Robust Generative Steganography Based on Image Mapping
Coverless steganography requires no modification of the cover image and can effectively resist steganalysis, which has received widespread attention from researchers in recent years. However, existing coverless image steganographic methods are achieved by constructing a mapping between the secret in...
Saved in:
Published in | IEEE transactions on circuits and systems for video technology Vol. 34; no. 12; pp. 13543 - 13555 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coverless steganography requires no modification of the cover image and can effectively resist steganalysis, which has received widespread attention from researchers in recent years. However, existing coverless image steganographic methods are achieved by constructing a mapping between the secret information and images in a known dataset. This image dataset needs to be sent to the receiver, which consumes substantial resources and poses a risk of information leakage. In addition, existing methods cannot achieve high-accuracy extraction when facing various attacks. To address the aforementioned issues, we propose a robust generative steganography based on image mapping (GSIM). This method establishes prompts based on the topic and quantity requirements first and then generate the candidate image database according to the prompts, which can be independently generated by both the sender and receiver without the need for transmission. In order to improve the robustness of the algorithm, our proposed GSIM utilizes prompts and fractional-order Chebyshev-Fourier moments (FrCHFMs) to construct the mapping between the generated images and the predefined binary sequences, as well as uses speeded-up robust features (SURFs) as auxiliary features in the information extraction phase. The experimental results show that GSIM is superior to existing coverless image steganographic methods in terms of capacity, security, and robustness. |
---|---|
AbstractList | Coverless steganography requires no modification of the cover image and can effectively resist steganalysis, which has received widespread attention from researchers in recent years. However, existing coverless image steganographic methods are achieved by constructing a mapping between the secret information and images in a known dataset. This image dataset needs to be sent to the receiver, which consumes substantial resources and poses a risk of information leakage. In addition, existing methods cannot achieve high-accuracy extraction when facing various attacks. To address the aforementioned issues, we propose a robust generative steganography based on image mapping (GSIM). This method establishes prompts based on the topic and quantity requirements first and then generate the candidate image database according to the prompts, which can be independently generated by both the sender and receiver without the need for transmission. In order to improve the robustness of the algorithm, our proposed GSIM utilizes prompts and fractional-order Chebyshev-Fourier moments (FrCHFMs) to construct the mapping between the generated images and the predefined binary sequences, as well as uses speeded-up robust features (SURFs) as auxiliary features in the information extraction phase. The experimental results show that GSIM is superior to existing coverless image steganographic methods in terms of capacity, security, and robustness. |
Author | Zhang, Qinghua Huang, Fangjun |
Author_xml | – sequence: 1 givenname: Qinghua orcidid: 0000-0002-0567-9388 surname: Zhang fullname: Zhang, Qinghua email: zhangqh56@mail2.sysu.edu.cn organization: School of Cyber Science and Technology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China – sequence: 2 givenname: Fangjun orcidid: 0000-0002-3098-3373 surname: Huang fullname: Huang, Fangjun email: huangfj@mail.sysu.edu.cn organization: School of Cyber Science and Technology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China |
BookMark | eNpNkMFOwkAQQDcGEwH9AeOhiefiznZ3uz0qUSTBmAh63Uy30wqRtu4WE_7eIhw8zRzem0neiA3qpibGroFPAHh2t5ouP1YTwYWcJFKBFvyMDUEpEwvB1aDfuYLYCFAXbBTChnOQRqZDpt-afBe6aEY1eezWPxQtO6qwbiqP7ec-esBARdTU0XyLFUUv2Lbrurpk5yV-Bbo6zTF7f3pcTZ_jxetsPr1fxE7ItItR5ByFzNHpvHCagIRzyJ0RGkDqQiPosicLSDE33DgkNInSWeFKlak8GbPb493WN987Cp3dNDtf9y9tAjJVwsgk6SlxpJxvQvBU2tavt-j3Frg99LF_feyhjz316aWbo7Qmon-CVlkGSfILz-5i9w |
CODEN | ITCTEM |
Cites_doi | 10.1109/TCSVT.2023.3295364 10.1007/s10851-013-0456-1 10.1109/TIFS.2023.3244094 10.1109/TDSC.2022.3156972 10.1109/TIFS.2019.2891237 10.1109/TDSC.2022.3154967 10.1016/j.knosys.2019.105375 10.1109/TMM.2022.3194990 10.1007/978-3-319-63315-2_47 10.1109/TIFS.2008.926097 10.1109/CVPR52729.2023.02165 10.1109/TIFS.2019.2963764 10.1109/TCSVT.2020.3033945 10.1364/JOSAA.19.001748 10.1016/j.cviu.2007.09.014 10.1016/j.neucom.2023.126945 10.1109/ICIP.2001.958548 10.1109/TPAMI.2009.119 10.1609/aaai.v37i4.25647 10.1109/ICOEI56765.2023.10125935 10.1109/TIFS.2019.2895200 10.1109/TCSVT.2022.3232790 10.1016/j.jksuci.2020.12.017 10.12928/telkomnika.v20i6.23596 10.1109/TKDE.2022.3155924 10.1109/TMM.2018.2838334 10.1109/CVPR52688.2022.01042 10.1016/j.asoc.2020.106257 10.1109/CVPR52688.2022.00772 10.1007/978-3-540-88682-2_24 10.1109/TCSVT.2021.3108772 10.1007/978-3-319-27051-7_11 10.1109/LCOMM.2006.060863 10.1109/TCSVT.2021.3115600 10.1109/CVPRW59228.2023.00100 10.1016/S0031-3203(00)00015-7 10.1109/TIFS.2022.3196265 10.1016/j.sigpro.2022.108908 10.1016/j.eswa.2023.120416 10.1109/CVPR46437.2021.01067 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TCSVT.2024.3451620 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2205 |
EndPage | 13555 |
ExternalDocumentID | 10_1109_TCSVT_2024_3451620 10659913 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U2336208; 62072481; 62472454 funderid: 10.13039/501100001809 – fundername: Guangdong Provincial Key Laboratory of Information Security Technology grantid: 2023B1212060026 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c247t-a2b0a24bac6bdc6e1e2cca0c8261146d6a16f247d17ab808caea83569dcf595b3 |
IEDL.DBID | RIE |
ISSN | 1051-8215 |
IngestDate | Mon Jun 30 12:59:16 EDT 2025 Tue Jul 01 00:41:28 EDT 2025 Wed Aug 27 02:30:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c247t-a2b0a24bac6bdc6e1e2cca0c8261146d6a16f247d17ab808caea83569dcf595b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3098-3373 0000-0002-0567-9388 |
PQID | 3147528433 |
PQPubID | 85433 |
PageCount | 13 |
ParticipantIDs | ieee_primary_10659913 crossref_primary_10_1109_TCSVT_2024_3451620 proquest_journals_3147528433 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on circuits and systems for video technology |
PublicationTitleAbbrev | TCSVT |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 Podell (ref39) 2023 Yuan (ref26) 2017; 18 ref24 ref23 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 Wang (ref37) 2023; 46 ref28 ref27 ref29 ref8 Sauer (ref40) 2023 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref24 doi: 10.1109/TCSVT.2023.3295364 – ident: ref43 doi: 10.1007/s10851-013-0456-1 – ident: ref20 doi: 10.1109/TIFS.2023.3244094 – ident: ref3 doi: 10.1109/TDSC.2022.3156972 – ident: ref15 doi: 10.1109/TIFS.2019.2891237 – ident: ref23 doi: 10.1109/TDSC.2022.3154967 – ident: ref29 doi: 10.1016/j.knosys.2019.105375 – ident: ref35 doi: 10.1109/TMM.2022.3194990 – ident: ref27 doi: 10.1007/978-3-319-63315-2_47 – ident: ref9 doi: 10.1109/TIFS.2008.926097 – year: 2023 ident: ref39 article-title: SDXL: Improving latent diffusion models for high-resolution image synthesis publication-title: arXiv:2307.01952 – ident: ref4 doi: 10.1109/CVPR52729.2023.02165 – ident: ref2 doi: 10.1109/TIFS.2019.2963764 – ident: ref30 doi: 10.1109/TCSVT.2020.3033945 – ident: ref41 doi: 10.1364/JOSAA.19.001748 – ident: ref38 doi: 10.1016/j.cviu.2007.09.014 – volume: 18 start-page: 435 issue: 2 year: 2017 ident: ref26 article-title: Coverless image steganography based on SIFT and BOF publication-title: J. Internet Technol. – ident: ref6 doi: 10.1016/j.neucom.2023.126945 – ident: ref11 doi: 10.1109/ICIP.2001.958548 – ident: ref42 doi: 10.1109/TPAMI.2009.119 – ident: ref19 doi: 10.1609/aaai.v37i4.25647 – ident: ref33 doi: 10.1109/ICOEI56765.2023.10125935 – ident: ref1 doi: 10.1109/TIFS.2019.2895200 – ident: ref34 doi: 10.1109/TCSVT.2022.3232790 – ident: ref10 doi: 10.1016/j.jksuci.2020.12.017 – ident: ref32 doi: 10.12928/telkomnika.v20i6.23596 – ident: ref21 doi: 10.1109/TKDE.2022.3155924 – ident: ref28 doi: 10.1109/TMM.2018.2838334 – ident: ref36 doi: 10.1109/CVPR52688.2022.01042 – ident: ref12 doi: 10.1016/j.asoc.2020.106257 – ident: ref17 doi: 10.1109/CVPR52688.2022.00772 – ident: ref44 doi: 10.1007/978-3-540-88682-2_24 – ident: ref31 doi: 10.1109/TCSVT.2021.3108772 – ident: ref25 doi: 10.1007/978-3-319-27051-7_11 – ident: ref8 doi: 10.1109/LCOMM.2006.060863 – ident: ref13 doi: 10.1109/TCSVT.2021.3115600 – ident: ref18 doi: 10.1109/CVPRW59228.2023.00100 – ident: ref7 doi: 10.1016/S0031-3203(00)00015-7 – ident: ref22 doi: 10.1109/TIFS.2022.3196265 – year: 2023 ident: ref40 article-title: Adversarial diffusion distillation publication-title: arXiv:2311.17042 – ident: ref5 doi: 10.1016/j.sigpro.2022.108908 – ident: ref14 doi: 10.1016/j.eswa.2023.120416 – volume: 46 start-page: 400 issue: 2 year: 2023 ident: ref37 article-title: Sedenion fractional-order Chebyshev–Fourier moments for multi-view color images publication-title: Chin. J. Comput. – ident: ref16 doi: 10.1109/CVPR46437.2021.01067 |
SSID | ssj0014847 |
Score | 2.46428 |
Snippet | Coverless steganography requires no modification of the cover image and can effectively resist steganalysis, which has received widespread attention from... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 13543 |
SubjectTerms | Algorithms Chebyshev approximation coverless steganography Data mining Datasets Feature extraction fractional-order Chebyshev-Fourier moments Generative steganography Image databases Image transmission Information retrieval Mapping Receivers robust steganography Robustness Sequences speeded-up robust features Steganography |
Title | Robust Generative Steganography Based on Image Mapping |
URI | https://ieeexplore.ieee.org/document/10659913 https://www.proquest.com/docview/3147528433 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVoJxj4LKJQkAc2lJDEjmOPUFEVpHagLeoW2Y7bAZEgmiz8es5OgioQEkuUwY4sn33vLnf3DqFrLiTYDTz0kkgJjwJEeUJGFB6SJMoITla2UHgyZeMFfVrGy6ZY3dXCGGNc8pnx7auL5WeFruyvMrjhLAZ7hnRQBzy3uljrO2RAuesmBvZC6HEAsrZCJhC38-HsZQ6-YER9YhvT2ubeWyjk2qr80sUOYEYHaNourc4refWrUvn68wdr47_Xfoj2G1MT39Vn4wjtmPwY7W0REJ4g9lyoalPimnzaaj48K81a5g2RNb4HkMtwkePHN1A8eCItncO6hxajh_lw7DWdFDwd0aT0ZKQCkICSmqlMMxOaCCQXaPAtbFVyxmTIVjAyCxOpeMC1NBJMMyYyvYpFrMgp6uZFbs4Q1iHRmttwH5N0JagSiWHSeoVxoJUmfXTT7mz6XhNmpM7RCETq5JBaOaSNHPqoZ7dqa2S9S300aKWRNpdqk5KQJjHAKSHnf0y7QLv263W6yQB1y4_KXILRUKord1i-AFcGvHg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1BGYCBzyIKBTKwoZQkdpx4hIqqhbYDbVG3yHacDogU0XTh13N2UlSBkFiiDLZi-ex7d7m7dwDXMRdoN8S-GwWSuxQhyuUioPgQJJKaxyQzhcKDIetO6OM0nFbF6rYWRmttk890y7zaWH46V0vzqwxvOAvRniGbsIXAHwZludZ30IDGtp8YWgy-GyOUrWpkPH47bo9exugNBrRFTGta0957DYdsY5Vf2thCTGcfhqvFlZklr61lIVvq8wdv479XfwB7lbHp3JWn4xA2dH4Eu2sUhMfAnudyuSickn7a6D5nVOiZyCsqa-ceYS515rnTe0PV4wyEIXSY1WHSeRi3u27VS8FVAY0KVwTSQxlIoZhMFdO-DlB2nkLvwtQlp0z4LMORqR8JGXuxElqgccZ4qrKQh5KcQC2f5_oUHOUTpWIT8GOCZpxKHmkmjF8Yekoq0oCb1c4m7yVlRmJdDY8nVg6JkUNSyaEBdbNVayPLXWpAcyWNpLpWi4T4NAoRUAk5-2PaFWx3x4N-0u8Nn85hx3ypTD5pQq34WOoLNCEKeWkPzhdfCb_C |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Generative+Steganography+Based+on+Image+Mapping&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Zhang%2C+Qinghua&rft.au=Huang%2C+Fangjun&rft.date=2024-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=34&rft.issue=12&rft.spage=13543&rft_id=info:doi/10.1109%2FTCSVT.2024.3451620&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |