Time Delay Error Online Correction of LiDAR-IMU System Through MSCKF Integrated DLRNN Method

When fusing the measurement data with different sampling frequencies from the light detection and ranging (LiDAR) and inertial measurement unit (IMU), their timestamps should be exactly aligned. However, in reality the timestamps of LiDAR and IMU are typically subject to different influences, which...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ASME transactions on mechatronics Vol. 29; no. 3; pp. 1878 - 1890
Main Authors Liu, Wanli, Li, Zhixiong, Li, Weihua, Gardoni, Paolo, Du, Haiping, Sotelo, Miguel Angel
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When fusing the measurement data with different sampling frequencies from the light detection and ranging (LiDAR) and inertial measurement unit (IMU), their timestamps should be exactly aligned. However, in reality the timestamps of LiDAR and IMU are typically subject to different influences, which will inevitably generate the time delay error to reduce the accuracy and robustness of the LiDAR-IMU system. To this avail, this article proposes a new method that integrates the double layer recurrent neural network (DLRNN) and multistate constrained Kalman filter (MSCKF) to online correct the LiDAR-IMU time delay errors. In this new method, the MSCKF can improve the DLRNN training accuracy while in return the DLRNN can enhance the error estimating performance of the MSCKF. With this mutual improvement strategy, the time delay error can be precisely corrected in both the static and dynamic operation modes of the LiDAR-IMU system. The main contributions include: 1) Dual-information fusion is achieved between the DLRNN and MSCKF for accurate correction of the LiDAR-IMU time delay error; and 2) the proposed approach significantly improves the efficiency and accuracy of the time delay error correction in a real-time manner. Several experiments were carried out to evaluate the online correction performance of the proposed method. The experimental results demonstrate that the LiDAR-IMU time delay error can be accurately and quickly corrected, regardless the time-varying and unknown time delay. As a result, the positioning and navigation performance of the LiDAR-IMU system can be improved more appropriately for practical applications.
AbstractList When fusing the measurement data with different sampling frequencies from the light detection and ranging (LiDAR) and inertial measurement unit (IMU), their timestamps should be exactly aligned. However, in reality the timestamps of LiDAR and IMU are typically subject to different influences, which will inevitably generate the time delay error to reduce the accuracy and robustness of the LiDAR-IMU system. To this avail, this article proposes a new method that integrates the double layer recurrent neural network (DLRNN) and multistate constrained Kalman filter (MSCKF) to online correct the LiDAR-IMU time delay errors. In this new method, the MSCKF can improve the DLRNN training accuracy while in return the DLRNN can enhance the error estimating performance of the MSCKF. With this mutual improvement strategy, the time delay error can be precisely corrected in both the static and dynamic operation modes of the LiDAR-IMU system. The main contributions include: 1) Dual-information fusion is achieved between the DLRNN and MSCKF for accurate correction of the LiDAR-IMU time delay error; and 2) the proposed approach significantly improves the efficiency and accuracy of the time delay error correction in a real-time manner. Several experiments were carried out to evaluate the online correction performance of the proposed method. The experimental results demonstrate that the LiDAR-IMU time delay error can be accurately and quickly corrected, regardless the time-varying and unknown time delay. As a result, the positioning and navigation performance of the LiDAR-IMU system can be improved more appropriately for practical applications.
Author Liu, Wanli
Gardoni, Paolo
Li, Weihua
Sotelo, Miguel Angel
Du, Haiping
Li, Zhixiong
Author_xml – sequence: 1
  givenname: Wanli
  orcidid: 0000-0002-9222-7928
  surname: Liu
  fullname: Liu, Wanli
  email: 4830@cumt.edu.cn
  organization: School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 2
  givenname: Zhixiong
  orcidid: 0000-0003-4067-0669
  surname: Li
  fullname: Li, Zhixiong
  email: zhixiong.li@yonsei.ac.kr
  organization: Faculty of Mechanical Engineering, Opole University of Technology, Opole, Poland
– sequence: 3
  givenname: Weihua
  orcidid: 0000-0002-6190-8421
  surname: Li
  fullname: Li, Weihua
  email: weihuali@uow.edu.au
  organization: School of Mechanical, Materials, Mechatronic, and Biomedical Engineering, University of Wollongong, Wollongong, NSW, Australia
– sequence: 4
  givenname: Paolo
  orcidid: 0009-0009-5806-3024
  surname: Gardoni
  fullname: Gardoni, Paolo
  email: gardoni@illinois.edu
  organization: Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA
– sequence: 5
  givenname: Haiping
  orcidid: 0000-0002-3439-3821
  surname: Du
  fullname: Du, Haiping
  email: hdu@uow.edu.au
  organization: School of Mechanical, Materials, Mechatronic, and Biomedical Engineering, University of Wollongong, Wollongong, NSW, Australia
– sequence: 6
  givenname: Miguel Angel
  orcidid: 0000-0001-8809-2103
  surname: Sotelo
  fullname: Sotelo, Miguel Angel
  email: miguel.sotelo@uah.es
  organization: Department of Computer Engineering, University of Alcala, Madrid, Spain
BookMark eNpNkMFqwkAQhpdiodb2BUoPCz3H7uwmm-QoUas0UdAIPRSWuJloRLN2Ew--fWP10NPMwP_NDN8j6VSmQkJegPUBWPieJqNo0ueMi74Q4DMI7kgXQhccBu5Xp-1ZIBzXFd4DeazrHWPMBQZd8p2WB6RD3GdnOrLWWDqv9mWFNDLWom5KU1FT0LgcDhbONFnR5blu8EDTrTWnzZYmy-hzTKdVgxubNZjTYbyYzWiCzdbkT-S-yPY1Pt9qj6zGozSaOPH8YxoNYkdz12-cQK8ZhNyVMvc9LoP2TR14ssAixBCKrB1yD9HTrq8DzXnGJQDIDGTgrbmnRY-8Xfcerfk5Yd2onTnZqj2pBJOhBBl6sk3xa0pbU9cWC3W05SGzZwVMXSyqP4vqYlHdLLbQ6xUqEfEfwAMQoRC_GNNtSg
CODEN IATEFW
Cites_doi 10.1155/2017/4802159
10.1049/iet-cta.2018.6130
10.1109/TMECH.2016.2547905
10.1177/0959651817721619
10.1109/TIM.2019.2951863
10.1109/TITS.2004.828169
10.1109/TRO.2016.2596771
10.1016/j.inffus.2013.05.012
10.1016/j.ymssp.2019.07.003
10.1109/TIE.2019.2956368
10.3390/s17030539
10.1016/j.ymssp.2020.107057
10.1016/j.robot.2019.01.010
10.3390/s20185342
10.1109/TRO.2014.2343073
10.1016/j.optcom.2018.11.027
10.1109/TMECH.2019.2962663
10.1109/TSMC.2015.2470635
10.1109/TIE.2017.2745445
10.1016/j.neunet.2022.06.007
10.1109/TNNLS.2019.2919676
10.3390/s20030919
10.3390/s17061268
10.1109/TAES.2005.1541430
10.1109/TIM.2020.2987657
10.1109/TIE.2011.2182010
10.1109/TPEL.2020.2974470
10.1109/TIE.2017.2774731
10.1016/j.neucom.2017.06.065
10.1109/ACCESS.2021.3072841
10.1109/TAES.2019.2948517
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TMECH.2023.3317018
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-014X
EndPage 1890
ExternalDocumentID 10_1109_TMECH_2023_3317018
10281393
Genre orig-research
GrantInformation_xml – fundername: Industry and Information Technology Development Program, China
  grantid: TC220A04W-1-167
– fundername: Opole University of Technology, Poland
– fundername: Norwegian Financial Mechanism 2014-2021
  grantid: 2020/37/K/ST8/02748
– fundername: National Natural Science Foundation of China
  grantid: 52274161; 51974290
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACKIV
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
OCL
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c247t-8cb0192466d75268443c856fef9e91fac85d5ee5c47c8c22a261116a1685b25c3
IEDL.DBID RIE
ISSN 1083-4435
IngestDate Sun Jun 29 15:15:13 EDT 2025
Tue Jul 01 04:23:28 EDT 2025
Wed Aug 27 02:06:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-8cb0192466d75268443c856fef9e91fac85d5ee5c47c8c22a261116a1685b25c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8809-2103
0000-0002-9222-7928
0000-0003-4067-0669
0009-0009-5806-3024
0000-0002-3439-3821
0000-0002-6190-8421
PQID 3069616956
PQPubID 85420
PageCount 13
ParticipantIDs crossref_primary_10_1109_TMECH_2023_3317018
ieee_primary_10281393
proquest_journals_3069616956
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-June
2024-6-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE/ASME transactions on mechatronics
PublicationTitleAbbrev TMECH
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref15
  doi: 10.1155/2017/4802159
– ident: ref20
  doi: 10.1049/iet-cta.2018.6130
– ident: ref1
  doi: 10.1109/TMECH.2016.2547905
– ident: ref23
  doi: 10.1177/0959651817721619
– ident: ref14
  doi: 10.1109/TIM.2019.2951863
– ident: ref17
  doi: 10.1109/TITS.2004.828169
– ident: ref19
  doi: 10.1109/TRO.2016.2596771
– ident: ref5
  doi: 10.1016/j.inffus.2013.05.012
– ident: ref27
  doi: 10.1016/j.ymssp.2019.07.003
– ident: ref2
  doi: 10.1109/TIE.2019.2956368
– ident: ref16
  doi: 10.3390/s17030539
– ident: ref25
  doi: 10.1016/j.ymssp.2020.107057
– ident: ref8
  doi: 10.1016/j.robot.2019.01.010
– ident: ref9
  doi: 10.3390/s20185342
– ident: ref13
  doi: 10.1109/TRO.2014.2343073
– ident: ref31
  doi: 10.1016/j.optcom.2018.11.027
– ident: ref3
  doi: 10.1109/TMECH.2019.2962663
– ident: ref21
  doi: 10.1109/TSMC.2015.2470635
– ident: ref4
  doi: 10.1109/TIE.2017.2745445
– ident: ref30
  doi: 10.1016/j.neunet.2022.06.007
– ident: ref26
  doi: 10.1109/TNNLS.2019.2919676
– ident: ref10
  doi: 10.3390/s20030919
– ident: ref18
  doi: 10.3390/s17061268
– ident: ref24
  doi: 10.1109/TAES.2005.1541430
– ident: ref12
  doi: 10.1109/TIM.2020.2987657
– ident: ref7
  doi: 10.1109/TIE.2011.2182010
– ident: ref28
  doi: 10.1109/TPEL.2020.2974470
– ident: ref11
  doi: 10.1109/TIE.2017.2774731
– ident: ref22
  doi: 10.1016/j.neucom.2017.06.065
– ident: ref29
  doi: 10.1109/ACCESS.2021.3072841
– ident: ref6
  doi: 10.1109/TAES.2019.2948517
SSID ssj0004101
Score 2.4270961
Snippet When fusing the measurement data with different sampling frequencies from the light detection and ranging (LiDAR) and inertial measurement unit (IMU), their...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1878
SubjectTerms Accuracy
Data integration
Delay effects
Error correction
Error reduction
Hardware
Inertial platforms
Kalman filters
Laser radar
Lidar
Light detection and ranging inertial measurement unit (LiDAR-IMU)
Measurement uncertainty
online correction
Q measurement
Real time
Recurrent neural networks
time delay error
Time lag
Training
Title Time Delay Error Online Correction of LiDAR-IMU System Through MSCKF Integrated DLRNN Method
URI https://ieeexplore.ieee.org/document/10281393
https://www.proquest.com/docview/3069616956
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwGG10Jz34c8bpND14M7CVlkKPC9uy6eAwt2QHEwKlJEYzDLKD_vX2B8SpMfEGCSWlX-F7X-l7D4Abj_hZ4iFk8SxjarUqsXycyiPOZP5kAhluVRjRyZLcrdxVTVbXXBghhN58Jmx1qP_lZwXfqKWynkqGErHgXbArKzdD1voiQSLtdYwkprCIBAENQ6bPeotwFExsZRRuY6wEyP1vWUjbqvz6FusEMz4EUdM1s6_k2d5Uqc0_fqg2_rvvR-CghppwYObGMdgR6xOwvyVAeAoeFQMEDsVL8g5HZVmU0EiPwkCZdmjKAyxyOHsaDubWNFxCI3AOF8bdB4YPwf0YThvJiQwOZ_MogqG2pW6D5Xi0CCZW7bdgcYd4leXzVAE-QmnmaRUYgrnv0lzkTDCUJ_Ikc4VwOfG4zx0nkdUXQjRB1HdTx-X4DLTWxVqcA0iQfFaOvX6CfZJRmrg5TmUbV6JRljqoA26b8Y9fjaxGrMuRPot1tGIVrbiOVge01YBuXWnGsgO6Tczi-tV7i2UNJKcZlXXfxR_NLsGevDsxG766oFWVG3EloUWVXusp9QlQ2cYD
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT4NAGP2i9aAeXGus6xy8GWiHWYCj6ZJWC4faJj2YEBiGxGhaU9uD_npngbjFxBskTBjmG_jeN8x7D-DKp0Ge-hg7Is9DvVqVOgHJ1JEIVf4MJbbcqijm_Qm9nbJpSVY3XBgppdl8Jl19aP7l53Ox0ktlTZ0MFWIh67ChEj_Dlq71SYPExu0YK1ThUAUDKo5MK2yOo26772qrcJcQLUEefMtDxljl19fYpJjeLsRV5-zOkid3tcxc8f5Dt_Hfvd-DnRJsohs7O_ZhTc4OYPuLBOEhPGgOCOrI5_QNdReL-QJZ8VHU1rYdhvSA5gUaPnZuRs4gmiArcY7G1t8HRfftux4aVKITOeoMR3GMImNMXYdJrztu953SccERHvWXTiAyDfko57lvdGAoEQHjhSxCGeIiVSc5k5IJ6otAeF6q6i-MeYp5wDKPCXIEtdl8Jo8BUayeVRC_lZKA5pynrCCZasMUHg0zDzfguhr_5MUKaySmIGmFiYlWoqOVlNFqQF0P6Jcr7Vg24KyKWVK-fK-JqoLUROOq8jv5o9klbPbH0TAZDuK7U9hSd6J2-9cZ1JaLlTxXQGOZXZjp9QHXBMlM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+Delay+Error+Online+Correction+of+LiDAR-IMU+System+Through+MSCKF+Integrated+DLRNN+Method&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Liu%2C+Wanli&rft.au=Li%2C+Zhixiong&rft.au=Li%2C+Weihua&rft.au=Gardoni%2C+Paolo&rft.date=2024-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1083-4435&rft.eissn=1941-014X&rft.volume=29&rft.issue=3&rft.spage=1878&rft_id=info:doi/10.1109%2FTMECH.2023.3317018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon