Comprehensive Multisource Learning Network for Cross-Subject Multimodal Emotion Recognition

Electroencephalography (EEG) signals and eye movement signals, which represent internal physiological responses and external subconscious behaviors, respectively, have been shown to be reliable indicators for recognizing emotions. However, integrating these two modalities across multiple subjects pr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on emerging topics in computational intelligence Vol. 9; no. 1; pp. 365 - 380
Main Authors Chen, Chuangquan, Li, Zhencheng, Kou, Kit Ian, Du, Jie, Li, Chen, Wang, Hongtao, Vong, Chi-Man
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalography (EEG) signals and eye movement signals, which represent internal physiological responses and external subconscious behaviors, respectively, have been shown to be reliable indicators for recognizing emotions. However, integrating these two modalities across multiple subjects presents several challenges: 1) designing a robust consistency metric that balances the consistency and divergences between heterogeneous modalities across multiple subjects; 2) simultaneously considering intra-modality and inter-modality information across multiple subjects; and 3) overcoming individual differences among multiple subjects and generating subject-invariant representations of the multimodal fused features. To address these challenges associated with multisource data (i.e., multiple modalities and subjects), we propose a novel comprehensive multisource learning network (CMSLNet) for cross-subject multimodal emotion recognition. Specifically, an instance-level adaptive robust consistency metric is first designed to better align the information between EEG signals and eye movement signals, identifying their consistency and divergences across various emotions. Subsequently, an attentive low-rank multimodal fusion (Att-LMF) method is developed to account for individual differences and dynamically learn intra-modality and inter-modality information, resulting in highly discriminative fused features. Finally, domain generalization is utilized to extract subject-invariant representations of the fused features, thus adapting to new subjects and enhancing the model's generalization. Through these elaborate designs, CMSLNet effectively incorporates the information from multisource data, thus significantly improving the accuracy and reliability of emotion recognition. Extensive experiments on two public datasets demonstrate the superior performance of CMSLNet. CMSLNet achieves high accuracies of 83.15% on the SEED-IV dataset and 87.32% on the SEED-V dataset, surpassing the state-of-the-art methods by 3.62% and 4.60%, respectively.
AbstractList Electroencephalography (EEG) signals and eye movement signals, which represent internal physiological responses and external subconscious behaviors, respectively, have been shown to be reliable indicators for recognizing emotions. However, integrating these two modalities across multiple subjects presents several challenges: 1) designing a robust consistency metric that balances the consistency and divergences between heterogeneous modalities across multiple subjects; 2) simultaneously considering intra-modality and inter-modality information across multiple subjects; and 3) overcoming individual differences among multiple subjects and generating subject-invariant representations of the multimodal fused features. To address these challenges associated with multisource data (i.e., multiple modalities and subjects), we propose a novel comprehensive multisource learning network (CMSLNet) for cross-subject multimodal emotion recognition. Specifically, an instance-level adaptive robust consistency metric is first designed to better align the information between EEG signals and eye movement signals, identifying their consistency and divergences across various emotions. Subsequently, an attentive low-rank multimodal fusion (Att-LMF) method is developed to account for individual differences and dynamically learn intra-modality and inter-modality information, resulting in highly discriminative fused features. Finally, domain generalization is utilized to extract subject-invariant representations of the fused features, thus adapting to new subjects and enhancing the model's generalization. Through these elaborate designs, CMSLNet effectively incorporates the information from multisource data, thus significantly improving the accuracy and reliability of emotion recognition. Extensive experiments on two public datasets demonstrate the superior performance of CMSLNet. CMSLNet achieves high accuracies of 83.15% on the SEED-IV dataset and 87.32% on the SEED-V dataset, surpassing the state-of-the-art methods by 3.62% and 4.60%, respectively.
Author Chen, Chuangquan
Li, Chen
Vong, Chi-Man
Wang, Hongtao
Li, Zhencheng
Kou, Kit Ian
Du, Jie
Author_xml – sequence: 1
  givenname: Chuangquan
  orcidid: 0000-0002-3811-296X
  surname: Chen
  fullname: Chen, Chuangquan
  email: chenchuangquan87@163.com
  organization: School of Electronics and Information Engineering, Wuyi University, Jiangmen, China
– sequence: 2
  givenname: Zhencheng
  orcidid: 0000-0002-8359-8225
  surname: Li
  fullname: Li, Zhencheng
  email: lizhencheng97@163.com
  organization: School of Electronics and Information Engineering, Wuyi University, Jiangmen, China
– sequence: 3
  givenname: Kit Ian
  orcidid: 0000-0003-1924-9087
  surname: Kou
  fullname: Kou, Kit Ian
  email: kikou@um.edu.mo
  organization: Department of Mathematics, University of Macau, Macao, China
– sequence: 4
  givenname: Jie
  orcidid: 0000-0003-1518-436X
  surname: Du
  fullname: Du, Jie
  email: dujie@szu.edu.cn
  organization: School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
– sequence: 5
  givenname: Chen
  orcidid: 0000-0001-7634-7834
  surname: Li
  fullname: Li, Chen
  email: fslichen@fosu.edu.cn
  organization: School of Mathematics and Big Data, Foshan University, Foshan, China
– sequence: 6
  givenname: Hongtao
  orcidid: 0000-0002-6564-5753
  surname: Wang
  fullname: Wang, Hongtao
  email: nushongtaowang@qq.com
  organization: School of Electronics and Information Engineering, Wuyi University, Jiangmen, China
– sequence: 7
  givenname: Chi-Man
  orcidid: 0000-0001-7997-8279
  surname: Vong
  fullname: Vong, Chi-Man
  email: cmvong@um.edu.mo
  organization: Department of Computer and Information Science, University of Macau, Macao, China
BookMark eNpNUNFKwzAUDaLgnPsB8aHgc2du0nTto4ypg6mgEwQfQpbezs41mUmr-Pemdg97ugfuOfeec87IsbEGCbkAOgag-fVytpzOx4yyZMwTmiaMHZEBSyYQs0y8HR_gUzLyfkMpZbkALpIBeZ_aeufwA42vvjF6aLdN5W3rNEYLVM5UZh09YvNj3WdUWhdNnfU-fmlXG9RNT69tobbRrLZNZU30jNquTdXhc3JSqq3H0X4OyettsHofL57u5tObRayDsSZOeSp0HgzBSinAFDgmoHQieFrygnJFIeUCdMGLkmVhtVJcF2WGGZQFiIIPyVV_d-fsV4u-kZuQwISXkoPIBeWMZ4HFepbuIjgs5c5VtXK_EqjsepT_PcquR7nvMYgue1GFiAcCMRF5uPoHwZ9xzw
CODEN ITETCU
Cites_doi 10.18653/v1/D17-1115
10.1007/978-3-030-36708-4_3
10.1109/BIBM52615.2021.9669556
10.1214/aoms/1177703732
10.1109/jas.2022.105515
10.1109/taffc.2020.2981440
10.1109/NER49283.2021.9441352
10.5244/C.21.43
10.1145/3474085.3475583
10.5555/2969033.2969125
10.1109/tim.2022.3168927
10.1177/1557234X11410385
10.1109/NER.2019.8716943
10.1109/IJCNN48605.2020.9207625
10.1109/TKDE.2022.3178128
10.1109/TIM.2020.3011817
10.1038/s41593-019-0488-y
10.1007/978-3-030-01261-8_1
10.1109/EMBC.2014.6944757
10.1109/TNSRE.2021.3110665
10.1016/j.knosys.2021.107982
10.1109/TAFFC.2020.3008775
10.5555/3045118.3045167
10.5555/2946645.2946704
10.3389/fnins.2021.778488
10.1007/978-3-319-46672-9_58
10.1109/tcds.2019.2949306
10.1016/j.aei.2020.101095
10.1109/taffc.2020.2994159
10.1109/taffc.2017.2786207
10.1007/978-3-030-04221-9_25
10.24963/ijcai.2019/568
10.1109/TCYB.2018.2797176
10.1016/j.patcog.2022.108833
10.1109/TNNLS.2018.2838140
10.1109/tcds.2021.3071170
10.18653/v1/P18-1209
10.1109/IJCNN.2019.8852347
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TETCI.2024.3406422
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2471-285X
EndPage 380
ExternalDocumentID 10_1109_TETCI_2024_3406422
10575932
Genre orig-research
GrantInformation_xml – fundername: Chinese Guangdong's S&T Project
  grantid: 2022A0505020028
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2023A1515011978; 2020A1515111154; 2022A1515010160
  funderid: 10.13039/501100021171
– fundername: National Natural Science Foundation of China
  grantid: 62201402
  funderid: 10.13039/501100001809
– fundername: Projects for International Scientific and Technological Cooperation of Guangdong Province
  grantid: 2023A0505050144
– fundername: Hong Kong and Macau Joint Research and Development Fund of Wuyi University
  grantid: 2021WGALH19
– fundername: Science and Technology Development Fund, Macau S.A.R
  grantid: 0036/2021/AGJ
– fundername: Department of Education of Guangdong Province; Educational Commission of Guangdong Province
  grantid: 2021KTSCX136
  funderid: 10.13039/501100010226
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c247t-6365c99511baa1e613e41ac4536f3d03a016351cd3df2841aba3cdf8e81fd15d3
IEDL.DBID RIE
ISSN 2471-285X
IngestDate Mon Jun 30 12:58:07 EDT 2025
Tue Jul 01 03:15:51 EDT 2025
Wed Aug 27 01:56:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-6365c99511baa1e613e41ac4536f3d03a016351cd3df2841aba3cdf8e81fd15d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3811-296X
0000-0001-7634-7834
0000-0002-6564-5753
0000-0001-7997-8279
0000-0003-1924-9087
0000-0003-1518-436X
0000-0002-8359-8225
PQID 3159503238
PQPubID 4437216
PageCount 16
ParticipantIDs crossref_primary_10_1109_TETCI_2024_3406422
ieee_primary_10575932
proquest_journals_3159503238
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref19
ref18
De Bie (ref12)
Li (ref33) 2022
ref24
Ganin (ref43)
Andrew (ref13)
ref23
ref45
ref26
ref25
ref47
ref20
ref42
ref22
ref44
Van der Maaten (ref46) 2008; 9
ref21
Qiao (ref41) 2019
ref27
Li (ref38) 2019
ref29
ref8
ref7
ref9
ref4
ref3
ref6
Zheng (ref28)
ref40
Lu (ref5); 15
References_xml – ident: ref22
  doi: 10.18653/v1/D17-1115
– ident: ref34
  doi: 10.1007/978-3-030-36708-4_3
– ident: ref10
  doi: 10.1109/BIBM52615.2021.9669556
– start-page: 785
  volume-title: Proc. Int. Symp. Independent Compon. Anal. Blind Signal Separation
  ident: ref12
  article-title: On the regularization of canonical correlation analysis
– ident: ref20
  doi: 10.1214/aoms/1177703732
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: ref46
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref8
  doi: 10.1109/jas.2022.105515
– ident: ref27
  doi: 10.1109/taffc.2020.2981440
– ident: ref7
  doi: 10.1109/NER49283.2021.9441352
– ident: ref11
  doi: 10.5244/C.21.43
– ident: ref25
  doi: 10.1145/3474085.3475583
– ident: ref42
  doi: 10.5555/2969033.2969125
– ident: ref44
  doi: 10.1109/tim.2022.3168927
– ident: ref1
  doi: 10.1177/1557234X11410385
– ident: ref9
  doi: 10.1109/NER.2019.8716943
– start-page: 1247
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref13
  article-title: Deep canonical correlation analysis
– ident: ref26
  doi: 10.1109/IJCNN48605.2020.9207625
– ident: ref19
  doi: 10.1109/TKDE.2022.3178128
– ident: ref3
  doi: 10.1109/TIM.2020.3011817
– year: 2019
  ident: ref41
  article-title: Micro-batch training with batch-channel normalization and weight standardization
– ident: ref2
  doi: 10.1038/s41593-019-0488-y
– ident: ref40
  doi: 10.1007/978-3-030-01261-8_1
– ident: ref4
  doi: 10.1109/EMBC.2014.6944757
– ident: ref36
  doi: 10.1109/TNSRE.2021.3110665
– ident: ref18
  doi: 10.1016/j.knosys.2021.107982
– ident: ref17
  doi: 10.1109/TAFFC.2020.3008775
– ident: ref39
  doi: 10.5555/3045118.3045167
– ident: ref31
  doi: 10.5555/2946645.2946704
– ident: ref47
  doi: 10.3389/fnins.2021.778488
– ident: ref15
  doi: 10.1007/978-3-319-46672-9_58
– ident: ref29
  doi: 10.1109/tcds.2019.2949306
– ident: ref6
  doi: 10.1016/j.aei.2020.101095
– ident: ref32
  doi: 10.1109/taffc.2020.2994159
– year: 2019
  ident: ref38
  article-title: Spatial group-wise enhance: Improving semantic feature learning in convolutional networks
– ident: ref16
  doi: 10.1109/taffc.2017.2786207
– ident: ref30
  doi: 10.1007/978-3-030-04221-9_25
– ident: ref37
  doi: 10.24963/ijcai.2019/568
– ident: ref14
  doi: 10.1109/TCYB.2018.2797176
– ident: ref24
  doi: 10.1016/j.patcog.2022.108833
– ident: ref45
  doi: 10.1109/TNNLS.2018.2838140
– volume: 15
  start-page: 1170
  volume-title: Proc. 24th Int. Joint Conf. Artif. Intell.
  ident: ref5
  article-title: Combining eye movements and EEG to enhance emotion recognition
– ident: ref23
  doi: 10.1109/tcds.2021.3071170
– start-page: 2732
  volume-title: Proc. 25th Int. Joint Conf. Artif. Intell.
  ident: ref28
  article-title: Personalizing EEG-based affective models with transfer learning
– ident: ref21
  doi: 10.18653/v1/P18-1209
– start-page: 1180
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref43
  article-title: Unsupervised domain adaptation by backpropagation
– ident: ref35
  doi: 10.1109/IJCNN.2019.8852347
– year: 2022
  ident: ref33
  article-title: Benchmarking domain generalization on EEG-based emotion recognition
SSID ssj0002951354
Score 2.2956567
Snippet Electroencephalography (EEG) signals and eye movement signals, which represent internal physiological responses and external subconscious behaviors,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 365
SubjectTerms Brain modeling
Correlation
cross-subject
Datasets
domain generalization
Electroencephalography
Emotion recognition
Emotions
Eye movements
Feature extraction
Invariants
Learning
low-rank multimodal fusion
Measurement
multimodal emotion recognition
Multisource learning
Physiological responses
Physiology
Representations
Robustness
Title Comprehensive Multisource Learning Network for Cross-Subject Multimodal Emotion Recognition
URI https://ieeexplore.ieee.org/document/10575932
https://www.proquest.com/docview/3159503238
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62Jy8-sGK1Sg7eJNvN5tHNUUpLFexBWih4WHaTrIK4lbq9-OudJLviA8HbHrJhmElmvpnMA6FL1_FSg10loH8V4UnOSZEqS0r3KiiNlcq4gP7dXM6W_HYlVk2xuq-Fsdb65DMbuU__lm_WeutCZUM3k1YA4OigDnhuoVjrM6CSAFZggreFMbEaLiaL8Q24gAmPGHdAO_lmfPw0lV8q2NuV6T6atxSFdJLnaFsXkX7_0azx3yQfoL0GYeLrcCQO0Y6tjtCDu_cb-xTS1bEvuw1xe9x0WH3E85ARjgHG4rGjn4BWcWGasPxlbWDbSRj7g-_bxKN11UPLKfBgRpq5CkQnfFQTyaTQCthFizynFgy65TTXXDBZMhOzHGAgE1QbZkqwXjQvcqZNmdqUloYKw45Rt1pX9gThAtw3qpQtR1JyanhqKC9dUElYUASp6aOrluHZa2ifkXm3I1aZF0_mxJM14umjnuPgl5WBeX00aIWUNVfsLWMAxETMAHKc_vHbGdpN3LRen2M9QN16s7XnACHq4sIfnQ9ZR8SA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDLDwEEUUCnhgQ07r2E6TEVVFLbQZUCtVYrCS2AEJkaCSLvx6znaCeAiJLYNjne7su-_O90Do0nS8zMCuEtC_EeF-wkkaRprk5lUwUDqIlAnoz-JgvOC3S7Gsi9VtLYzW2iafac982rd8VWZrEyrrmZm0AgDHJtoCwy-oK9f6DKn4gBaY4E1pTD_qzUfz4QScQJ97jBuo7X8zP3aeyi8lbC3LzR6KG5pcQsmzt65SL3v_0a7x30Tvo90aY-JrdygO0IYuDtGDufkr_eQS1rEtvHWRe1z3WH3EscsJxwBk8dDQT0CvmECNW_5SKth25Ab_4Psm9ags2mhxAzwYk3qyAsl8PqhIwAKRRcAumiYJ1WDSNadJxgULcqb6LAEgyATNFFM52C-apAnLVB7qkOaKCsWOUKsoC32McAoOHI0inQ-CgFPFQ0V5bsJKQoMqCFUHXTUMl6-ugYa0jkc_klY80ohH1uLpoLbh4JeVjnkd1G2EJOtL9iYZQDHRZwA6Tv747QJtj-ezqZxO4rtTtOOb2b0247qLWtVqrc8AUFTpuT1GH8Vgx8k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+Multisource+Learning+Network+for+Cross-Subject+Multimodal+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Chen%2C+Chuangquan&rft.au=Li%2C+Zhencheng&rft.au=Kou%2C+Kit+Ian&rft.au=Du%2C+Jie&rft.date=2025-02-01&rft.pub=IEEE&rft.eissn=2471-285X&rft.volume=9&rft.issue=1&rft.spage=365&rft.epage=380&rft_id=info:doi/10.1109%2FTETCI.2024.3406422&rft.externalDocID=10575932
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon