Robust Generative Steganography Based on Image Mapping

Coverless steganography requires no modification of the cover image and can effectively resist steganalysis, which has received widespread attention from researchers in recent years. However, existing coverless image steganographic methods are achieved by constructing a mapping between the secret in...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 34; no. 12; pp. 13543 - 13555
Main Authors Zhang, Qinghua, Huang, Fangjun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Coverless steganography requires no modification of the cover image and can effectively resist steganalysis, which has received widespread attention from researchers in recent years. However, existing coverless image steganographic methods are achieved by constructing a mapping between the secret information and images in a known dataset. This image dataset needs to be sent to the receiver, which consumes substantial resources and poses a risk of information leakage. In addition, existing methods cannot achieve high-accuracy extraction when facing various attacks. To address the aforementioned issues, we propose a robust generative steganography based on image mapping (GSIM). This method establishes prompts based on the topic and quantity requirements first and then generate the candidate image database according to the prompts, which can be independently generated by both the sender and receiver without the need for transmission. In order to improve the robustness of the algorithm, our proposed GSIM utilizes prompts and fractional-order Chebyshev-Fourier moments (FrCHFMs) to construct the mapping between the generated images and the predefined binary sequences, as well as uses speeded-up robust features (SURFs) as auxiliary features in the information extraction phase. The experimental results show that GSIM is superior to existing coverless image steganographic methods in terms of capacity, security, and robustness.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2024.3451620