident: ref41
  doi: 10.1609/aaai.v38i2.27826
– ident: ref16
  doi: 10.1109/TCSVT.2021.3098497
– ident: ref17
  doi: 10.1145/3394171.3413569
– ident: ref31
  doi: 10.1109/TIP.2020.2976856
– ident: ref7
  doi: 10.1007/978-3-319-46484-8_29
– ident: ref1
  doi: 10.1038/417037a
– ident: ref6
  doi: 10.1109/TIM.2022.3200438
– ident: ref19
  doi: 10.1016/j.compag.2020.105863
– ident: ref21
  doi: 10.1109/TIM.2024.3415793
– ident: ref29
  doi: 10.1109/TIM.2024.3379090
– ident: ref5
  doi: 10.1109/CVPR.2014.214
– ident: ref32
  doi: 10.1134/S1054661813030036
– start-page: 1
  volume-title: Proc. Neural Inf. Process. Syst. Track Datasets Benchmarks
  ident: ref12
  article-title: AP-10K: A benchmark for animal pose estimation in the wild
– ident: ref34
  doi: 10.48550/ARXIV.1807.06521
– ident: ref15
  doi: 10.1109/ICCV.2019.00959
– ident: ref2
  doi: 10.4324/9781315134468
– ident: ref9
  doi: 10.1007/978-3-031-20068-7_6
– ident: ref39
  doi: 10.1109/CVPR.2017.495
– ident: ref22
  doi: 10.1109/TGRS.2023.3298661
– ident: ref43
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref10
  doi: 10.1109/TPAMI.2012.89
– ident: ref13
  doi: 10.1109/CVPR42600.2020.01240
– ident: ref37
  doi: 10.1109/ICME.2019.00256
– ident: ref24
  doi: 10.1109/TIM.2022.3185323
– ident: ref26
  doi: 10.1109/TGRS.2023.3267271
– year: 2017
  ident: ref28
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv:1704.04861
– ident: ref4
  doi: 10.1109/TIM.2022.3153997
– ident: ref23
  doi: 10.1016/j.neuron.2017.06.011
– ident: ref35
  doi: 10.5244/C.24.12
– ident: ref25
  doi: 10.1109/ACCESS.2019.2910572
– ident: ref18
  doi: 10.1038/s41593-018-0209-y
– ident: ref38
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref42
  doi: 10.1109/CVMI61877.2024.10782648
– start-page: 17301
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref40
  article-title: APT-36K: A large-scale benchmark for animal pose estimation and tracking
SSID ssj0007647
Score 2.423775
Snippet Remote measurement of animal pose and motion is essential in neuroscience and robotics. However, subjects like rats often appear as small objects in open...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Animal behavior
Animal motion measurement
Animals
Constraints
Data mining
Datasets
Errors
Field of view
Heating systems
Motion measurement
Object detection
Object oriented modeling
Perception
Pose estimation
Rats
remote measurement
Robotics
Saliency detection
Similarity
small object
Training
Visual tasks
Visualization
Title Small-Object-Oriented Pose Estimation With Structural Similarity Constraint
URI https://ieeexplore.ieee.org/document/11026867
https://www.proquest.com/docview/3222671403
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6sIOjBZ8VqlT148ZB2H9lNchSp-MAHtEVvS5KdYLEPoevFX2-S3WpRBG972F3CTDLzTWbmG4DThBnDuRYk0ZwSypQiMhaUSIZGcmo4M75A9j67GtKb5_S5blb3vTCI6IvPsOMefS6_mOl3d1XWta4qznjGGtCwkVvVrPVldllGK4LMyJ5gCwsWOclQdAfXdzYSjNNOYtG1cF19Sz7ID1X5ZYm9e7ncgvvFwqqqktfOe6k6-uMHZ-O_V74NmzXQDM6rnbEDKzjdhY0l-sFdWPPln3q-B7f9iRyPyYNytzLkwXEfWyQaPM7mGPSsEaj6G4OnUfkS9D3jrGPrCPqjychGxhbIB27wpx83UTZheNkbXFyReswC0TFlJZEcBVIlKaYRoqaxcbMwDBPKWGxnUs6SwoY9SkZZoZDrQlGBYRpjZCx-LJJkH1ansykeQCCldlNlZRQaQ2PNlBQ8ZS4TKCIdproFZwvB528Vm0buo5BQ5FZJuVNSXiupBU0nx-_3ahG2oL1QVV6ft3nu8kWZ5x48_OOzI1h3f69uT9qwamWFxxZPlOrE76NP1VbHTw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgCAEHnkOMZw9cOGT0kTbJESHQeA2kDcGtSlJHTMCGtO7CrydJO0AgJG49tGpkJ_bn2P4McJgwYzjXgiSaU0KZUkTGghLJ0EhODWfGF8h2s849vXxMH-tmdd8Lg4i--Azb7tHn8ouRnrirsmPrquKMZ2wW5qzjT6OqXevT8LKMVhSZkT3DFhhMs5KhOO5f3NhYME7bicXXwvX1ffNCfqzKL1vsHcz5CnSnS6vqSp7bk1K19fsP1sZ_r30VlmuoGZxUe2MNZnC4DkvfCAjXYd4XgOrxBlz1XuXLC7lV7l6G3Dr2Y4tFg7vRGIMzawaqDsfgYVA-BT3POev4OoLe4HVgY2ML5QM3-tMPnCibcH9-1j_tkHrQAtExZSWRHAVSJSmmEaKmsXHTMAwTylh0Z1LOksIGPkpGWaGQ60JRgWEaY2QsgiySZBMaw9EQtyCQUru5sjIKjaGxZkoKnjKXCxSRDlPdgqOp4PO3ik8j93FIKHKrpNwpKa-V1IKmk-PXe7UIW7A7VVVen7hx7jJGmWcf3P7jswNY6PRvrvPri-7VDiy6P1V3KbvQsHLDPYsuSrXv99QHaPHKmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small-Object-Oriented+Pose+Estimation+With+Structural+Similarity+Constraint&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Han%2C+Le&rft.au=Zhao%2C+Lei&rft.au=Zhang%2C+Han&rft.au=Song%2C+Zhiying&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=74&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTIM.2025.3576955&rft.externalDocID=11026867
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon