Time Delay Error Online Correction of LiDAR-IMU System Through MSCKF Integrated DLRNN Method
When fusing the measurement data with different sampling frequencies from the light detection and ranging (LiDAR) and inertial measurement unit (IMU), their timestamps should be exactly aligned. However, in reality the timestamps of LiDAR and IMU are typically subject to different influences, which...
Saved in:
Published in | IEEE/ASME transactions on mechatronics Vol. 29; no. 3; pp. 1878 - 1890 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | When fusing the measurement data with different sampling frequencies from the light detection and ranging (LiDAR) and inertial measurement unit (IMU), their timestamps should be exactly aligned. However, in reality the timestamps of LiDAR and IMU are typically subject to different influences, which will inevitably generate the time delay error to reduce the accuracy and robustness of the LiDAR-IMU system. To this avail, this article proposes a new method that integrates the double layer recurrent neural network (DLRNN) and multistate constrained Kalman filter (MSCKF) to online correct the LiDAR-IMU time delay errors. In this new method, the MSCKF can improve the DLRNN training accuracy while in return the DLRNN can enhance the error estimating performance of the MSCKF. With this mutual improvement strategy, the time delay error can be precisely corrected in both the static and dynamic operation modes of the LiDAR-IMU system. The main contributions include: 1) Dual-information fusion is achieved between the DLRNN and MSCKF for accurate correction of the LiDAR-IMU time delay error; and 2) the proposed approach significantly improves the efficiency and accuracy of the time delay error correction in a real-time manner. Several experiments were carried out to evaluate the online correction performance of the proposed method. The experimental results demonstrate that the LiDAR-IMU time delay error can be accurately and quickly corrected, regardless the time-varying and unknown time delay. As a result, the positioning and navigation performance of the LiDAR-IMU system can be improved more appropriately for practical applications. |
---|---|
AbstractList | When fusing the measurement data with different sampling frequencies from the light detection and ranging (LiDAR) and inertial measurement unit (IMU), their timestamps should be exactly aligned. However, in reality the timestamps of LiDAR and IMU are typically subject to different influences, which will inevitably generate the time delay error to reduce the accuracy and robustness of the LiDAR-IMU system. To this avail, this article proposes a new method that integrates the double layer recurrent neural network (DLRNN) and multistate constrained Kalman filter (MSCKF) to online correct the LiDAR-IMU time delay errors. In this new method, the MSCKF can improve the DLRNN training accuracy while in return the DLRNN can enhance the error estimating performance of the MSCKF. With this mutual improvement strategy, the time delay error can be precisely corrected in both the static and dynamic operation modes of the LiDAR-IMU system. The main contributions include: 1) Dual-information fusion is achieved between the DLRNN and MSCKF for accurate correction of the LiDAR-IMU time delay error; and 2) the proposed approach significantly improves the efficiency and accuracy of the time delay error correction in a real-time manner. Several experiments were carried out to evaluate the online correction performance of the proposed method. The experimental results demonstrate that the LiDAR-IMU time delay error can be accurately and quickly corrected, regardless the time-varying and unknown time delay. As a result, the positioning and navigation performance of the LiDAR-IMU system can be improved more appropriately for practical applications. |
Author | Liu, Wanli Gardoni, Paolo Li, Weihua Sotelo, Miguel Angel Du, Haiping Li, Zhixiong |
Author_xml | – sequence: 1 givenname: Wanli orcidid: 0000-0002-9222-7928 surname: Liu fullname: Liu, Wanli email: 4830@cumt.edu.cn organization: School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, China – sequence: 2 givenname: Zhixiong orcidid: 0000-0003-4067-0669 surname: Li fullname: Li, Zhixiong email: zhixiong.li@yonsei.ac.kr organization: Faculty of Mechanical Engineering, Opole University of Technology, Opole, Poland – sequence: 3 givenname: Weihua orcidid: 0000-0002-6190-8421 surname: Li fullname: Li, Weihua email: weihuali@uow.edu.au organization: School of Mechanical, Materials, Mechatronic, and Biomedical Engineering, University of Wollongong, Wollongong, NSW, Australia – sequence: 4 givenname: Paolo orcidid: 0009-0009-5806-3024 surname: Gardoni fullname: Gardoni, Paolo email: gardoni@illinois.edu organization: Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA – sequence: 5 givenname: Haiping orcidid: 0000-0002-3439-3821 surname: Du fullname: Du, Haiping email: hdu@uow.edu.au organization: School of Mechanical, Materials, Mechatronic, and Biomedical Engineering, University of Wollongong, Wollongong, NSW, Australia – sequence: 6 givenname: Miguel Angel orcidid: 0000-0001-8809-2103 surname: Sotelo fullname: Sotelo, Miguel Angel email: miguel.sotelo@uah.es organization: Department of Computer Engineering, University of Alcala, Madrid, Spain |
BookMark | eNpNkMFqwkAQhpdiodb2BUoPCz3H7uwmm-QoUas0UdAIPRSWuJloRLN2Ew--fWP10NPMwP_NDN8j6VSmQkJegPUBWPieJqNo0ueMi74Q4DMI7kgXQhccBu5Xp-1ZIBzXFd4DeazrHWPMBQZd8p2WB6RD3GdnOrLWWDqv9mWFNDLWom5KU1FT0LgcDhbONFnR5blu8EDTrTWnzZYmy-hzTKdVgxubNZjTYbyYzWiCzdbkT-S-yPY1Pt9qj6zGozSaOPH8YxoNYkdz12-cQK8ZhNyVMvc9LoP2TR14ssAixBCKrB1yD9HTrq8DzXnGJQDIDGTgrbmnRY-8Xfcerfk5Yd2onTnZqj2pBJOhBBl6sk3xa0pbU9cWC3W05SGzZwVMXSyqP4vqYlHdLLbQ6xUqEfEfwAMQoRC_GNNtSg |
CODEN | IATEFW |
Cites_doi | 10.1155/2017/4802159 10.1049/iet-cta.2018.6130 10.1109/TMECH.2016.2547905 10.1177/0959651817721619 10.1109/TIM.2019.2951863 10.1109/TITS.2004.828169 10.1109/TRO.2016.2596771 10.1016/j.inffus.2013.05.012 10.1016/j.ymssp.2019.07.003 10.1109/TIE.2019.2956368 10.3390/s17030539 10.1016/j.ymssp.2020.107057 10.1016/j.robot.2019.01.010 10.3390/s20185342 10.1109/TRO.2014.2343073 10.1016/j.optcom.2018.11.027 10.1109/TMECH.2019.2962663 10.1109/TSMC.2015.2470635 10.1109/TIE.2017.2745445 10.1016/j.neunet.2022.06.007 10.1109/TNNLS.2019.2919676 10.3390/s20030919 10.3390/s17061268 10.1109/TAES.2005.1541430 10.1109/TIM.2020.2987657 10.1109/TIE.2011.2182010 10.1109/TPEL.2020.2974470 10.1109/TIE.2017.2774731 10.1016/j.neucom.2017.06.065 10.1109/ACCESS.2021.3072841 10.1109/TAES.2019.2948517 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
DOI | 10.1109/TMECH.2023.3317018 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-014X |
EndPage | 1890 |
ExternalDocumentID | 10_1109_TMECH_2023_3317018 10281393 |
Genre | orig-research |
GrantInformation_xml | – fundername: Industry and Information Technology Development Program, China grantid: TC220A04W-1-167 – fundername: Opole University of Technology, Poland – fundername: Norwegian Financial Mechanism 2014-2021 grantid: 2020/37/K/ST8/02748 – fundername: National Natural Science Foundation of China grantid: 52274161; 51974290 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACKIV AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 OCL RIA RIE RNS TN5 VH1 AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c247t-8cb0192466d75268443c856fef9e91fac85d5ee5c47c8c22a261116a1685b25c3 |
IEDL.DBID | RIE |
ISSN | 1083-4435 |
IngestDate | Sun Jun 29 15:15:13 EDT 2025 Tue Jul 01 04:23:28 EDT 2025 Wed Aug 27 02:06:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c247t-8cb0192466d75268443c856fef9e91fac85d5ee5c47c8c22a261116a1685b25c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8809-2103 0000-0002-9222-7928 0000-0003-4067-0669 0009-0009-5806-3024 0000-0002-3439-3821 0000-0002-6190-8421 |
PQID | 3069616956 |
PQPubID | 85420 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_TMECH_2023_3317018 ieee_primary_10281393 proquest_journals_3069616956 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-June 2024-6-00 20240601 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-June |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE/ASME transactions on mechatronics |
PublicationTitleAbbrev | TMECH |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref15 doi: 10.1155/2017/4802159 – ident: ref20 doi: 10.1049/iet-cta.2018.6130 – ident: ref1 doi: 10.1109/TMECH.2016.2547905 – ident: ref23 doi: 10.1177/0959651817721619 – ident: ref14 doi: 10.1109/TIM.2019.2951863 – ident: ref17 doi: 10.1109/TITS.2004.828169 – ident: ref19 doi: 10.1109/TRO.2016.2596771 – ident: ref5 doi: 10.1016/j.inffus.2013.05.012 – ident: ref27 doi: 10.1016/j.ymssp.2019.07.003 – ident: ref2 doi: 10.1109/TIE.2019.2956368 – ident: ref16 doi: 10.3390/s17030539 – ident: ref25 doi: 10.1016/j.ymssp.2020.107057 – ident: ref8 doi: 10.1016/j.robot.2019.01.010 – ident: ref9 doi: 10.3390/s20185342 – ident: ref13 doi: 10.1109/TRO.2014.2343073 – ident: ref31 doi: 10.1016/j.optcom.2018.11.027 – ident: ref3 doi: 10.1109/TMECH.2019.2962663 – ident: ref21 doi: 10.1109/TSMC.2015.2470635 – ident: ref4 doi: 10.1109/TIE.2017.2745445 – ident: ref30 doi: 10.1016/j.neunet.2022.06.007 – ident: ref26 doi: 10.1109/TNNLS.2019.2919676 – ident: ref10 doi: 10.3390/s20030919 – ident: ref18 doi: 10.3390/s17061268 – ident: ref24 doi: 10.1109/TAES.2005.1541430 – ident: ref12 doi: 10.1109/TIM.2020.2987657 – ident: ref7 doi: 10.1109/TIE.2011.2182010 – ident: ref28 doi: 10.1109/TPEL.2020.2974470 – ident: ref11 doi: 10.1109/TIE.2017.2774731 – ident: ref22 doi: 10.1016/j.neucom.2017.06.065 – ident: ref29 doi: 10.1109/ACCESS.2021.3072841 – ident: ref6 doi: 10.1109/TAES.2019.2948517 |
SSID | ssj0004101 |
Score | 2.4270961 |
Snippet | When fusing the measurement data with different sampling frequencies from the light detection and ranging (LiDAR) and inertial measurement unit (IMU), their... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1878 |
SubjectTerms | Accuracy Data integration Delay effects Error correction Error reduction Hardware Inertial platforms Kalman filters Laser radar Lidar Light detection and ranging inertial measurement unit (LiDAR-IMU) Measurement uncertainty online correction Q measurement Real time Recurrent neural networks time delay error Time lag Training |
Title | Time Delay Error Online Correction of LiDAR-IMU System Through MSCKF Integrated DLRNN Method |
URI | https://ieeexplore.ieee.org/document/10281393 https://www.proquest.com/docview/3069616956 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwGG10Jz34c8bpND14M7CVlkKPC9uy6eAwt2QHEwKlJEYzDLKD_vX2B8SpMfEGCSWlX-F7X-l7D4Abj_hZ4iFk8SxjarUqsXycyiPOZP5kAhluVRjRyZLcrdxVTVbXXBghhN58Jmx1qP_lZwXfqKWynkqGErHgXbArKzdD1voiQSLtdYwkprCIBAENQ6bPeotwFExsZRRuY6wEyP1vWUjbqvz6FusEMz4EUdM1s6_k2d5Uqc0_fqg2_rvvR-CghppwYObGMdgR6xOwvyVAeAoeFQMEDsVL8g5HZVmU0EiPwkCZdmjKAyxyOHsaDubWNFxCI3AOF8bdB4YPwf0YThvJiQwOZ_MogqG2pW6D5Xi0CCZW7bdgcYd4leXzVAE-QmnmaRUYgrnv0lzkTDCUJ_Ikc4VwOfG4zx0nkdUXQjRB1HdTx-X4DLTWxVqcA0iQfFaOvX6CfZJRmrg5TmUbV6JRljqoA26b8Y9fjaxGrMuRPot1tGIVrbiOVge01YBuXWnGsgO6Tczi-tV7i2UNJKcZlXXfxR_NLsGevDsxG766oFWVG3EloUWVXusp9QlQ2cYD |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT4NAGP2i9aAeXGus6xy8GWiHWYCj6ZJWC4faJj2YEBiGxGhaU9uD_npngbjFxBskTBjmG_jeN8x7D-DKp0Ge-hg7Is9DvVqVOgHJ1JEIVf4MJbbcqijm_Qm9nbJpSVY3XBgppdl8Jl19aP7l53Ox0ktlTZ0MFWIh67ChEj_Dlq71SYPExu0YK1ThUAUDKo5MK2yOo26772qrcJcQLUEefMtDxljl19fYpJjeLsRV5-zOkid3tcxc8f5Dt_Hfvd-DnRJsohs7O_ZhTc4OYPuLBOEhPGgOCOrI5_QNdReL-QJZ8VHU1rYdhvSA5gUaPnZuRs4gmiArcY7G1t8HRfftux4aVKITOeoMR3GMImNMXYdJrztu953SccERHvWXTiAyDfko57lvdGAoEQHjhSxCGeIiVSc5k5IJ6otAeF6q6i-MeYp5wDKPCXIEtdl8Jo8BUayeVRC_lZKA5pynrCCZasMUHg0zDzfguhr_5MUKaySmIGmFiYlWoqOVlNFqQF0P6Jcr7Vg24KyKWVK-fK-JqoLUROOq8jv5o9klbPbH0TAZDuK7U9hSd6J2-9cZ1JaLlTxXQGOZXZjp9QHXBMlM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+Delay+Error+Online+Correction+of+LiDAR-IMU+System+Through+MSCKF+Integrated+DLRNN+Method&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Liu%2C+Wanli&rft.au=Li%2C+Zhixiong&rft.au=Li%2C+Weihua&rft.au=Gardoni%2C+Paolo&rft.date=2024-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1083-4435&rft.eissn=1941-014X&rft.volume=29&rft.issue=3&rft.spage=1878&rft_id=info:doi/10.1109%2FTMECH.2023.3317018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon |