Small-Object-Oriented Pose Estimation With Structural Similarity Constraint
Remote measurement of animal pose and motion is essential in neuroscience and robotics. However, subjects like rats often appear as small objects in open environments, occupying a minimal field of view. The scarcity of visual information and high susceptibility to errors present significant challeng...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 12 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Remote measurement of animal pose and motion is essential in neuroscience and robotics. However, subjects like rats often appear as small objects in open environments, occupying a minimal field of view. The scarcity of visual information and high susceptibility to errors present significant challenges for remote measurement of the pose of these objects. This study introduces SalPose, a pose estimation model designed for small objects, addressing these challenges through rapid perception of small objects and keypoints' structural information mining. First, we enhance the perception of weak visual features by integrating saliency detection and constructing pseudosaliency maps with annotated keypoints. Second, a scale-invariant structural similarity constraint is developed to facilitate the learning of intrinsic keypoint features and reduce the impact of small object size. In addition, to address the crucial gap in small-sized animal behavior analysis datasets in open environments, we introduce RP-5.7K, a rat pose dataset comprising exclusively small object data from the aerial perspective. Extensive experiments on the proposed dataset and two public datasets demonstrate the superiority of the proposed model. This study presents a novel method for remote motion measurement using visual information, mitigating the high sensitivity of small objects to distance-based measurement errors. The contributed dataset is valuable for visual measurement tasks involving small objects and animal behavior analysis. The RP-5.7K dataset is available at https://github.com/CSDLLab/RP-5.7K |
---|---|
AbstractList | Remote measurement of animal pose and motion is essential in neuroscience and robotics. However, subjects like rats often appear as small objects in open environments, occupying a minimal field of view. The scarcity of visual information and high susceptibility to errors present significant challenges for remote measurement of the pose of these objects. This study introduces SalPose, a pose estimation model designed for small objects, addressing these challenges through rapid perception of small objects and keypoints’ structural information mining. First, we enhance the perception of weak visual features by integrating saliency detection and constructing pseudosaliency maps with annotated keypoints. Second, a scale-invariant structural similarity constraint is developed to facilitate the learning of intrinsic keypoint features and reduce the impact of small object size. In addition, to address the crucial gap in small-sized animal behavior analysis datasets in open environments, we introduce RP-5.7K, a rat pose dataset comprising exclusively small object data from the aerial perspective. Extensive experiments on the proposed dataset and two public datasets demonstrate the superiority of the proposed model. This study presents a novel method for remote motion measurement using visual information, mitigating the high sensitivity of small objects to distance-based measurement errors. The contributed dataset is valuable for visual measurement tasks involving small objects and animal behavior analysis. The RP-5.7K dataset is available at https://github.com/CSDLLab/RP-5.7K |
Author | Zhang, Han Zheng, Nenggan Han, Le Zhao, Lei Wang, Pengfei Song, Zhiying |
Author_xml | – sequence: 1 givenname: Le orcidid: 0000-0003-3414-315X surname: Han fullname: Han, Le email: hanle@zju.edu.cn organization: Qiushi Academy for Advanced Studies (QAAS) and the College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China – sequence: 2 givenname: Lei orcidid: 0009-0006-9177-1901 surname: Zhao fullname: Zhao, Lei email: zlchn@zju.edu.cn organization: Qiushi Academy for Advanced Studies (QAAS) and the College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China – sequence: 3 givenname: Han orcidid: 0009-0007-3407-1703 surname: Zhang fullname: Zhang, Han email: benniehan@zju.edu.cn organization: Qiushi Academy for Advanced Studies (QAAS) and the College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China – sequence: 4 givenname: Zhiying orcidid: 0000-0003-3786-653X surname: Song fullname: Song, Zhiying email: zhiysong@zju.edu.cn organization: Qiushi Academy for Advanced Studies (QAAS) and the College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China – sequence: 5 givenname: Pengfei orcidid: 0000-0001-7251-7349 surname: Wang fullname: Wang, Pengfei email: pfei@zju.edu.cn organization: School of Software Technology, Zhejiang University, Ningbo, China – sequence: 6 givenname: Nenggan orcidid: 0000-0002-0211-8817 surname: Zheng fullname: Zheng, Nenggan email: zng@cs.zju.edu.cn organization: Qiushi Academy for Advanced Studies (QAAS) and the State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China |
BookMark | eNpFkM9LwzAYhoNMcJvePXgoeM7M77RHGVOHkwmbeAxp-xUzunQm6WH_vR0beHovz_t9vM8EjXznAaF7SmaUkuJpu_yYMcLkjEutCimv0JhKqXGhFBuhMSE0x4WQ6gZNYtwRQrQSeozeN3vbtnhd7qBKeB0c-AR19tlFyBYxub1NrvPZt0s_2SaFvkp9sG22cXvX2uDSMZt3PqZgnU-36LqxbYS7S07R18tiO3_Dq_Xrcv68whUTOmGbQwGitAIkBagEayiXvNFF2XCmGplrXiumSktVXUJe1aUogEgGtCGU15xP0eP57iF0vz3EZHZdH_zw0nDGmNJUkBNFzlQVuhgDNOYQhjnhaCgxJ2VmUGZOysxF2VB5OFccAPzjlDCVK83_ALA2ags |
CODEN | IEIMAO |
Cites_doi | 10.1109/MCI.2015.2405318 10.1109/CVPR.2014.471 10.1007/978-3-030-87589-3_28 10.1109/TPAMI.2008.128 10.1109/TPAMI.2020.2983686 10.1109/TIM.2023.3244220 10.1109/TGRS.2021.3133956 10.1109/TIP.2022.3175432 10.1371/journal.pone.0158748 10.1609/aaai.v38i2.27826 10.1109/TCSVT.2021.3098497 10.1145/3394171.3413569 10.1109/TIP.2020.2976856 10.1007/978-3-319-46484-8_29 10.1038/417037a 10.1109/TIM.2022.3200438 10.1016/j.compag.2020.105863 10.1109/TIM.2024.3415793 10.1109/TIM.2024.3379090 10.1109/CVPR.2014.214 10.1134/S1054661813030036 10.48550/ARXIV.1807.06521 10.1109/ICCV.2019.00959 10.4324/9781315134468 10.1007/978-3-031-20068-7_6 10.1109/CVPR.2017.495 10.1109/TGRS.2023.3298661 10.1007/978-3-319-24574-4_28 10.1109/TPAMI.2012.89 10.1109/CVPR42600.2020.01240 10.1109/ICME.2019.00256 10.1109/TIM.2022.3185323 10.1109/TGRS.2023.3267271 10.1109/TIM.2022.3153997 10.1016/j.neuron.2017.06.011 10.5244/C.24.12 10.1109/ACCESS.2019.2910572 10.1038/s41593-018-0209-y 10.1007/978-3-319-10602-1_48 10.1109/CVMI61877.2024.10782648 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2025.3576955 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 12 |
ExternalDocumentID | 10_1109_TIM_2025_3576955 11026867 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: T2293723 funderid: 10.13039/501100001809 – fundername: Excellent Research Innovation Team of Anhui Provincial Education Department grantid: 2024AH010018 – fundername: Zhejiang Provincial Government (ZJU) Kunpeng and Ascend Center of Excellence funderid: 10.13039/100017940 – fundername: Natural Science Foundation of Zhejiang Province; Zhejiang Provincial Natural Science Foundation grantid: LZ24F020003 funderid: 10.13039/501100004731 – fundername: Leading Goose Research and Development Program of Zhejiang Province grantid: 2025C02045 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c247t-a8e9e4ba4e51eec42f1353f79bf326f5873d626ba16dbe8cdb49e052e1f013d33 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Tue Jul 22 18:41:13 EDT 2025 Thu Jul 03 08:16:40 EDT 2025 Wed Aug 27 01:46:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c247t-a8e9e4ba4e51eec42f1353f79bf326f5873d626ba16dbe8cdb49e052e1f013d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3786-653X 0000-0003-3414-315X 0009-0006-9177-1901 0009-0007-3407-1703 0000-0002-0211-8817 0000-0001-7251-7349 |
PQID | 3222671403 |
PQPubID | 85462 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3222671403 crossref_primary_10_1109_TIM_2025_3576955 ieee_primary_11026867 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref34 ref15 ref37 ref14 ref36 ref31 Yang (ref40) ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 Yu (ref12) ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 Howard (ref28) 2017 ref27 Gao (ref3) 2021; 36 ref29 ref8 ref7 ref9 ref4 ref6 ref5 |
References_xml | – ident: ref20 doi: 10.1109/MCI.2015.2405318 – ident: ref36 doi: 10.1109/CVPR.2014.471 – ident: ref44 doi: 10.1007/978-3-030-87589-3_28 – ident: ref27 doi: 10.1109/TPAMI.2008.128 – ident: ref8 doi: 10.1109/TPAMI.2020.2983686 – ident: ref11 doi: 10.1109/TIM.2023.3244220 – ident: ref30 doi: 10.1109/TGRS.2021.3133956 – ident: ref33 doi: 10.1109/TIP.2022.3175432 – ident: ref14 doi: 10.1371/journal.pone.0158748 – volume: 36 start-page: 391 year: 2021 ident: ref3 article-title: Recent advances in small object detection publication-title: J. Data Acquisition Process. – ident: ref41 doi: 10.1609/aaai.v38i2.27826 – ident: ref16 doi: 10.1109/TCSVT.2021.3098497 – ident: ref17 doi: 10.1145/3394171.3413569 – ident: ref31 doi: 10.1109/TIP.2020.2976856 – ident: ref7 doi: 10.1007/978-3-319-46484-8_29 – ident: ref1 doi: 10.1038/417037a – ident: ref6 doi: 10.1109/TIM.2022.3200438 – ident: ref19 doi: 10.1016/j.compag.2020.105863 – ident: ref21 doi: 10.1109/TIM.2024.3415793 – ident: ref29 doi: 10.1109/TIM.2024.3379090 – ident: ref5 doi: 10.1109/CVPR.2014.214 – ident: ref32 doi: 10.1134/S1054661813030036 – start-page: 1 volume-title: Proc. Neural Inf. Process. Syst. Track Datasets Benchmarks ident: ref12 article-title: AP-10K: A benchmark for animal pose estimation in the wild – ident: ref34 doi: 10.48550/ARXIV.1807.06521 – ident: ref15 doi: 10.1109/ICCV.2019.00959 – ident: ref2 doi: 10.4324/9781315134468 – ident: ref9 doi: 10.1007/978-3-031-20068-7_6 – ident: ref39 doi: 10.1109/CVPR.2017.495 – ident: ref22 doi: 10.1109/TGRS.2023.3298661 – ident: ref43 doi: 10.1007/978-3-319-24574-4_28 – ident: ref10 doi: 10.1109/TPAMI.2012.89 – ident: ref13 doi: 10.1109/CVPR42600.2020.01240 – ident: ref37 doi: 10.1109/ICME.2019.00256 – ident: ref24 doi: 10.1109/TIM.2022.3185323 – ident: ref26 doi: 10.1109/TGRS.2023.3267271 – year: 2017 ident: ref28 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv:1704.04861 – ident: ref4 doi: 10.1109/TIM.2022.3153997 – ident: ref23 doi: 10.1016/j.neuron.2017.06.011 – ident: ref35 doi: 10.5244/C.24.12 – ident: ref25 doi: 10.1109/ACCESS.2019.2910572 – ident: ref18 doi: 10.1038/s41593-018-0209-y – ident: ref38 doi: 10.1007/978-3-319-10602-1_48 – ident: ref42 doi: 10.1109/CVMI61877.2024.10782648 – start-page: 17301 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref40 article-title: APT-36K: A large-scale benchmark for animal pose estimation and tracking |
SSID | ssj0007647 |
Score | 2.423775 |
Snippet | Remote measurement of animal pose and motion is essential in neuroscience and robotics. However, subjects like rats often appear as small objects in open... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Animal behavior Animal motion measurement Animals Constraints Data mining Datasets Errors Field of view Heating systems Motion measurement Object detection Object oriented modeling Perception Pose estimation Rats remote measurement Robotics Saliency detection Similarity small object Training Visual tasks Visualization |
Title | Small-Object-Oriented Pose Estimation With Structural Similarity Constraint |
URI | https://ieeexplore.ieee.org/document/11026867 https://www.proquest.com/docview/3222671403 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6sIOjBZ8VqlT148ZB2H9lNchSp-MAHtEVvS5KdYLEPoevFX2-S3WpRBG972F3CTDLzTWbmG4DThBnDuRYk0ZwSypQiMhaUSIZGcmo4M75A9j67GtKb5_S5blb3vTCI6IvPsOMefS6_mOl3d1XWta4qznjGGtCwkVvVrPVldllGK4LMyJ5gCwsWOclQdAfXdzYSjNNOYtG1cF19Sz7ID1X5ZYm9e7ncgvvFwqqqktfOe6k6-uMHZ-O_V74NmzXQDM6rnbEDKzjdhY0l-sFdWPPln3q-B7f9iRyPyYNytzLkwXEfWyQaPM7mGPSsEaj6G4OnUfkS9D3jrGPrCPqjychGxhbIB27wpx83UTZheNkbXFyReswC0TFlJZEcBVIlKaYRoqaxcbMwDBPKWGxnUs6SwoY9SkZZoZDrQlGBYRpjZCx-LJJkH1ansykeQCCldlNlZRQaQ2PNlBQ8ZS4TKCIdproFZwvB528Vm0buo5BQ5FZJuVNSXiupBU0nx-_3ahG2oL1QVV6ft3nu8kWZ5x48_OOzI1h3f69uT9qwamWFxxZPlOrE76NP1VbHTw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgCAEHnkOMZw9cOGT0kTbJESHQeA2kDcGtSlJHTMCGtO7CrydJO0AgJG49tGpkJ_bn2P4McJgwYzjXgiSaU0KZUkTGghLJ0EhODWfGF8h2s849vXxMH-tmdd8Lg4i--Azb7tHn8ouRnrirsmPrquKMZ2wW5qzjT6OqXevT8LKMVhSZkT3DFhhMs5KhOO5f3NhYME7bicXXwvX1ffNCfqzKL1vsHcz5CnSnS6vqSp7bk1K19fsP1sZ_r30VlmuoGZxUe2MNZnC4DkvfCAjXYd4XgOrxBlz1XuXLC7lV7l6G3Dr2Y4tFg7vRGIMzawaqDsfgYVA-BT3POev4OoLe4HVgY2ML5QM3-tMPnCibcH9-1j_tkHrQAtExZSWRHAVSJSmmEaKmsXHTMAwTylh0Z1LOksIGPkpGWaGQ60JRgWEaY2QsgiySZBMaw9EQtyCQUru5sjIKjaGxZkoKnjKXCxSRDlPdgqOp4PO3ik8j93FIKHKrpNwpKa-V1IKmk-PXe7UIW7A7VVVen7hx7jJGmWcf3P7jswNY6PRvrvPri-7VDiy6P1V3KbvQsHLDPYsuSrXv99QHaPHKmA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small-Object-Oriented+Pose+Estimation+With+Structural+Similarity+Constraint&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Han%2C+Le&rft.au=Zhao%2C+Lei&rft.au=Zhang%2C+Han&rft.au=Song%2C+Zhiying&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=74&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTIM.2025.3576955&rft.externalDocID=11026867 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |