Improving the photocatalytic performance of graphene–TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact
Incessant interest has been shown in the synthesis of graphene (GR)-semiconductor nanocomposites as photocatalysts aiming to utilize the excellent electron conductivity of GR to lengthen the lifetime of photoexcited charge carriers in the semiconductor and, hence, improve the photoactivity. However,...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 14; no. 25; pp. 9167 - 9175 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
07.07.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Incessant interest has been shown in the synthesis of graphene (GR)-semiconductor nanocomposites as photocatalysts aiming to utilize the excellent electron conductivity of GR to lengthen the lifetime of photoexcited charge carriers in the semiconductor and, hence, improve the photoactivity. However, research works focused on investigating how to make sufficient use of the unique electron conductivity of GR to design a more efficient GR-semiconductor photocatalyst have been quite lacking. Here, we show a proof-of-concept study on improving the photocatalytic performance of GR-TiO(2) nanocomposites via a combined strategy of decreasing defects of GR and improving the interfacial contact between GR and the semiconductor TiO(2). The GR-TiO(2) nanocomposite fabricated by this approach is able to make more sufficient use of the electron conductivity of GR, by which the lifetime and transfer of photoexcited charge carriers of GR-TiO(2) upon visible light irradiation will be improved more efficiently. This in turn leads to the enhancement of visible-light-driven photoactivity of GR-TiO(2) toward selective transformation of alcohols to corresponding aldehydes using molecular oxygen as a benign oxidant under ambient conditions. It is anticipated that our current work would inform ongoing efforts to exploit the rational design of smart, more efficient GR-semiconductor photocatalysts for conversion of solar to chemical energy by heterogeneous photocatalysis. |
---|---|
AbstractList | Incessant interest has been shown in the synthesis of graphene (GR)-semiconductor nanocomposites as photocatalysts aiming to utilize the excellent electron conductivity of GR to lengthen the lifetime of photoexcited charge carriers in the semiconductor and, hence, improve the photoactivity. However, research works focused on investigating how to make sufficient use of the unique electron conductivity of GR to design a more efficient GR-semiconductor photocatalyst have been quite lacking. Here, we show a proof-of-concept study on improving the photocatalytic performance of GR-TiO(2) nanocomposites via a combined strategy of decreasing defects of GR and improving the interfacial contact between GR and the semiconductor TiO(2). The GR-TiO(2) nanocomposite fabricated by this approach is able to make more sufficient use of the electron conductivity of GR, by which the lifetime and transfer of photoexcited charge carriers of GR-TiO(2) upon visible light irradiation will be improved more efficiently. This in turn leads to the enhancement of visible-light-driven photoactivity of GR-TiO(2) toward selective transformation of alcohols to corresponding aldehydes using molecular oxygen as a benign oxidant under ambient conditions. It is anticipated that our current work would inform ongoing efforts to exploit the rational design of smart, more efficient GR-semiconductor photocatalysts for conversion of solar to chemical energy by heterogeneous photocatalysis. Incessant interest has been shown in the synthesis of graphene (GR)-semiconductor nanocomposites as photocatalysts aiming to utilize the excellent electron conductivity of GR to lengthen the lifetime of photoexcited charge carriers in the semiconductor and, hence, improve the photoactivity. However, research works focused on investigating how to make sufficient use of the unique electron conductivity of GR to design a more efficient GR-semiconductor photocatalyst have been quite lacking. Here, we show a proof-of-concept study on improving the photocatalytic performance of GR-TiO(2) nanocomposites via a combined strategy of decreasing defects of GR and improving the interfacial contact between GR and the semiconductor TiO(2). The GR-TiO(2) nanocomposite fabricated by this approach is able to make more sufficient use of the electron conductivity of GR, by which the lifetime and transfer of photoexcited charge carriers of GR-TiO(2) upon visible light irradiation will be improved more efficiently. This in turn leads to the enhancement of visible-light-driven photoactivity of GR-TiO(2) toward selective transformation of alcohols to corresponding aldehydes using molecular oxygen as a benign oxidant under ambient conditions. It is anticipated that our current work would inform ongoing efforts to exploit the rational design of smart, more efficient GR-semiconductor photocatalysts for conversion of solar to chemical energy by heterogeneous photocatalysis.Incessant interest has been shown in the synthesis of graphene (GR)-semiconductor nanocomposites as photocatalysts aiming to utilize the excellent electron conductivity of GR to lengthen the lifetime of photoexcited charge carriers in the semiconductor and, hence, improve the photoactivity. However, research works focused on investigating how to make sufficient use of the unique electron conductivity of GR to design a more efficient GR-semiconductor photocatalyst have been quite lacking. Here, we show a proof-of-concept study on improving the photocatalytic performance of GR-TiO(2) nanocomposites via a combined strategy of decreasing defects of GR and improving the interfacial contact between GR and the semiconductor TiO(2). The GR-TiO(2) nanocomposite fabricated by this approach is able to make more sufficient use of the electron conductivity of GR, by which the lifetime and transfer of photoexcited charge carriers of GR-TiO(2) upon visible light irradiation will be improved more efficiently. This in turn leads to the enhancement of visible-light-driven photoactivity of GR-TiO(2) toward selective transformation of alcohols to corresponding aldehydes using molecular oxygen as a benign oxidant under ambient conditions. It is anticipated that our current work would inform ongoing efforts to exploit the rational design of smart, more efficient GR-semiconductor photocatalysts for conversion of solar to chemical energy by heterogeneous photocatalysis. |
Author | Zhang, Yanhui Xu, Yi-Jun Tang, Zi-Rong Zhang, Nan |
Author_xml | – sequence: 1 givenname: Yanhui surname: Zhang fullname: Zhang, Yanhui – sequence: 2 givenname: Nan surname: Zhang fullname: Zhang, Nan – sequence: 3 givenname: Zi-Rong surname: Tang fullname: Tang, Zi-Rong – sequence: 4 givenname: Yi-Jun surname: Xu fullname: Xu, Yi-Jun |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26036372$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22644332$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1qHDEQhUWwiX-STQ4QtAmYwNj66-7pZTD5MRi8sddNdXVpRqFb6kgaw-xyhxwi9_JJosFjO4SsShTfew-9OmEHPnhi7J0U51Lo9gIVzkZqucRX7FiaWi9asTQHz--mPmInKX0XQshK6tfsSKnaGK3VMft9Nc0x3Du_4nlNfF6HHBAyjNvskM8UbYgTeCQeLF9FmNfk6eHnr1t3o7gHHzBMc0guU-L3Djjwsuidp4GnHCHTartTDoSRIO1iBrKEOf3tx8EP3PlnxPlcggEdjMXOZ8D8hh1aGBO93c9Tdvfl8-3lt8X1zdery0_XC1SmyQvdmLrWRrVUVxX0FuoGqqFV1NuqISmNstCiFpWWKNpKmXawtkGBPSqxrECfsrNH39LKjw2l3E0uIY0jeAqb1EmhhDCNMaqg7_fopp9o6OboJojb7qncAnzYA5AQRhtLjy69cLXQtW52nHjkMIaUItkOXYbsys8juLFkdrs7dy93LpKP_0ieXP8D_wHkXKzy |
CitedBy_id | crossref_primary_10_1002_slct_201902646 crossref_primary_10_1021_nn405242t crossref_primary_10_1016_j_ultsonch_2019_104657 crossref_primary_10_1016_j_cattod_2018_07_016 crossref_primary_10_1016_j_arabjc_2016_07_007 crossref_primary_10_1016_j_jece_2015_02_016 crossref_primary_10_1016_j_cattod_2018_11_006 crossref_primary_10_1038_s41598_017_01124_5 crossref_primary_10_3390_nano3030325 crossref_primary_10_1007_s40090_019_0173_8 crossref_primary_10_1016_j_carbon_2013_02_020 crossref_primary_10_1016_j_apcatb_2015_07_009 crossref_primary_10_1007_s12274_015_0824_9 crossref_primary_10_1016_j_ceramint_2016_05_033 crossref_primary_10_1021_jacs_6b09598 crossref_primary_10_1039_D1QM00593F crossref_primary_10_1016_j_jece_2023_111532 crossref_primary_10_1016_j_envres_2023_116181 crossref_primary_10_1002_smll_201600382 crossref_primary_10_1016_j_jssc_2020_121646 crossref_primary_10_1016_j_ceramint_2019_11_040 crossref_primary_10_1039_C7CP00630F crossref_primary_10_1039_c2nr31480k crossref_primary_10_1039_C5TA02516H crossref_primary_10_1016_j_apcatb_2013_08_030 crossref_primary_10_1016_j_cej_2018_05_107 crossref_primary_10_1039_C4NR06435F crossref_primary_10_1016_j_apcatb_2017_12_032 crossref_primary_10_1002_cnma_201700369 crossref_primary_10_1016_j_apsusc_2015_02_162 crossref_primary_10_1016_j_ijhydene_2019_07_085 crossref_primary_10_1039_C7CP05378A crossref_primary_10_1007_s10854_016_6150_5 crossref_primary_10_1021_acsami_5b00682 crossref_primary_10_1016_j_apcatb_2013_04_059 crossref_primary_10_1016_j_matchemphys_2016_10_045 crossref_primary_10_1039_c3nr00476g crossref_primary_10_1016_j_apcata_2013_04_007 crossref_primary_10_1016_j_apcatb_2015_05_052 crossref_primary_10_1111_jace_13174 crossref_primary_10_1039_C5TA04203H crossref_primary_10_1016_j_apsusc_2022_155398 crossref_primary_10_1021_la4048566 crossref_primary_10_1021_jp400550t crossref_primary_10_1016_j_apcatb_2014_11_035 crossref_primary_10_3390_nano11082021 crossref_primary_10_1021_acs_iecr_6b00792 crossref_primary_10_3390_su13147685 crossref_primary_10_1016_j_cartre_2022_100213 crossref_primary_10_1088_1361_6463_ac036c crossref_primary_10_1016_j_jelechem_2018_10_037 crossref_primary_10_1016_j_cattod_2017_01_001 crossref_primary_10_1039_c3cp43720e crossref_primary_10_1016_j_nanoen_2018_08_058 crossref_primary_10_1016_j_ijhydene_2016_08_063 crossref_primary_10_1039_c3nr03051b crossref_primary_10_1039_c3ta12272g crossref_primary_10_1021_jp303503c crossref_primary_10_1021_ja411651e crossref_primary_10_1016_j_mssp_2014_04_007 crossref_primary_10_1016_j_mssp_2015_06_012 crossref_primary_10_1016_j_molcata_2016_10_026 crossref_primary_10_1016_j_apcatb_2017_12_071 crossref_primary_10_1007_s11051_020_05097_x crossref_primary_10_1039_D0RA02874F crossref_primary_10_1155_2014_141368 crossref_primary_10_1016_j_apcatb_2013_07_047 crossref_primary_10_1016_S2095_4956_14_60186_8 crossref_primary_10_20964_2021_09_19 crossref_primary_10_1016_j_ijhydene_2013_09_109 crossref_primary_10_1039_C9RA02634G crossref_primary_10_1021_am302074p crossref_primary_10_1016_j_ijhydene_2018_12_095 crossref_primary_10_1021_acsami_9b22418 crossref_primary_10_1039_c3ee23586f crossref_primary_10_1016_j_jtice_2022_104529 crossref_primary_10_1002_adma_201301207 crossref_primary_10_1039_C6RA02002J crossref_primary_10_1016_j_apcatb_2017_12_067 crossref_primary_10_1016_j_jiec_2018_03_019 crossref_primary_10_1021_acsami_5b10298 crossref_primary_10_1039_c3ra41388h crossref_primary_10_1016_j_ceramint_2021_11_140 crossref_primary_10_1039_C5CP04073F crossref_primary_10_1021_sc5001176 crossref_primary_10_1039_C4NR05879H crossref_primary_10_1007_s10854_018_9393_5 crossref_primary_10_1021_am502322y crossref_primary_10_1186_s11671_016_1718_9 crossref_primary_10_1016_j_jallcom_2013_08_062 crossref_primary_10_1016_j_molcata_2014_04_029 crossref_primary_10_1039_c4ra01190b crossref_primary_10_1016_j_jallcom_2021_158598 crossref_primary_10_1039_C3CP52457D crossref_primary_10_1039_c3cy00004d crossref_primary_10_1016_j_nantod_2016_05_008 crossref_primary_10_1016_j_apsusc_2018_06_222 crossref_primary_10_1021_jp507173a crossref_primary_10_1039_c3ce27021a crossref_primary_10_1039_c3ce40513c crossref_primary_10_1016_j_jhazmat_2013_02_053 crossref_primary_10_1016_j_seppur_2016_05_040 crossref_primary_10_1016_S2095_4956_15_60295_9 crossref_primary_10_1039_C5TA00291E crossref_primary_10_1002_slct_201902593 crossref_primary_10_1016_j_compositesb_2017_12_006 crossref_primary_10_1016_S1872_2067_12_60530_0 crossref_primary_10_1007_s11581_021_03982_6 crossref_primary_10_1039_c3cp53325e crossref_primary_10_1021_am4010286 crossref_primary_10_1039_c3cp55038a crossref_primary_10_1039_c3ta12329d crossref_primary_10_1021_la4020493 crossref_primary_10_1039_C4RA06026A crossref_primary_10_1039_C5RA21364A crossref_primary_10_1039_C7TA08415C crossref_primary_10_1016_j_ces_2013_08_004 crossref_primary_10_1002_cctc_201600387 crossref_primary_10_1016_j_colsurfa_2023_132171 crossref_primary_10_1016_j_memsci_2014_01_011 crossref_primary_10_1039_C5NR01881A crossref_primary_10_1016_j_jssc_2013_07_015 crossref_primary_10_3390_catal8020057 crossref_primary_10_1021_acs_chemrev_5b00267 crossref_primary_10_1142_S1793604713500628 crossref_primary_10_1021_acsami_7b18087 crossref_primary_10_1016_j_jcis_2013_07_045 crossref_primary_10_1016_j_apcatb_2017_10_021 crossref_primary_10_1039_C4CS00056K crossref_primary_10_1039_C6RA01623E crossref_primary_10_1016_j_apcata_2016_04_034 crossref_primary_10_1016_j_renene_2017_06_042 crossref_primary_10_1016_j_cej_2019_02_035 crossref_primary_10_1016_j_jallcom_2016_05_189 crossref_primary_10_1016_j_jallcom_2015_09_241 crossref_primary_10_1002_cssc_201801827 crossref_primary_10_3390_ijms16011590 crossref_primary_10_1016_j_apcata_2012_12_023 crossref_primary_10_1016_j_apsusc_2017_03_220 crossref_primary_10_1016_j_jece_2020_104551 crossref_primary_10_1016_j_jallcom_2016_01_047 crossref_primary_10_1039_C3RA46383D crossref_primary_10_1039_D3NJ03799A crossref_primary_10_1002_adfm_201401279 crossref_primary_10_1016_j_apsusc_2020_146194 crossref_primary_10_1016_j_jtice_2023_104734 crossref_primary_10_1021_am503244w crossref_primary_10_1039_C8QI00122G crossref_primary_10_3390_app9050855 crossref_primary_10_1016_j_apcata_2013_09_024 crossref_primary_10_1016_j_cej_2016_04_024 crossref_primary_10_1063_1_5011356 crossref_primary_10_3390_catal6080111 crossref_primary_10_1016_j_carbon_2013_07_006 crossref_primary_10_1039_c3nr03372d crossref_primary_10_1007_s10853_018_2210_y crossref_primary_10_3390_catal12121554 crossref_primary_10_1039_C4DT01702A crossref_primary_10_1039_C6RA14858A crossref_primary_10_1039_C5CS00064E crossref_primary_10_1021_acsanm_1c03387 crossref_primary_10_1002_tcr_201500279 crossref_primary_10_1021_jz300491s crossref_primary_10_1016_j_apsusc_2020_148029 crossref_primary_10_1021_jp408400c crossref_primary_10_1016_j_pmatsci_2018_07_006 crossref_primary_10_1016_j_apsusc_2017_08_194 crossref_primary_10_1016_j_cplett_2017_10_060 crossref_primary_10_1016_j_jallcom_2016_07_133 crossref_primary_10_1021_acsami_2c21235 crossref_primary_10_3389_fchem_2018_00632 crossref_primary_10_1007_s11051_016_3596_6 crossref_primary_10_1002_adfm_201203547 crossref_primary_10_1021_jp512797t crossref_primary_10_1002_cssc_201200480 crossref_primary_10_1039_C4TA02670E crossref_primary_10_1016_j_apcatb_2014_04_007 crossref_primary_10_1016_j_apcatb_2015_01_004 crossref_primary_10_1021_am3029798 crossref_primary_10_1016_j_conbuildmat_2024_135066 crossref_primary_10_1016_j_apsusc_2021_150077 crossref_primary_10_1039_c3nr02682e crossref_primary_10_1002_solr_201900577 crossref_primary_10_1039_C8RA02237B crossref_primary_10_1557_jmr_2019_342 crossref_primary_10_1002_cphc_202100873 crossref_primary_10_1088_2053_1591_ab689d crossref_primary_10_1002_slct_201702430 crossref_primary_10_1016_j_carbon_2018_03_025 crossref_primary_10_1039_C9NR06760D crossref_primary_10_1039_C3TA13892E crossref_primary_10_1016_j_watres_2015_04_038 crossref_primary_10_1039_C7RA09135D crossref_primary_10_1039_c4nr01227e crossref_primary_10_1021_jp405207e crossref_primary_10_1039_c3ta12061a crossref_primary_10_1142_S1793292020500186 crossref_primary_10_1016_j_ijhydene_2017_06_024 crossref_primary_10_1016_S2095_4956_14_60129_7 crossref_primary_10_1002_er_8087 crossref_primary_10_1039_C5NR03338A crossref_primary_10_1002_adsu_201700006 crossref_primary_10_1039_c3ta10981j crossref_primary_10_1039_C4RA03866E crossref_primary_10_1002_aenm_201500010 crossref_primary_10_1039_C4TA05900J crossref_primary_10_1039_C6GC02856J crossref_primary_10_1016_j_apsusc_2014_07_038 crossref_primary_10_1016_j_jmrt_2019_10_020 crossref_primary_10_1021_acs_chemrev_8b00400 crossref_primary_10_1039_C4CS00213J crossref_primary_10_1007_s11237_019_09591_9 crossref_primary_10_1016_j_flatc_2020_100180 crossref_primary_10_3390_nano8020105 crossref_primary_10_1016_j_jallcom_2016_11_366 crossref_primary_10_1002_cjoc_201900188 crossref_primary_10_1016_j_apcatb_2016_11_012 crossref_primary_10_1177_1847980417724046 crossref_primary_10_1039_c3nr04655a crossref_primary_10_1007_s12274_014_0514_z crossref_primary_10_1021_acsnano_8b06136 crossref_primary_10_1016_j_apsusc_2020_145451 crossref_primary_10_1016_j_ijhydene_2013_10_077 crossref_primary_10_1007_s10853_013_7474_7 crossref_primary_10_1039_C5CE01712B crossref_primary_10_2166_ws_2019_154 crossref_primary_10_1016_j_ijhydene_2017_02_091 crossref_primary_10_1002_adfm_202002528 crossref_primary_10_1016_j_apsusc_2018_01_282 crossref_primary_10_1039_c3dt51498f crossref_primary_10_1021_acs_jpcb_7b05518 crossref_primary_10_1039_c3cp53070a crossref_primary_10_1016_j_ceramint_2017_11_214 crossref_primary_10_1016_j_materresbull_2012_11_045 crossref_primary_10_1021_acs_chemmater_5b02131 crossref_primary_10_1039_C7RA05770A crossref_primary_10_1002_cctc_201800172 crossref_primary_10_1038_s41598_018_26447_9 crossref_primary_10_1016_j_physe_2017_02_022 crossref_primary_10_1039_C7CY00366H crossref_primary_10_1039_c2cp43524a crossref_primary_10_1155_2013_456586 crossref_primary_10_1007_s12598_018_1064_4 crossref_primary_10_1016_j_ceramint_2019_09_232 crossref_primary_10_1016_j_surfin_2024_104150 crossref_primary_10_1021_ie5027088 crossref_primary_10_1016_j_apsusc_2015_01_191 crossref_primary_10_1016_j_catcom_2012_12_018 crossref_primary_10_1007_s11581_024_05843_4 crossref_primary_10_1016_j_jcat_2012_11_021 crossref_primary_10_1016_j_jcat_2013_02_026 crossref_primary_10_1016_j_matchemphys_2019_121906 crossref_primary_10_1039_D4SU00531G crossref_primary_10_1021_nn304154s crossref_primary_10_1039_c4nr00116h crossref_primary_10_1039_C5CC02704G |
Cites_doi | 10.1039/c1jm10100e 10.1021/nn900227d 10.1021/es800191n 10.1021/jz900265j 10.1021/nn102130m 10.1002/adma.200802738 10.1021/am3001852 10.1021/nn9014483 10.1016/j.apcatb.2010.10.007 10.1002/anie.200803630 10.1016/j.apcatb.2004.09.018 10.1021/cm981085u 10.1021/nn901221k 10.1039/c1ra00382h 10.1021/nn102767d 10.1039/C1CS15172J 10.1039/C0EE00295J 10.1021/nl9035109 10.1021/nn1007429 10.1021/nl2012906 10.1039/c2jm15009c 10.1021/ja8057327 10.1016/j.carbon.2010.10.010 10.1021/ja01539a017 10.1021/ja203296z 10.1126/science.1150878 10.1038/nchem.907 10.1039/b917240h 10.1021/ja1072299 10.1021/nn700349a 10.1021/jp205821b 10.1021/ja105089w 10.1021/nn202625c 10.1007/s10853-010-5116-x 10.1021/ja2025454 10.1021/cr900070d 10.1021/jp2008804 10.1039/C0NJ00623H 10.1016/j.apcata.2005.04.057 10.1021/jp2023617 10.1021/nn202519j 10.1021/nn1024219 10.1021/jp200953k 10.1039/c0ee00683a 10.1021/jp909855p 10.1021/jz201000a 10.1021/nn900150y 10.1039/c0cs00079e 10.1021/jp103472c 10.1126/science.1136836 10.1038/nature04969 10.1021/jp906325q |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW NPM 7X8 |
DOI | 10.1039/c2cp41318c |
DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 9175 |
ExternalDocumentID | 22644332 26036372 10_1039_c2cp41318c |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 0-7 0R~ 0UZ 123 1TJ 29O 2WC 4.4 53G 6TJ 705 70~ 71~ 7~J 87K 9M8 AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACLDK ACNCT ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C6K CAG CITATION COF CS3 D0L DU5 EBS ECGLT EE0 EEHRC EF- EJD F5P FEDTE GGIMP GNO H13 HVGLF HZ~ H~9 H~N IDY IDZ J3G J3H J3I L-8 M4U MVM N9A NDZJH NHB O9- P2P R56 R7B R7C RAOCF RCLXC RCNCU RIG RNS ROL RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UHB VH6 WH7 XJT XOL YNT ZCG IQODW -JG AGSTE NPM OK1 UCJ 7X8 |
ID | FETCH-LOGICAL-c247t-374663429e655abfa67a5d92ebf57e1142fa9c30531c095249dff7c0cbc2085a3 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Fri Jul 11 09:48:59 EDT 2025 Wed Feb 19 01:51:20 EST 2025 Mon Jul 21 09:14:56 EDT 2025 Thu Apr 24 22:51:38 EDT 2025 Tue Jul 01 02:53:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | Binary compound Oxygen Semiconductor materials Photocatalysis Transition element compounds Conductivity Alcohol Oxidant Aldehyde Conversion Design Lifetime Synthesis Solar energy Defect Nanocomposite Titanium oxide Interface Electrons |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c247t-374663429e655abfa67a5d92ebf57e1142fa9c30531c095249dff7c0cbc2085a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22644332 |
PQID | 1020047442 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1020047442 pubmed_primary_22644332 pascalfrancis_primary_26036372 crossref_citationtrail_10_1039_c2cp41318c crossref_primary_10_1039_c2cp41318c |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-Jul-07 |
PublicationDateYYYYMMDD | 2012-07-07 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-Jul-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge – name: England |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2012 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Guo (c2cp41318c-(cit13)/*[position()=1]) 2011; 40 Xiang (c2cp41318c-(cit29)/*[position()=1]) 2010; 115 Zhang (c2cp41318c-(cit28)/*[position()=1]) 2011; 46 Zhang (c2cp41318c-(cit17)/*[position()=1]) 2010; 4 Bekyarova (c2cp41318c-(cit14)/*[position()=1]) 2009; 131 Bunch (c2cp41318c-(cit7)/*[position()=1]) 2007; 315 Hummers (c2cp41318c-(cit35)/*[position()=1]) 1958; 80 Yao (c2cp41318c-(cit41)/*[position()=1]) 2008; 42 Du (c2cp41318c-(cit20)/*[position()=1]) 2011; 5 Zhang (c2cp41318c-(cit16)/*[position()=1]) 2010; 4 Zhang (c2cp41318c-(cit52)/*[position()=1]) 2012; 22 Pumera (c2cp41318c-(cit2)/*[position()=1]) 2011; 4 Lightcap (c2cp41318c-(cit4)/*[position()=1]) 2010; 10 Chen (c2cp41318c-(cit19)/*[position()=1]) 2010; 4 An (c2cp41318c-(cit21)/*[position()=1]) 2011; 1 Ruan (c2cp41318c-(cit10)/*[position()=1]) 2011; 5 Iwase (c2cp41318c-(cit30)/*[position()=1]) 2011; 133 Liang (c2cp41318c-(cit18)/*[position()=1]) 2011; 11 Kamat (c2cp41318c-(cit5)/*[position()=1]) 2010; 1 Zhang (c2cp41318c-(cit49)/*[position()=1]) 2008; 47 Zhang (c2cp41318c-(cit32)/*[position()=1]) 2011; 5 Zhang (c2cp41318c-(cit24)/*[position()=1]) 2010; 20 Zhang (c2cp41318c-(cit48)/*[position()=1]) 2011; 115 Akhavan (c2cp41318c-(cit45)/*[position()=1]) 2010; 114 Zhou (c2cp41318c-(cit26)/*[position()=1]) 2011; 35 Stankovich (c2cp41318c-(cit6)/*[position()=1]) 2006; 442 Kovtyukhova (c2cp41318c-(cit36)/*[position()=1]) 1999; 11 Li (c2cp41318c-(cit8)/*[position()=1]) 2008; 319 Guo (c2cp41318c-(cit11)/*[position()=1]) 2010; 4 Xu (c2cp41318c-(cit40)/*[position()=1]) 2010; 114 Worsley (c2cp41318c-(cit15)/*[position()=1]) 2010; 132 Xu (c2cp41318c-(cit31)/*[position()=1]) 2011; 101 Park (c2cp41318c-(cit9)/*[position()=1]) 2008; 2 Jia (c2cp41318c-(cit37)/*[position()=1]) 2011; 115 Akhavan (c2cp41318c-(cit44)/*[position()=1]) 2010; 4 Leary (c2cp41318c-(cit39)/*[position()=1]) 2011; 49 Tang (c2cp41318c-(cit51)/*[position()=1]) 2012; 4 Jahan (c2cp41318c-(cit34)/*[position()=1]) 2010; 132 Xiang (c2cp41318c-(cit22)/*[position()=1]) 2012; 41 Loh (c2cp41318c-(cit33)/*[position()=1]) 2010; 2 Allen (c2cp41318c-(cit1)/*[position()=1]) 2010; 110 Zhang (c2cp41318c-(cit50)/*[position()=1]) 2011; 21 Wang (c2cp41318c-(cit43)/*[position()=1]) 2005; 56 Wang (c2cp41318c-(cit46)/*[position()=1]) 2009; 3 Fan (c2cp41318c-(cit23)/*[position()=1]) 2011; 115 Sun (c2cp41318c-(cit3)/*[position()=1]) 2011; 4 Akhavan (c2cp41318c-(cit25)/*[position()=1]) 2009; 113 Sun (c2cp41318c-(cit12)/*[position()=1]) 2011; 2 Li (c2cp41318c-(cit27)/*[position()=1]) 2011; 133 Woan (c2cp41318c-(cit38)/*[position()=1]) 2009; 21 Guo (c2cp41318c-(cit47)/*[position()=1]) 2009; 3 Yu (c2cp41318c-(cit42)/*[position()=1]) 2005; 289 |
References_xml | – volume: 21 start-page: 8152 year: 2011 ident: c2cp41318c-(cit50)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c1jm10100e – volume: 3 start-page: 2653 year: 2009 ident: c2cp41318c-(cit47)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn900227d – volume: 42 start-page: 4952 year: 2008 ident: c2cp41318c-(cit41)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/es800191n – volume: 1 start-page: 520 year: 2010 ident: c2cp41318c-(cit5)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz900265j – volume: 4 start-page: 6425 year: 2010 ident: c2cp41318c-(cit19)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn102130m – volume: 21 start-page: 2233 year: 2009 ident: c2cp41318c-(cit38)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200802738 – volume: 4 start-page: 1512 year: 2012 ident: c2cp41318c-(cit51)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am3001852 – volume: 4 start-page: 547 year: 2010 ident: c2cp41318c-(cit11)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn9014483 – volume: 101 start-page: 382 year: 2011 ident: c2cp41318c-(cit31)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2010.10.007 – volume: 47 start-page: 9730 year: 2008 ident: c2cp41318c-(cit49)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200803630 – volume: 56 start-page: 305 year: 2005 ident: c2cp41318c-(cit43)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2004.09.018 – volume: 11 start-page: 771 year: 1999 ident: c2cp41318c-(cit36)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm981085u – volume: 4 start-page: 380 year: 2010 ident: c2cp41318c-(cit17)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn901221k – volume: 1 start-page: 1426 year: 2011 ident: c2cp41318c-(cit21)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/c1ra00382h – volume: 5 start-page: 590 year: 2011 ident: c2cp41318c-(cit20)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn102767d – volume: 41 start-page: 782 year: 2012 ident: c2cp41318c-(cit22)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15172J – volume: 4 start-page: 668 year: 2011 ident: c2cp41318c-(cit2)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C0EE00295J – volume: 10 start-page: 577 year: 2010 ident: c2cp41318c-(cit4)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl9035109 – volume: 4 start-page: 4174 year: 2010 ident: c2cp41318c-(cit44)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn1007429 – volume: 11 start-page: 2865 year: 2011 ident: c2cp41318c-(cit18)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl2012906 – volume: 22 start-page: 5042 year: 2012 ident: c2cp41318c-(cit52)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm15009c – volume: 131 start-page: 1336 year: 2009 ident: c2cp41318c-(cit14)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8057327 – volume: 49 start-page: 741 year: 2011 ident: c2cp41318c-(cit39)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2010.10.010 – volume: 80 start-page: 1339 year: 1958 ident: c2cp41318c-(cit35)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01539a017 – volume: 133 start-page: 11054 year: 2011 ident: c2cp41318c-(cit30)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja203296z – volume: 319 start-page: 1229 year: 2008 ident: c2cp41318c-(cit8)/*[position()=1] publication-title: Science doi: 10.1126/science.1150878 – volume: 2 start-page: 1015 year: 2010 ident: c2cp41318c-(cit33)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.907 – volume: 20 start-page: 2801 year: 2010 ident: c2cp41318c-(cit24)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/b917240h – volume: 132 start-page: 14067 year: 2010 ident: c2cp41318c-(cit15)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1072299 – volume: 2 start-page: 572 year: 2008 ident: c2cp41318c-(cit9)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn700349a – volume: 115 start-page: 22901 year: 2011 ident: c2cp41318c-(cit48)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp205821b – volume: 132 start-page: 14487 year: 2010 ident: c2cp41318c-(cit34)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105089w – volume: 5 start-page: 7601 year: 2011 ident: c2cp41318c-(cit10)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn202625c – volume: 46 start-page: 2622 year: 2011 ident: c2cp41318c-(cit28)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/s10853-010-5116-x – volume: 133 start-page: 10878 year: 2011 ident: c2cp41318c-(cit27)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2025454 – volume: 110 start-page: 132 year: 2010 ident: c2cp41318c-(cit1)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr900070d – volume: 115 start-page: 10694 year: 2011 ident: c2cp41318c-(cit23)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp2008804 – volume: 35 start-page: 353 year: 2011 ident: c2cp41318c-(cit26)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C0NJ00623H – volume: 289 start-page: 186 year: 2005 ident: c2cp41318c-(cit42)/*[position()=1] publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2005.04.057 – volume: 115 start-page: 11466 year: 2011 ident: c2cp41318c-(cit37)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp2023617 – volume: 5 start-page: 7426 year: 2011 ident: c2cp41318c-(cit32)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn202519j – volume: 4 start-page: 7303 year: 2010 ident: c2cp41318c-(cit16)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn1024219 – volume: 115 start-page: 7355 year: 2010 ident: c2cp41318c-(cit29)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp200953k – volume: 4 start-page: 1113 year: 2011 ident: c2cp41318c-(cit3)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00683a – volume: 114 start-page: 2669 year: 2010 ident: c2cp41318c-(cit40)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp909855p – volume: 2 start-page: 2425 year: 2011 ident: c2cp41318c-(cit12)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz201000a – volume: 3 start-page: 907 year: 2009 ident: c2cp41318c-(cit46)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn900150y – volume: 40 start-page: 2644 year: 2011 ident: c2cp41318c-(cit13)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00079e – volume: 114 start-page: 12955 year: 2010 ident: c2cp41318c-(cit45)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp103472c – volume: 315 start-page: 490 year: 2007 ident: c2cp41318c-(cit7)/*[position()=1] publication-title: Science doi: 10.1126/science.1136836 – volume: 442 start-page: 282 year: 2006 ident: c2cp41318c-(cit6)/*[position()=1] publication-title: Nature doi: 10.1038/nature04969 – volume: 113 start-page: 20214 year: 2009 ident: c2cp41318c-(cit25)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp906325q |
SSID | ssj0001513 |
Score | 2.5217483 |
Snippet | Incessant interest has been shown in the synthesis of graphene (GR)-semiconductor nanocomposites as photocatalysts aiming to utilize the excellent electron... |
SourceID | proquest pubmed pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 9167 |
SubjectTerms | Chemistry Exact sciences and technology General and physical chemistry Photochemistry Physical chemistry of induced reactions (with radiations, particles and ultrasonics) Surface physical chemistry |
Title | Improving the photocatalytic performance of graphene–TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22644332 https://www.proquest.com/docview/1020047442 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LitswFBUhs2ihlL6bPgaVdlOC21iyrfHShCmZoU2HkkA6myDLEhModpgkhXbVn-g39K-66Jf0SrJku6T0kYUxQlZM7onuQ-fei9AzIpTizFB1aBGAhoqDPAGBsDzmRRSmRWjImG-myWQenS7iRa_3vcVa2m3zF-Lz3ryS_5EqjIFcdZbsP0jWLwoDcA_yhStIGK5_JeMmImASni6qbWXCMZ90FdZ1KyUALEJTmRo2NsduiGert2RY8rLSrHJN3ZKb4UedoqVp5uAvgyW6saVrzSF8YexLE1kopOeAuFXrIk5-iq5Ccam4icdrNjwXnTOAM4cO4frN2Ts9ZGMtGxOrOBuPff7Z-2w6mZ8MzyfZ1PcDm2bT7sAsszlY56vgXVUrZRhezI2qWQWnu7Id5wgtJ5Z5ZNpoiqOyGqpK_YKt3TtKaADeftLZ3qMWjEnc2qzBMmYtxQ-Oa7xXqYyorskqiFiDxg-PRKM6HV3gF43qeY7gLNKEMjARDgi4MaSPDrLj2clrbyuAvUVt_pt9cVdAl6Yvm-_rmEzX1nwDwlC27crv_SJjH81uoOu1Y4Mzi9KbqCfLW-iK__luo28erRjQirtoxS204kphh6sfX75qnOIuTjHgFHPscIodTvWTDU5xjdP2ehhwihuc4hZOcY3TO2j-6ng2ngR1m5BAkIhtQUVGYDaDXSWTOOa54gnjcZESmauYSZ0rrngqqNY2AhwKEqWFUkyMRC50g1pO76J-WZXyPsIRE6kMBR8paVovpFTAZ5QQXhwxpegAPXeSWIq6hr5u5fJhabgcNF02Uhugp37u2laO2TvrsCNQP9VBZ4CeOAkvQWD6OI-XstptYCW9F7Iogjn3rOibp7WfQyl58KflH6KrzZ_tEepvL3fyMZjZ2_ywxupPnG_d9w |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+photocatalytic+performance+of+graphene%E2%80%95TiO2+nanocomposites+via+a+combined+strategy+of+decreasing+defects+of+graphene+and+increasing+interfacial+contact&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=YANHUI+ZHANG&rft.au=NAN+ZHANG&rft.au=TANG%2C+Zi-Rong&rft.au=XU%2C+Yi-Jun&rft.date=2012-07-07&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9076&rft.volume=14&rft.issue=25&rft.spage=9167&rft.epage=9175&rft_id=info:doi/10.1039%2Fc2cp41318c&rft.externalDBID=n%2Fa&rft.externalDocID=26036372 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |