Robust Generative Steganography Based on Image Mapping

Coverless steganography requires no modification of the cover image and can effectively resist steganalysis, which has received widespread attention from researchers in recent years. However, existing coverless image steganographic methods are achieved by constructing a mapping between the secret in...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 34; no. 12; pp. 13543 - 13555
Main Authors Zhang, Qinghua, Huang, Fangjun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coverless steganography requires no modification of the cover image and can effectively resist steganalysis, which has received widespread attention from researchers in recent years. However, existing coverless image steganographic methods are achieved by constructing a mapping between the secret information and images in a known dataset. This image dataset needs to be sent to the receiver, which consumes substantial resources and poses a risk of information leakage. In addition, existing methods cannot achieve high-accuracy extraction when facing various attacks. To address the aforementioned issues, we propose a robust generative steganography based on image mapping (GSIM). This method establishes prompts based on the topic and quantity requirements first and then generate the candidate image database according to the prompts, which can be independently generated by both the sender and receiver without the need for transmission. In order to improve the robustness of the algorithm, our proposed GSIM utilizes prompts and fractional-order Chebyshev-Fourier moments (FrCHFMs) to construct the mapping between the generated images and the predefined binary sequences, as well as uses speeded-up robust features (SURFs) as auxiliary features in the information extraction phase. The experimental results show that GSIM is superior to existing coverless image steganographic methods in terms of capacity, security, and robustness.
AbstractList Coverless steganography requires no modification of the cover image and can effectively resist steganalysis, which has received widespread attention from researchers in recent years. However, existing coverless image steganographic methods are achieved by constructing a mapping between the secret information and images in a known dataset. This image dataset needs to be sent to the receiver, which consumes substantial resources and poses a risk of information leakage. In addition, existing methods cannot achieve high-accuracy extraction when facing various attacks. To address the aforementioned issues, we propose a robust generative steganography based on image mapping (GSIM). This method establishes prompts based on the topic and quantity requirements first and then generate the candidate image database according to the prompts, which can be independently generated by both the sender and receiver without the need for transmission. In order to improve the robustness of the algorithm, our proposed GSIM utilizes prompts and fractional-order Chebyshev-Fourier moments (FrCHFMs) to construct the mapping between the generated images and the predefined binary sequences, as well as uses speeded-up robust features (SURFs) as auxiliary features in the information extraction phase. The experimental results show that GSIM is superior to existing coverless image steganographic methods in terms of capacity, security, and robustness.
Author Zhang, Qinghua
Huang, Fangjun
Author_xml – sequence: 1
  givenname: Qinghua
  orcidid: 0000-0002-0567-9388
  surname: Zhang
  fullname: Zhang, Qinghua
  email: zhangqh56@mail2.sysu.edu.cn
  organization: School of Cyber Science and Technology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
– sequence: 2
  givenname: Fangjun
  orcidid: 0000-0002-3098-3373
  surname: Huang
  fullname: Huang, Fangjun
  email: huangfj@mail.sysu.edu.cn
  organization: School of Cyber Science and Technology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
BookMark eNpNkMFOwkAQQDcGEwH9AeOhiefiznZ3uz0qUSTBmAh63Uy30wqRtu4WE_7eIhw8zRzem0neiA3qpibGroFPAHh2t5ouP1YTwYWcJFKBFvyMDUEpEwvB1aDfuYLYCFAXbBTChnOQRqZDpt-afBe6aEY1eezWPxQtO6qwbiqP7ec-esBARdTU0XyLFUUv2Lbrurpk5yV-Bbo6zTF7f3pcTZ_jxetsPr1fxE7ItItR5ByFzNHpvHCagIRzyJ0RGkDqQiPosicLSDE33DgkNInSWeFKlak8GbPb493WN987Cp3dNDtf9y9tAjJVwsgk6SlxpJxvQvBU2tavt-j3Frg99LF_feyhjz316aWbo7Qmon-CVlkGSfILz-5i9w
CODEN ITCTEM
Cites_doi 10.1109/TCSVT.2023.3295364
10.1007/s10851-013-0456-1
10.1109/TIFS.2023.3244094
10.1109/TDSC.2022.3156972
10.1109/TIFS.2019.2891237
10.1109/TDSC.2022.3154967
10.1016/j.knosys.2019.105375
10.1109/TMM.2022.3194990
10.1007/978-3-319-63315-2_47
10.1109/TIFS.2008.926097
10.1109/CVPR52729.2023.02165
10.1109/TIFS.2019.2963764
10.1109/TCSVT.2020.3033945
10.1364/JOSAA.19.001748
10.1016/j.cviu.2007.09.014
10.1016/j.neucom.2023.126945
10.1109/ICIP.2001.958548
10.1109/TPAMI.2009.119
10.1609/aaai.v37i4.25647
10.1109/ICOEI56765.2023.10125935
10.1109/TIFS.2019.2895200
10.1109/TCSVT.2022.3232790
10.1016/j.jksuci.2020.12.017
10.12928/telkomnika.v20i6.23596
10.1109/TKDE.2022.3155924
10.1109/TMM.2018.2838334
10.1109/CVPR52688.2022.01042
10.1016/j.asoc.2020.106257
10.1109/CVPR52688.2022.00772
10.1007/978-3-540-88682-2_24
10.1109/TCSVT.2021.3108772
10.1007/978-3-319-27051-7_11
10.1109/LCOMM.2006.060863
10.1109/TCSVT.2021.3115600
10.1109/CVPRW59228.2023.00100
10.1016/S0031-3203(00)00015-7
10.1109/TIFS.2022.3196265
10.1016/j.sigpro.2022.108908
10.1016/j.eswa.2023.120416
10.1109/CVPR46437.2021.01067
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2024.3451620
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 13555
ExternalDocumentID 10_1109_TCSVT_2024_3451620
10659913
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U2336208; 62072481; 62472454
  funderid: 10.13039/501100001809
– fundername: Guangdong Provincial Key Laboratory of Information Security Technology
  grantid: 2023B1212060026
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c247t-a2b0a24bac6bdc6e1e2cca0c8261146d6a16f247d17ab808caea83569dcf595b3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 12:59:16 EDT 2025
Tue Jul 01 00:41:28 EDT 2025
Wed Aug 27 02:30:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-a2b0a24bac6bdc6e1e2cca0c8261146d6a16f247d17ab808caea83569dcf595b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3098-3373
0000-0002-0567-9388
PQID 3147528433
PQPubID 85433
PageCount 13
ParticipantIDs ieee_primary_10659913
crossref_primary_10_1109_TCSVT_2024_3451620
proquest_journals_3147528433
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
Podell (ref39) 2023
Yuan (ref26) 2017; 18
ref24
ref23
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
Wang (ref37) 2023; 46
ref28
ref27
ref29
ref8
Sauer (ref40) 2023
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref24
  doi: 10.1109/TCSVT.2023.3295364
– ident: ref43
  doi: 10.1007/s10851-013-0456-1
– ident: ref20
  doi: 10.1109/TIFS.2023.3244094
– ident: ref3
  doi: 10.1109/TDSC.2022.3156972
– ident: ref15
  doi: 10.1109/TIFS.2019.2891237
– ident: ref23
  doi: 10.1109/TDSC.2022.3154967
– ident: ref29
  doi: 10.1016/j.knosys.2019.105375
– ident: ref35
  doi: 10.1109/TMM.2022.3194990
– ident: ref27
  doi: 10.1007/978-3-319-63315-2_47
– ident: ref9
  doi: 10.1109/TIFS.2008.926097
– year: 2023
  ident: ref39
  article-title: SDXL: Improving latent diffusion models for high-resolution image synthesis
  publication-title: arXiv:2307.01952
– ident: ref4
  doi: 10.1109/CVPR52729.2023.02165
– ident: ref2
  doi: 10.1109/TIFS.2019.2963764
– ident: ref30
  doi: 10.1109/TCSVT.2020.3033945
– ident: ref41
  doi: 10.1364/JOSAA.19.001748
– ident: ref38
  doi: 10.1016/j.cviu.2007.09.014
– volume: 18
  start-page: 435
  issue: 2
  year: 2017
  ident: ref26
  article-title: Coverless image steganography based on SIFT and BOF
  publication-title: J. Internet Technol.
– ident: ref6
  doi: 10.1016/j.neucom.2023.126945
– ident: ref11
  doi: 10.1109/ICIP.2001.958548
– ident: ref42
  doi: 10.1109/TPAMI.2009.119
– ident: ref19
  doi: 10.1609/aaai.v37i4.25647
– ident: ref33
  doi: 10.1109/ICOEI56765.2023.10125935
– ident: ref1
  doi: 10.1109/TIFS.2019.2895200
– ident: ref34
  doi: 10.1109/TCSVT.2022.3232790
– ident: ref10
  doi: 10.1016/j.jksuci.2020.12.017
– ident: ref32
  doi: 10.12928/telkomnika.v20i6.23596
– ident: ref21
  doi: 10.1109/TKDE.2022.3155924
– ident: ref28
  doi: 10.1109/TMM.2018.2838334
– ident: ref36
  doi: 10.1109/CVPR52688.2022.01042
– ident: ref12
  doi: 10.1016/j.asoc.2020.106257
– ident: ref17
  doi: 10.1109/CVPR52688.2022.00772
– ident: ref44
  doi: 10.1007/978-3-540-88682-2_24
– ident: ref31
  doi: 10.1109/TCSVT.2021.3108772
– ident: ref25
  doi: 10.1007/978-3-319-27051-7_11
– ident: ref8
  doi: 10.1109/LCOMM.2006.060863
– ident: ref13
  doi: 10.1109/TCSVT.2021.3115600
– ident: ref18
  doi: 10.1109/CVPRW59228.2023.00100
– ident: ref7
  doi: 10.1016/S0031-3203(00)00015-7
– ident: ref22
  doi: 10.1109/TIFS.2022.3196265
– year: 2023
  ident: ref40
  article-title: Adversarial diffusion distillation
  publication-title: arXiv:2311.17042
– ident: ref5
  doi: 10.1016/j.sigpro.2022.108908
– ident: ref14
  doi: 10.1016/j.eswa.2023.120416
– volume: 46
  start-page: 400
  issue: 2
  year: 2023
  ident: ref37
  article-title: Sedenion fractional-order Chebyshev–Fourier moments for multi-view color images
  publication-title: Chin. J. Comput.
– ident: ref16
  doi: 10.1109/CVPR46437.2021.01067
SSID ssj0014847
Score 2.46428
Snippet Coverless steganography requires no modification of the cover image and can effectively resist steganalysis, which has received widespread attention from...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 13543
SubjectTerms Algorithms
Chebyshev approximation
coverless steganography
Data mining
Datasets
Feature extraction
fractional-order Chebyshev-Fourier moments
Generative steganography
Image databases
Image transmission
Information retrieval
Mapping
Receivers
robust steganography
Robustness
Sequences
speeded-up robust features
Steganography
Title Robust Generative Steganography Based on Image Mapping
URI https://ieeexplore.ieee.org/document/10659913
https://www.proquest.com/docview/3147528433
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVoJxj4LKJQkAc2lJDEjmOPUFEVpHagLeoW2Y7bAZEgmiz8es5OgioQEkuUwY4sn33vLnf3DqFrLiTYDTz0kkgJjwJEeUJGFB6SJMoITla2UHgyZeMFfVrGy6ZY3dXCGGNc8pnx7auL5WeFruyvMrjhLAZ7hnRQBzy3uljrO2RAuesmBvZC6HEAsrZCJhC38-HsZQ6-YER9YhvT2ubeWyjk2qr80sUOYEYHaNourc4refWrUvn68wdr47_Xfoj2G1MT39Vn4wjtmPwY7W0REJ4g9lyoalPimnzaaj48K81a5g2RNb4HkMtwkePHN1A8eCItncO6hxajh_lw7DWdFDwd0aT0ZKQCkICSmqlMMxOaCCQXaPAtbFVyxmTIVjAyCxOpeMC1NBJMMyYyvYpFrMgp6uZFbs4Q1iHRmttwH5N0JagSiWHSeoVxoJUmfXTT7mz6XhNmpM7RCETq5JBaOaSNHPqoZ7dqa2S9S300aKWRNpdqk5KQJjHAKSHnf0y7QLv263W6yQB1y4_KXILRUKord1i-AFcGvHg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED1BGYCBzyIKBTKwoZQkdpx4hIqqhbYDbVG3yHacDogU0XTh13N2UlSBkFiiDLZi-ex7d7m7dwDXMRdoN8S-GwWSuxQhyuUioPgQJJKaxyQzhcKDIetO6OM0nFbF6rYWRmttk890y7zaWH46V0vzqwxvOAvRniGbsIXAHwZludZ30IDGtp8YWgy-GyOUrWpkPH47bo9exugNBrRFTGta0957DYdsY5Vf2thCTGcfhqvFlZklr61lIVvq8wdv479XfwB7lbHp3JWn4xA2dH4Eu2sUhMfAnudyuSickn7a6D5nVOiZyCsqa-ceYS515rnTe0PV4wyEIXSY1WHSeRi3u27VS8FVAY0KVwTSQxlIoZhMFdO-DlB2nkLvwtQlp0z4LMORqR8JGXuxElqgccZ4qrKQh5KcQC2f5_oUHOUTpWIT8GOCZpxKHmkmjF8Yekoq0oCb1c4m7yVlRmJdDY8nVg6JkUNSyaEBdbNVayPLXWpAcyWNpLpWi4T4NAoRUAk5-2PaFWx3x4N-0u8Nn85hx3ypTD5pQq34WOoLNCEKeWkPzhdfCb_C
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Generative+Steganography+Based+on+Image+Mapping&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Zhang%2C+Qinghua&rft.au=Huang%2C+Fangjun&rft.date=2024-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=34&rft.issue=12&rft.spage=13543&rft_id=info:doi/10.1109%2FTCSVT.2024.3451620&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon