A Novel sEMG-FMG Combined Sensor Fusion Approach Based on an Attention-Driven CNN for Dynamic Hand Gesture Recognition
Surface-electromyogram-based pattern recognition (sEMG-PR) is considered as a promising intuitive control method for multifunctional prostheses. However, sEMG-PR relies on the unreliable assumption that repeatable muscular contractions produce repeatable patterns of steady-state sEMG. In contrast, t...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 13 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surface-electromyogram-based pattern recognition (sEMG-PR) is considered as a promising intuitive control method for multifunctional prostheses. However, sEMG-PR relies on the unreliable assumption that repeatable muscular contractions produce repeatable patterns of steady-state sEMG. In contrast, the transient-state signal associated with the beginning (onset) of muscle contraction contains substantial temporal information useful for motor intention characterization but has rarely been explored. In this study, we proposed a cross-attention convolutional neural network (CNN-ATT) that fused sEMG and force myography (FMG) transient signals for multiclass dynamic gesture characterization. The effectiveness of the proposed model was validated using a self-developed co-located system for simultaneously acquiring sEMG and FMG recordings from ten subjects who performed 15 hand gestures. The result showed that the FMG signal performed better than its sEMG counterpart with a performance improvement of 9%, while the CNN-ATT result demonstrated classification performance of 96%, which is 12% higher than sEMG alone and 3.3% higher than FMG alone. To the best of our knowledge, this study represents the first to explore the combination of sEMG and FMG signals for hand gesture recognition based on transient sEMG signals. The results of this study may provide a novel and efficient method for dynamic control of not only intelligent prosthetic hands but also gaming and rehabilitation systems. |
---|---|
AbstractList | Surface-electromyogram-based pattern recognition (sEMG-PR) is considered as a promising intuitive control method for multifunctional prostheses. However, sEMG-PR relies on the unreliable assumption that repeatable muscular contractions produce repeatable patterns of steady-state sEMG. In contrast, the transient-state signal associated with the beginning (onset) of muscle contraction contains substantial temporal information useful for motor intention characterization but has rarely been explored. In this study, we proposed a cross-attention convolutional neural network (CNN-ATT) that fused sEMG and force myography (FMG) transient signals for multiclass dynamic gesture characterization. The effectiveness of the proposed model was validated using a self-developed co-located system for simultaneously acquiring sEMG and FMG recordings from ten subjects who performed 15 hand gestures. The result showed that the FMG signal performed better than its sEMG counterpart with a performance improvement of 9%, while the CNN-ATT result demonstrated classification performance of 96%, which is 12% higher than sEMG alone and 3.3% higher than FMG alone. To the best of our knowledge, this study represents the first to explore the combination of sEMG and FMG signals for hand gesture recognition based on transient sEMG signals. The results of this study may provide a novel and efficient method for dynamic control of not only intelligent prosthetic hands but also gaming and rehabilitation systems. |
Author | Liu, Yan Deng, Xinping Oyemakinde, Tolulope Tofunmi Wang, Mengtao Samuel, Oluwarotimi Williams Fang, Peng Cao, Jianglang Li, Xiangxin Kulwa, Frank Peng, Xinhao Li, Guanglin |
Author_xml | – sequence: 1 givenname: Tolulope Tofunmi orcidid: 0000-0002-7803-197X surname: Oyemakinde fullname: Oyemakinde, Tolulope Tofunmi organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 2 givenname: Frank orcidid: 0000-0001-7003-1716 surname: Kulwa fullname: Kulwa, Frank organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 3 givenname: Xinhao orcidid: 0009-0006-8815-6510 surname: Peng fullname: Peng, Xinhao organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 4 givenname: Yan orcidid: 0000-0001-7013-730X surname: Liu fullname: Liu, Yan organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 5 givenname: Jianglang orcidid: 0009-0007-2928-2426 surname: Cao fullname: Cao, Jianglang organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 6 givenname: Xinping orcidid: 0009-0001-8806-4046 surname: Deng fullname: Deng, Xinping organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 7 givenname: Mengtao orcidid: 0009-0008-4926-5102 surname: Wang fullname: Wang, Mengtao organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 8 givenname: Guanglin orcidid: 0000-0001-9016-2617 surname: Li fullname: Li, Guanglin organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 9 givenname: Oluwarotimi Williams orcidid: 0000-0003-1945-1402 surname: Samuel fullname: Samuel, Oluwarotimi Williams email: o.samuel@derby.ac.uk organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 10 givenname: Peng orcidid: 0000-0002-9070-9069 surname: Fang fullname: Fang, Peng email: peng.fang@siat.ac.cn organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 11 givenname: Xiangxin orcidid: 0000-0003-1232-6182 surname: Li fullname: Li, Xiangxin email: lixx@siat.ac.cn organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China |
BookMark | eNpNkM1PAjEQxRuDiYjePXho4nmx7W677RH5WEgAE8Xzptt2dQm02O6S8N9bAgdPk8x7b-bldw961lkDwBNGQ4yReN0sVkOCCB2mlBKO8Q3oY0rzRDBGeqCPEOaJyCi7A_chbBFCOcvyPjiO4NodzQ6G6apIZqsCjt2-aqzR8NPY4DycdaFxFo4OB--k-oFvMkQxbmRctq2xbZSTiW-OxsLxeg3rGJqcrNw3Cs6l1bAwoe28gR9GuW_bnP0P4LaWu2Aer3MAvmbTzXieLN-LxXi0TBTJ8jahmZYVqTBnSOS1pBXRQuVS8TxDFY1qpaXhTJBME5EzWqeGISW0FnWNFVfpALxc7sbyv13sUW5d5218WaYEc4pJxBBd6OJS3oXgTV0efLOX_lRiVJ7plpFueaZbXunGyPMl0hhj_tlFSjni6R-1R3cy |
CODEN | IEIMAO |
Cites_doi | 10.1016/j.sna.2019.111738 10.1016/j.neucom.2019.01.078 10.1016/j.bica.2018.04.012 10.1109/TBME.2019.2900415 10.1109/EMBC46164.2021.9630206 10.1109/THMS.2016.2641389 10.1109/ITAIC.2019.8785542 10.1109/JBHI.2019.2941535 10.1109/JIOT.2019.2949715 10.1007/s41095-022-0271-y 10.1109/LRA.2023.3235680 10.1109/TNSRE.2022.3156387 10.1109/LA-CCI47412.2019.9036757 10.1109/JBHI.2022.3194017 10.4028/www.scientific.net/AMR.971-973.1651 10.1016/j.bspc.2024.106446 10.1109/TNSRE.2018.2861465 10.1088/1361-6579/abef56 10.1109/THMS.2023.3329536 10.1109/JSEN.2015.2450211 10.3390/sym12101710 10.3390/s19204557 10.1088/1741-2552/ad184f 10.1016/j.heliyon.2024.e28716 10.1007/978-3-319-16178-5_41 10.3389/fnins.2021.783539 10.1109/ICASSP.2018.8462492 10.1109/EMB-M.2006.250500 10.1109/10.204774 10.2478/pjbr-2013-0009 10.48550/ARXIV.1706.03762 10.1016/j.ifacol.2019.09.129 10.1016/j.apmr.2007.11.005 10.1088/1741-2552/ab673f 10.3389/fnbot.2021.692183 10.3389/fnbot.2017.00051 10.1109/TBME.2003.813539 10.1016/j.jelekin.2015.06.010 10.1186/s12984-016-0212-z 10.1049/iet-csr.2020.0008 10.1109/JSEN.2023.3266872 10.1142/S0219843612500077 10.1109/ACCESS.2019.2891350 10.1109/TBME.2013.2287245 10.1109/TII.2017.2779814 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2025.3552811 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 13 |
ExternalDocumentID | 10_1109_TIM_2025_3552811 10935808 |
Genre | orig-research |
GrantInformation_xml | – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation grantid: 2023A1515011478 funderid: 10.13039/501100021171 – fundername: Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative grantid: 2024PVB0025 funderid: 10.13039/501100012430 – fundername: National Key Research and Development Program of China grantid: 2022YFC3601200 funderid: 10.13039/501100012166 – fundername: Science and Technology Program of Guangdong Province grantid: 2022A0505090007 – fundername: Shenzhen Basic Research Program grantid: JCYJ20220818101407016; JCYJ20210324101601005 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c247t-54dab2b186097fa5b2d9c7ac8740b554dbdae86924d29765f3e60c9dd9ff1c8c3 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Tue Jul 22 16:40:51 EDT 2025 Thu Jul 03 08:26:41 EDT 2025 Wed Aug 27 01:47:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c247t-54dab2b186097fa5b2d9c7ac8740b554dbdae86924d29765f3e60c9dd9ff1c8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0001-8806-4046 0000-0001-9016-2617 0000-0001-7013-730X 0000-0001-7003-1716 0000-0002-9070-9069 0000-0002-7803-197X 0009-0008-4926-5102 0000-0003-1945-1402 0009-0006-8815-6510 0009-0007-2928-2426 0000-0003-1232-6182 |
PQID | 3218512764 |
PQPubID | 85462 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3218512764 ieee_primary_10935808 crossref_primary_10_1109_TIM_2025_3552811 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref1 ref17 ref39 ref16 ref38 (ref2) 2024 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref30 doi: 10.1016/j.sna.2019.111738 – ident: ref45 doi: 10.1016/j.neucom.2019.01.078 – ident: ref39 doi: 10.1016/j.bica.2018.04.012 – ident: ref29 doi: 10.1109/TBME.2019.2900415 – ident: ref4 doi: 10.1109/EMBC46164.2021.9630206 – ident: ref20 doi: 10.1109/THMS.2016.2641389 – ident: ref37 doi: 10.1109/ITAIC.2019.8785542 – ident: ref40 doi: 10.1109/JBHI.2019.2941535 – ident: ref41 doi: 10.1109/JIOT.2019.2949715 – ident: ref43 doi: 10.1007/s41095-022-0271-y – ident: ref12 doi: 10.1109/LRA.2023.3235680 – ident: ref31 doi: 10.1109/TNSRE.2022.3156387 – ident: ref15 doi: 10.1109/LA-CCI47412.2019.9036757 – ident: ref38 doi: 10.1109/JBHI.2022.3194017 – ident: ref16 doi: 10.4028/www.scientific.net/AMR.971-973.1651 – ident: ref5 doi: 10.1016/j.bspc.2024.106446 – ident: ref11 doi: 10.1109/TNSRE.2018.2861465 – volume-title: Largest Survey of People With Limb Loss and Limb Difference Demonstrates Actionable Ways to Improve Care year: 2024 ident: ref2 – ident: ref33 doi: 10.1088/1361-6579/abef56 – ident: ref9 doi: 10.1109/THMS.2023.3329536 – ident: ref25 doi: 10.1109/JSEN.2015.2450211 – ident: ref46 doi: 10.3390/sym12101710 – ident: ref28 doi: 10.3390/s19204557 – ident: ref8 doi: 10.1088/1741-2552/ad184f – ident: ref13 doi: 10.1016/j.heliyon.2024.e28716 – ident: ref36 doi: 10.1007/978-3-319-16178-5_41 – ident: ref17 doi: 10.3389/fnins.2021.783539 – ident: ref44 doi: 10.1109/ICASSP.2018.8462492 – ident: ref10 doi: 10.1109/EMB-M.2006.250500 – ident: ref14 doi: 10.1109/10.204774 – ident: ref24 doi: 10.2478/pjbr-2013-0009 – ident: ref42 doi: 10.48550/ARXIV.1706.03762 – ident: ref35 doi: 10.1016/j.ifacol.2019.09.129 – ident: ref1 doi: 10.1016/j.apmr.2007.11.005 – ident: ref7 doi: 10.1088/1741-2552/ab673f – ident: ref19 doi: 10.3389/fnbot.2021.692183 – ident: ref32 doi: 10.3389/fnbot.2017.00051 – ident: ref34 doi: 10.1109/TBME.2003.813539 – ident: ref27 doi: 10.1016/j.jelekin.2015.06.010 – ident: ref18 doi: 10.1186/s12984-016-0212-z – ident: ref21 doi: 10.1049/iet-csr.2020.0008 – ident: ref23 doi: 10.1109/JSEN.2023.3266872 – ident: ref6 doi: 10.1142/S0219843612500077 – ident: ref3 doi: 10.1109/ACCESS.2019.2891350 – ident: ref26 doi: 10.1109/TBME.2013.2287245 – ident: ref22 doi: 10.1109/TII.2017.2779814 |
SSID | ssj0007647 |
Score | 2.4356322 |
Snippet | Surface-electromyogram-based pattern recognition (sEMG-PR) is considered as a promising intuitive control method for multifunctional prostheses. However,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Control methods Control systems Dynamic control Dynamics Electromyography Force Force myography (FMG) Gesture recognition Hands Information systems Motors Muscles Muscular function Pattern recognition Prostheses Sensors Steady-state steady-state signals surface electromyogram (sEMG) Transient analysis transient signals |
Title | A Novel sEMG-FMG Combined Sensor Fusion Approach Based on an Attention-Driven CNN for Dynamic Hand Gesture Recognition |
URI | https://ieeexplore.ieee.org/document/10935808 https://www.proquest.com/docview/3218512764 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VpErl0AcFdSmtfOiFg5fYm8TxcQvsbittDhQkblFsTy6gpNpN9tBfzzhOKtoKqbfISqLEM575PnseAF_QqApJWTj5csnjDAUnNxxxlVQiNWUaK-0TnNd5urqNv98ld0Oyep8Lg4h98BlO_WV_lu8a2_mtsnMRTu2yPdgj5haStX6bXZXGoUCmoBVMsGA8k4z0-c23NTFBmUzJucpMiD98UN9U5R9L3LuXxRvIxw8LUSX30641U_vrr5qN__3lb-H1ADTZPGjGO3iB9SEcPCk_eAgv-_BPu30PuznLmx0-sO3VeskX6yUjO0GcGR37QTy32bBF57fV2HwoQc6-kvdzjEZKGmzbEDTJLzfeeLKLPGcEhtllaHfPVmXt2JL-utsgux5Dlpr6CG4XVzcXKz50ZOBWxqrlSexKI43I0kirqkyMdNqq0vq-foaAiTOuxCwlTuck4ZykmmEaWe2criphMzs7hv26qfEDMC3NzMUOtXAq1iYx1ihZVgorIkTW2AmcjTIqfobCG0VPWCJdkDwLL89ikOcEjvyUP7kvzPYETkepFsPS3BYzAjWEckhdTp557CO88m8PGy2nsN9uOvxE0KM1n3uVewRUatSK |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIkQ58CitWCjgAxw4eBt7kzg-9LB0uw_a5ABbqbcQPyIhIEG7SVH5L_yV_jYmcVIVEMdK3CLLSaSZT_N9Y4_HAK-sErlFsFDkck79yDKKNOxREeQsVFnoC9kccI6TcH7qvzsLzjbg59VZGGttW3xmh81ju5dvSl03S2X7zO3aRV0N5bG9-I4Z2vpgMUF3vuZ8erQ8nNPuEgGquS8qGvgmU1yxKPSkyLNAcSO1yHRzFZ1CLjXKZDYKMQ0xHKk5yEc29LQ0RuY505Ee4XdvwW0UGgF3x8OuAr0IfdeSk2HMQCHS74J6cn-5iDH35MEQ6ZxHjP3Geu01Ln_F_pbQpg_gsjeFq2P5PKwrNdQ__ugS-d_a6iHc76Q0GTvsP4INW2zDvWsNFrfhTlvgqteP4XxMkvLcfiHro3hGp_GMYCRUONOQD5jJlysyrZuFQzLumqyTt8jvhuBIhoNV5cpC6WTV0AM5TBKCcp9MLors6ydN5llhyAytXK8sed8XZZXFDpzeiAl2YbMoC_sEiORqZHxjJTPClypQWgme5cLmmPJppQfwpsdE-s21FknblMyTKeInbfCTdvgZwE7j4mvznHcHsNejKO2CzzodoWxDHYfwfPqP117C3fkyPklPFsnxM9hq_uSWlfZgs1rV9jkKrUq9aOFO4ONNY-YXvOozuQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+sEMG-FMG+Combined+Sensor+Fusion+Approach+Based+on+an+Attention-Driven+CNN+for+Dynamic+Hand+Gesture+Recognition&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Oyemakinde%2C+Tolulope+Tofunmi&rft.au=Kulwa%2C+Frank&rft.au=Peng%2C+Xinhao&rft.au=Liu%2C+Yan&rft.date=2025&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTIM.2025.3552811&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2025_3552811 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |