A Novel sEMG-FMG Combined Sensor Fusion Approach Based on an Attention-Driven CNN for Dynamic Hand Gesture Recognition

Surface-electromyogram-based pattern recognition (sEMG-PR) is considered as a promising intuitive control method for multifunctional prostheses. However, sEMG-PR relies on the unreliable assumption that repeatable muscular contractions produce repeatable patterns of steady-state sEMG. In contrast, t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 13
Main Authors Oyemakinde, Tolulope Tofunmi, Kulwa, Frank, Peng, Xinhao, Liu, Yan, Cao, Jianglang, Deng, Xinping, Wang, Mengtao, Li, Guanglin, Samuel, Oluwarotimi Williams, Fang, Peng, Li, Xiangxin
Format Journal Article
LanguageEnglish
Published New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Surface-electromyogram-based pattern recognition (sEMG-PR) is considered as a promising intuitive control method for multifunctional prostheses. However, sEMG-PR relies on the unreliable assumption that repeatable muscular contractions produce repeatable patterns of steady-state sEMG. In contrast, the transient-state signal associated with the beginning (onset) of muscle contraction contains substantial temporal information useful for motor intention characterization but has rarely been explored. In this study, we proposed a cross-attention convolutional neural network (CNN-ATT) that fused sEMG and force myography (FMG) transient signals for multiclass dynamic gesture characterization. The effectiveness of the proposed model was validated using a self-developed co-located system for simultaneously acquiring sEMG and FMG recordings from ten subjects who performed 15 hand gestures. The result showed that the FMG signal performed better than its sEMG counterpart with a performance improvement of 9%, while the CNN-ATT result demonstrated classification performance of 96%, which is 12% higher than sEMG alone and 3.3% higher than FMG alone. To the best of our knowledge, this study represents the first to explore the combination of sEMG and FMG signals for hand gesture recognition based on transient sEMG signals. The results of this study may provide a novel and efficient method for dynamic control of not only intelligent prosthetic hands but also gaming and rehabilitation systems.
AbstractList Surface-electromyogram-based pattern recognition (sEMG-PR) is considered as a promising intuitive control method for multifunctional prostheses. However, sEMG-PR relies on the unreliable assumption that repeatable muscular contractions produce repeatable patterns of steady-state sEMG. In contrast, the transient-state signal associated with the beginning (onset) of muscle contraction contains substantial temporal information useful for motor intention characterization but has rarely been explored. In this study, we proposed a cross-attention convolutional neural network (CNN-ATT) that fused sEMG and force myography (FMG) transient signals for multiclass dynamic gesture characterization. The effectiveness of the proposed model was validated using a self-developed co-located system for simultaneously acquiring sEMG and FMG recordings from ten subjects who performed 15 hand gestures. The result showed that the FMG signal performed better than its sEMG counterpart with a performance improvement of 9%, while the CNN-ATT result demonstrated classification performance of 96%, which is 12% higher than sEMG alone and 3.3% higher than FMG alone. To the best of our knowledge, this study represents the first to explore the combination of sEMG and FMG signals for hand gesture recognition based on transient sEMG signals. The results of this study may provide a novel and efficient method for dynamic control of not only intelligent prosthetic hands but also gaming and rehabilitation systems.
Author Liu, Yan
Deng, Xinping
Oyemakinde, Tolulope Tofunmi
Wang, Mengtao
Samuel, Oluwarotimi Williams
Fang, Peng
Cao, Jianglang
Li, Xiangxin
Kulwa, Frank
Peng, Xinhao
Li, Guanglin
Author_xml – sequence: 1
  givenname: Tolulope Tofunmi
  orcidid: 0000-0002-7803-197X
  surname: Oyemakinde
  fullname: Oyemakinde, Tolulope Tofunmi
  organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 2
  givenname: Frank
  orcidid: 0000-0001-7003-1716
  surname: Kulwa
  fullname: Kulwa, Frank
  organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 3
  givenname: Xinhao
  orcidid: 0009-0006-8815-6510
  surname: Peng
  fullname: Peng, Xinhao
  organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 4
  givenname: Yan
  orcidid: 0000-0001-7013-730X
  surname: Liu
  fullname: Liu, Yan
  organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 5
  givenname: Jianglang
  orcidid: 0009-0007-2928-2426
  surname: Cao
  fullname: Cao, Jianglang
  organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 6
  givenname: Xinping
  orcidid: 0009-0001-8806-4046
  surname: Deng
  fullname: Deng, Xinping
  organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 7
  givenname: Mengtao
  orcidid: 0009-0008-4926-5102
  surname: Wang
  fullname: Wang, Mengtao
  organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 8
  givenname: Guanglin
  orcidid: 0000-0001-9016-2617
  surname: Li
  fullname: Li, Guanglin
  organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 9
  givenname: Oluwarotimi Williams
  orcidid: 0000-0003-1945-1402
  surname: Samuel
  fullname: Samuel, Oluwarotimi Williams
  email: o.samuel@derby.ac.uk
  organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 10
  givenname: Peng
  orcidid: 0000-0002-9070-9069
  surname: Fang
  fullname: Fang, Peng
  email: peng.fang@siat.ac.cn
  organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 11
  givenname: Xiangxin
  orcidid: 0000-0003-1232-6182
  surname: Li
  fullname: Li, Xiangxin
  email: lixx@siat.ac.cn
  organization: Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
BookMark eNpNkM1PAjEQxRuDiYjePXho4nmx7W677RH5WEgAE8Xzptt2dQm02O6S8N9bAgdPk8x7b-bldw961lkDwBNGQ4yReN0sVkOCCB2mlBKO8Q3oY0rzRDBGeqCPEOaJyCi7A_chbBFCOcvyPjiO4NodzQ6G6apIZqsCjt2-aqzR8NPY4DycdaFxFo4OB--k-oFvMkQxbmRctq2xbZSTiW-OxsLxeg3rGJqcrNw3Cs6l1bAwoe28gR9GuW_bnP0P4LaWu2Aer3MAvmbTzXieLN-LxXi0TBTJ8jahmZYVqTBnSOS1pBXRQuVS8TxDFY1qpaXhTJBME5EzWqeGISW0FnWNFVfpALxc7sbyv13sUW5d5218WaYEc4pJxBBd6OJS3oXgTV0efLOX_lRiVJ7plpFueaZbXunGyPMl0hhj_tlFSjni6R-1R3cy
CODEN IEIMAO
Cites_doi 10.1016/j.sna.2019.111738
10.1016/j.neucom.2019.01.078
10.1016/j.bica.2018.04.012
10.1109/TBME.2019.2900415
10.1109/EMBC46164.2021.9630206
10.1109/THMS.2016.2641389
10.1109/ITAIC.2019.8785542
10.1109/JBHI.2019.2941535
10.1109/JIOT.2019.2949715
10.1007/s41095-022-0271-y
10.1109/LRA.2023.3235680
10.1109/TNSRE.2022.3156387
10.1109/LA-CCI47412.2019.9036757
10.1109/JBHI.2022.3194017
10.4028/www.scientific.net/AMR.971-973.1651
10.1016/j.bspc.2024.106446
10.1109/TNSRE.2018.2861465
10.1088/1361-6579/abef56
10.1109/THMS.2023.3329536
10.1109/JSEN.2015.2450211
10.3390/sym12101710
10.3390/s19204557
10.1088/1741-2552/ad184f
10.1016/j.heliyon.2024.e28716
10.1007/978-3-319-16178-5_41
10.3389/fnins.2021.783539
10.1109/ICASSP.2018.8462492
10.1109/EMB-M.2006.250500
10.1109/10.204774
10.2478/pjbr-2013-0009
10.48550/ARXIV.1706.03762
10.1016/j.ifacol.2019.09.129
10.1016/j.apmr.2007.11.005
10.1088/1741-2552/ab673f
10.3389/fnbot.2021.692183
10.3389/fnbot.2017.00051
10.1109/TBME.2003.813539
10.1016/j.jelekin.2015.06.010
10.1186/s12984-016-0212-z
10.1049/iet-csr.2020.0008
10.1109/JSEN.2023.3266872
10.1142/S0219843612500077
10.1109/ACCESS.2019.2891350
10.1109/TBME.2013.2287245
10.1109/TII.2017.2779814
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2025.3552811
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 13
ExternalDocumentID 10_1109_TIM_2025_3552811
10935808
Genre orig-research
GrantInformation_xml – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2023A1515011478
  funderid: 10.13039/501100021171
– fundername: Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative
  grantid: 2024PVB0025
  funderid: 10.13039/501100012430
– fundername: National Key Research and Development Program of China
  grantid: 2022YFC3601200
  funderid: 10.13039/501100012166
– fundername: Science and Technology Program of Guangdong Province
  grantid: 2022A0505090007
– fundername: Shenzhen Basic Research Program
  grantid: JCYJ20220818101407016; JCYJ20210324101601005
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c247t-54dab2b186097fa5b2d9c7ac8740b554dbdae86924d29765f3e60c9dd9ff1c8c3
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Tue Jul 22 16:40:51 EDT 2025
Thu Jul 03 08:26:41 EDT 2025
Wed Aug 27 01:47:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c247t-54dab2b186097fa5b2d9c7ac8740b554dbdae86924d29765f3e60c9dd9ff1c8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-8806-4046
0000-0001-9016-2617
0000-0001-7013-730X
0000-0001-7003-1716
0000-0002-9070-9069
0000-0002-7803-197X
0009-0008-4926-5102
0000-0003-1945-1402
0009-0006-8815-6510
0009-0007-2928-2426
0000-0003-1232-6182
PQID 3218512764
PQPubID 85462
PageCount 13
ParticipantIDs proquest_journals_3218512764
ieee_primary_10935808
crossref_primary_10_1109_TIM_2025_3552811
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref1
ref17
ref39
ref16
ref38
(ref2) 2024
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref30
  doi: 10.1016/j.sna.2019.111738
– ident: ref45
  doi: 10.1016/j.neucom.2019.01.078
– ident: ref39
  doi: 10.1016/j.bica.2018.04.012
– ident: ref29
  doi: 10.1109/TBME.2019.2900415
– ident: ref4
  doi: 10.1109/EMBC46164.2021.9630206
– ident: ref20
  doi: 10.1109/THMS.2016.2641389
– ident: ref37
  doi: 10.1109/ITAIC.2019.8785542
– ident: ref40
  doi: 10.1109/JBHI.2019.2941535
– ident: ref41
  doi: 10.1109/JIOT.2019.2949715
– ident: ref43
  doi: 10.1007/s41095-022-0271-y
– ident: ref12
  doi: 10.1109/LRA.2023.3235680
– ident: ref31
  doi: 10.1109/TNSRE.2022.3156387
– ident: ref15
  doi: 10.1109/LA-CCI47412.2019.9036757
– ident: ref38
  doi: 10.1109/JBHI.2022.3194017
– ident: ref16
  doi: 10.4028/www.scientific.net/AMR.971-973.1651
– ident: ref5
  doi: 10.1016/j.bspc.2024.106446
– ident: ref11
  doi: 10.1109/TNSRE.2018.2861465
– volume-title: Largest Survey of People With Limb Loss and Limb Difference Demonstrates Actionable Ways to Improve Care
  year: 2024
  ident: ref2
– ident: ref33
  doi: 10.1088/1361-6579/abef56
– ident: ref9
  doi: 10.1109/THMS.2023.3329536
– ident: ref25
  doi: 10.1109/JSEN.2015.2450211
– ident: ref46
  doi: 10.3390/sym12101710
– ident: ref28
  doi: 10.3390/s19204557
– ident: ref8
  doi: 10.1088/1741-2552/ad184f
– ident: ref13
  doi: 10.1016/j.heliyon.2024.e28716
– ident: ref36
  doi: 10.1007/978-3-319-16178-5_41
– ident: ref17
  doi: 10.3389/fnins.2021.783539
– ident: ref44
  doi: 10.1109/ICASSP.2018.8462492
– ident: ref10
  doi: 10.1109/EMB-M.2006.250500
– ident: ref14
  doi: 10.1109/10.204774
– ident: ref24
  doi: 10.2478/pjbr-2013-0009
– ident: ref42
  doi: 10.48550/ARXIV.1706.03762
– ident: ref35
  doi: 10.1016/j.ifacol.2019.09.129
– ident: ref1
  doi: 10.1016/j.apmr.2007.11.005
– ident: ref7
  doi: 10.1088/1741-2552/ab673f
– ident: ref19
  doi: 10.3389/fnbot.2021.692183
– ident: ref32
  doi: 10.3389/fnbot.2017.00051
– ident: ref34
  doi: 10.1109/TBME.2003.813539
– ident: ref27
  doi: 10.1016/j.jelekin.2015.06.010
– ident: ref18
  doi: 10.1186/s12984-016-0212-z
– ident: ref21
  doi: 10.1049/iet-csr.2020.0008
– ident: ref23
  doi: 10.1109/JSEN.2023.3266872
– ident: ref6
  doi: 10.1142/S0219843612500077
– ident: ref3
  doi: 10.1109/ACCESS.2019.2891350
– ident: ref26
  doi: 10.1109/TBME.2013.2287245
– ident: ref22
  doi: 10.1109/TII.2017.2779814
SSID ssj0007647
Score 2.4356322
Snippet Surface-electromyogram-based pattern recognition (sEMG-PR) is considered as a promising intuitive control method for multifunctional prostheses. However,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Control methods
Control systems
Dynamic control
Dynamics
Electromyography
Force
Force myography (FMG)
Gesture recognition
Hands
Information systems
Motors
Muscles
Muscular function
Pattern recognition
Prostheses
Sensors
Steady-state
steady-state signals
surface electromyogram (sEMG)
Transient analysis
transient signals
Title A Novel sEMG-FMG Combined Sensor Fusion Approach Based on an Attention-Driven CNN for Dynamic Hand Gesture Recognition
URI https://ieeexplore.ieee.org/document/10935808
https://www.proquest.com/docview/3218512764
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VpErl0AcFdSmtfOiFg5fYm8TxcQvsbittDhQkblFsTy6gpNpN9tBfzzhOKtoKqbfISqLEM575PnseAF_QqApJWTj5csnjDAUnNxxxlVQiNWUaK-0TnNd5urqNv98ld0Oyep8Lg4h98BlO_WV_lu8a2_mtsnMRTu2yPdgj5haStX6bXZXGoUCmoBVMsGA8k4z0-c23NTFBmUzJucpMiD98UN9U5R9L3LuXxRvIxw8LUSX30641U_vrr5qN__3lb-H1ADTZPGjGO3iB9SEcPCk_eAgv-_BPu30PuznLmx0-sO3VeskX6yUjO0GcGR37QTy32bBF57fV2HwoQc6-kvdzjEZKGmzbEDTJLzfeeLKLPGcEhtllaHfPVmXt2JL-utsgux5Dlpr6CG4XVzcXKz50ZOBWxqrlSexKI43I0kirqkyMdNqq0vq-foaAiTOuxCwlTuck4ZykmmEaWe2criphMzs7hv26qfEDMC3NzMUOtXAq1iYx1ihZVgorIkTW2AmcjTIqfobCG0VPWCJdkDwLL89ikOcEjvyUP7kvzPYETkepFsPS3BYzAjWEckhdTp557CO88m8PGy2nsN9uOvxE0KM1n3uVewRUatSK
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIkQ58CitWCjgAxw4eBt7kzg-9LB0uw_a5ABbqbcQPyIhIEG7SVH5L_yV_jYmcVIVEMdK3CLLSaSZT_N9Y4_HAK-sErlFsFDkck79yDKKNOxREeQsVFnoC9kccI6TcH7qvzsLzjbg59VZGGttW3xmh81ju5dvSl03S2X7zO3aRV0N5bG9-I4Z2vpgMUF3vuZ8erQ8nNPuEgGquS8qGvgmU1yxKPSkyLNAcSO1yHRzFZ1CLjXKZDYKMQ0xHKk5yEc29LQ0RuY505Ee4XdvwW0UGgF3x8OuAr0IfdeSk2HMQCHS74J6cn-5iDH35MEQ6ZxHjP3Geu01Ln_F_pbQpg_gsjeFq2P5PKwrNdQ__ugS-d_a6iHc76Q0GTvsP4INW2zDvWsNFrfhTlvgqteP4XxMkvLcfiHro3hGp_GMYCRUONOQD5jJlysyrZuFQzLumqyTt8jvhuBIhoNV5cpC6WTV0AM5TBKCcp9MLors6ydN5llhyAytXK8sed8XZZXFDpzeiAl2YbMoC_sEiORqZHxjJTPClypQWgme5cLmmPJppQfwpsdE-s21FknblMyTKeInbfCTdvgZwE7j4mvznHcHsNejKO2CzzodoWxDHYfwfPqP117C3fkyPklPFsnxM9hq_uSWlfZgs1rV9jkKrUq9aOFO4ONNY-YXvOozuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+sEMG-FMG+Combined+Sensor+Fusion+Approach+Based+on+an+Attention-Driven+CNN+for+Dynamic+Hand+Gesture+Recognition&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Oyemakinde%2C+Tolulope+Tofunmi&rft.au=Kulwa%2C+Frank&rft.au=Peng%2C+Xinhao&rft.au=Liu%2C+Yan&rft.date=2025&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTIM.2025.3552811&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2025_3552811
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon