Improving the photocatalytic performance of graphene–TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact

Incessant interest has been shown in the synthesis of graphene (GR)-semiconductor nanocomposites as photocatalysts aiming to utilize the excellent electron conductivity of GR to lengthen the lifetime of photoexcited charge carriers in the semiconductor and, hence, improve the photoactivity. However,...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 14; no. 25; pp. 9167 - 9175
Main Authors Zhang, Yanhui, Zhang, Nan, Tang, Zi-Rong, Xu, Yi-Jun
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 07.07.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Incessant interest has been shown in the synthesis of graphene (GR)-semiconductor nanocomposites as photocatalysts aiming to utilize the excellent electron conductivity of GR to lengthen the lifetime of photoexcited charge carriers in the semiconductor and, hence, improve the photoactivity. However, research works focused on investigating how to make sufficient use of the unique electron conductivity of GR to design a more efficient GR-semiconductor photocatalyst have been quite lacking. Here, we show a proof-of-concept study on improving the photocatalytic performance of GR-TiO(2) nanocomposites via a combined strategy of decreasing defects of GR and improving the interfacial contact between GR and the semiconductor TiO(2). The GR-TiO(2) nanocomposite fabricated by this approach is able to make more sufficient use of the electron conductivity of GR, by which the lifetime and transfer of photoexcited charge carriers of GR-TiO(2) upon visible light irradiation will be improved more efficiently. This in turn leads to the enhancement of visible-light-driven photoactivity of GR-TiO(2) toward selective transformation of alcohols to corresponding aldehydes using molecular oxygen as a benign oxidant under ambient conditions. It is anticipated that our current work would inform ongoing efforts to exploit the rational design of smart, more efficient GR-semiconductor photocatalysts for conversion of solar to chemical energy by heterogeneous photocatalysis.
AbstractList Incessant interest has been shown in the synthesis of graphene (GR)-semiconductor nanocomposites as photocatalysts aiming to utilize the excellent electron conductivity of GR to lengthen the lifetime of photoexcited charge carriers in the semiconductor and, hence, improve the photoactivity. However, research works focused on investigating how to make sufficient use of the unique electron conductivity of GR to design a more efficient GR-semiconductor photocatalyst have been quite lacking. Here, we show a proof-of-concept study on improving the photocatalytic performance of GR-TiO(2) nanocomposites via a combined strategy of decreasing defects of GR and improving the interfacial contact between GR and the semiconductor TiO(2). The GR-TiO(2) nanocomposite fabricated by this approach is able to make more sufficient use of the electron conductivity of GR, by which the lifetime and transfer of photoexcited charge carriers of GR-TiO(2) upon visible light irradiation will be improved more efficiently. This in turn leads to the enhancement of visible-light-driven photoactivity of GR-TiO(2) toward selective transformation of alcohols to corresponding aldehydes using molecular oxygen as a benign oxidant under ambient conditions. It is anticipated that our current work would inform ongoing efforts to exploit the rational design of smart, more efficient GR-semiconductor photocatalysts for conversion of solar to chemical energy by heterogeneous photocatalysis.
Incessant interest has been shown in the synthesis of graphene (GR)-semiconductor nanocomposites as photocatalysts aiming to utilize the excellent electron conductivity of GR to lengthen the lifetime of photoexcited charge carriers in the semiconductor and, hence, improve the photoactivity. However, research works focused on investigating how to make sufficient use of the unique electron conductivity of GR to design a more efficient GR-semiconductor photocatalyst have been quite lacking. Here, we show a proof-of-concept study on improving the photocatalytic performance of GR-TiO(2) nanocomposites via a combined strategy of decreasing defects of GR and improving the interfacial contact between GR and the semiconductor TiO(2). The GR-TiO(2) nanocomposite fabricated by this approach is able to make more sufficient use of the electron conductivity of GR, by which the lifetime and transfer of photoexcited charge carriers of GR-TiO(2) upon visible light irradiation will be improved more efficiently. This in turn leads to the enhancement of visible-light-driven photoactivity of GR-TiO(2) toward selective transformation of alcohols to corresponding aldehydes using molecular oxygen as a benign oxidant under ambient conditions. It is anticipated that our current work would inform ongoing efforts to exploit the rational design of smart, more efficient GR-semiconductor photocatalysts for conversion of solar to chemical energy by heterogeneous photocatalysis.Incessant interest has been shown in the synthesis of graphene (GR)-semiconductor nanocomposites as photocatalysts aiming to utilize the excellent electron conductivity of GR to lengthen the lifetime of photoexcited charge carriers in the semiconductor and, hence, improve the photoactivity. However, research works focused on investigating how to make sufficient use of the unique electron conductivity of GR to design a more efficient GR-semiconductor photocatalyst have been quite lacking. Here, we show a proof-of-concept study on improving the photocatalytic performance of GR-TiO(2) nanocomposites via a combined strategy of decreasing defects of GR and improving the interfacial contact between GR and the semiconductor TiO(2). The GR-TiO(2) nanocomposite fabricated by this approach is able to make more sufficient use of the electron conductivity of GR, by which the lifetime and transfer of photoexcited charge carriers of GR-TiO(2) upon visible light irradiation will be improved more efficiently. This in turn leads to the enhancement of visible-light-driven photoactivity of GR-TiO(2) toward selective transformation of alcohols to corresponding aldehydes using molecular oxygen as a benign oxidant under ambient conditions. It is anticipated that our current work would inform ongoing efforts to exploit the rational design of smart, more efficient GR-semiconductor photocatalysts for conversion of solar to chemical energy by heterogeneous photocatalysis.
Author Zhang, Yanhui
Xu, Yi-Jun
Tang, Zi-Rong
Zhang, Nan
Author_xml – sequence: 1
  givenname: Yanhui
  surname: Zhang
  fullname: Zhang, Yanhui
– sequence: 2
  givenname: Nan
  surname: Zhang
  fullname: Zhang, Nan
– sequence: 3
  givenname: Zi-Rong
  surname: Tang
  fullname: Tang, Zi-Rong
– sequence: 4
  givenname: Yi-Jun
  surname: Xu
  fullname: Xu, Yi-Jun
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26036372$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22644332$$D View this record in MEDLINE/PubMed
BookMark eNptkU1qHDEQhUWwiX-STQ4QtAmYwNj66-7pZTD5MRi8sddNdXVpRqFb6kgaw-xyhxwi9_JJosFjO4SsShTfew-9OmEHPnhi7J0U51Lo9gIVzkZqucRX7FiaWi9asTQHz--mPmInKX0XQshK6tfsSKnaGK3VMft9Nc0x3Du_4nlNfF6HHBAyjNvskM8UbYgTeCQeLF9FmNfk6eHnr1t3o7gHHzBMc0guU-L3Djjwsuidp4GnHCHTartTDoSRIO1iBrKEOf3tx8EP3PlnxPlcggEdjMXOZ8D8hh1aGBO93c9Tdvfl8-3lt8X1zdery0_XC1SmyQvdmLrWRrVUVxX0FuoGqqFV1NuqISmNstCiFpWWKNpKmXawtkGBPSqxrECfsrNH39LKjw2l3E0uIY0jeAqb1EmhhDCNMaqg7_fopp9o6OboJojb7qncAnzYA5AQRhtLjy69cLXQtW52nHjkMIaUItkOXYbsys8juLFkdrs7dy93LpKP_0ieXP8D_wHkXKzy
CitedBy_id crossref_primary_10_1002_slct_201902646
crossref_primary_10_1021_nn405242t
crossref_primary_10_1016_j_ultsonch_2019_104657
crossref_primary_10_1016_j_cattod_2018_07_016
crossref_primary_10_1016_j_arabjc_2016_07_007
crossref_primary_10_1016_j_jece_2015_02_016
crossref_primary_10_1016_j_cattod_2018_11_006
crossref_primary_10_1038_s41598_017_01124_5
crossref_primary_10_3390_nano3030325
crossref_primary_10_1007_s40090_019_0173_8
crossref_primary_10_1016_j_carbon_2013_02_020
crossref_primary_10_1016_j_apcatb_2015_07_009
crossref_primary_10_1007_s12274_015_0824_9
crossref_primary_10_1016_j_ceramint_2016_05_033
crossref_primary_10_1021_jacs_6b09598
crossref_primary_10_1039_D1QM00593F
crossref_primary_10_1016_j_jece_2023_111532
crossref_primary_10_1016_j_envres_2023_116181
crossref_primary_10_1002_smll_201600382
crossref_primary_10_1016_j_jssc_2020_121646
crossref_primary_10_1016_j_ceramint_2019_11_040
crossref_primary_10_1039_C7CP00630F
crossref_primary_10_1039_c2nr31480k
crossref_primary_10_1039_C5TA02516H
crossref_primary_10_1016_j_apcatb_2013_08_030
crossref_primary_10_1016_j_cej_2018_05_107
crossref_primary_10_1039_C4NR06435F
crossref_primary_10_1016_j_apcatb_2017_12_032
crossref_primary_10_1002_cnma_201700369
crossref_primary_10_1016_j_apsusc_2015_02_162
crossref_primary_10_1016_j_ijhydene_2019_07_085
crossref_primary_10_1039_C7CP05378A
crossref_primary_10_1007_s10854_016_6150_5
crossref_primary_10_1021_acsami_5b00682
crossref_primary_10_1016_j_apcatb_2013_04_059
crossref_primary_10_1016_j_matchemphys_2016_10_045
crossref_primary_10_1039_c3nr00476g
crossref_primary_10_1016_j_apcata_2013_04_007
crossref_primary_10_1016_j_apcatb_2015_05_052
crossref_primary_10_1111_jace_13174
crossref_primary_10_1039_C5TA04203H
crossref_primary_10_1016_j_apsusc_2022_155398
crossref_primary_10_1021_la4048566
crossref_primary_10_1021_jp400550t
crossref_primary_10_1016_j_apcatb_2014_11_035
crossref_primary_10_3390_nano11082021
crossref_primary_10_1021_acs_iecr_6b00792
crossref_primary_10_3390_su13147685
crossref_primary_10_1016_j_cartre_2022_100213
crossref_primary_10_1088_1361_6463_ac036c
crossref_primary_10_1016_j_jelechem_2018_10_037
crossref_primary_10_1016_j_cattod_2017_01_001
crossref_primary_10_1039_c3cp43720e
crossref_primary_10_1016_j_nanoen_2018_08_058
crossref_primary_10_1016_j_ijhydene_2016_08_063
crossref_primary_10_1039_c3nr03051b
crossref_primary_10_1039_c3ta12272g
crossref_primary_10_1021_jp303503c
crossref_primary_10_1021_ja411651e
crossref_primary_10_1016_j_mssp_2014_04_007
crossref_primary_10_1016_j_mssp_2015_06_012
crossref_primary_10_1016_j_molcata_2016_10_026
crossref_primary_10_1016_j_apcatb_2017_12_071
crossref_primary_10_1007_s11051_020_05097_x
crossref_primary_10_1039_D0RA02874F
crossref_primary_10_1155_2014_141368
crossref_primary_10_1016_j_apcatb_2013_07_047
crossref_primary_10_1016_S2095_4956_14_60186_8
crossref_primary_10_20964_2021_09_19
crossref_primary_10_1016_j_ijhydene_2013_09_109
crossref_primary_10_1039_C9RA02634G
crossref_primary_10_1021_am302074p
crossref_primary_10_1016_j_ijhydene_2018_12_095
crossref_primary_10_1021_acsami_9b22418
crossref_primary_10_1039_c3ee23586f
crossref_primary_10_1016_j_jtice_2022_104529
crossref_primary_10_1002_adma_201301207
crossref_primary_10_1039_C6RA02002J
crossref_primary_10_1016_j_apcatb_2017_12_067
crossref_primary_10_1016_j_jiec_2018_03_019
crossref_primary_10_1021_acsami_5b10298
crossref_primary_10_1039_c3ra41388h
crossref_primary_10_1016_j_ceramint_2021_11_140
crossref_primary_10_1039_C5CP04073F
crossref_primary_10_1021_sc5001176
crossref_primary_10_1039_C4NR05879H
crossref_primary_10_1007_s10854_018_9393_5
crossref_primary_10_1021_am502322y
crossref_primary_10_1186_s11671_016_1718_9
crossref_primary_10_1016_j_jallcom_2013_08_062
crossref_primary_10_1016_j_molcata_2014_04_029
crossref_primary_10_1039_c4ra01190b
crossref_primary_10_1016_j_jallcom_2021_158598
crossref_primary_10_1039_C3CP52457D
crossref_primary_10_1039_c3cy00004d
crossref_primary_10_1016_j_nantod_2016_05_008
crossref_primary_10_1016_j_apsusc_2018_06_222
crossref_primary_10_1021_jp507173a
crossref_primary_10_1039_c3ce27021a
crossref_primary_10_1039_c3ce40513c
crossref_primary_10_1016_j_jhazmat_2013_02_053
crossref_primary_10_1016_j_seppur_2016_05_040
crossref_primary_10_1016_S2095_4956_15_60295_9
crossref_primary_10_1039_C5TA00291E
crossref_primary_10_1002_slct_201902593
crossref_primary_10_1016_j_compositesb_2017_12_006
crossref_primary_10_1016_S1872_2067_12_60530_0
crossref_primary_10_1007_s11581_021_03982_6
crossref_primary_10_1039_c3cp53325e
crossref_primary_10_1021_am4010286
crossref_primary_10_1039_c3cp55038a
crossref_primary_10_1039_c3ta12329d
crossref_primary_10_1021_la4020493
crossref_primary_10_1039_C4RA06026A
crossref_primary_10_1039_C5RA21364A
crossref_primary_10_1039_C7TA08415C
crossref_primary_10_1016_j_ces_2013_08_004
crossref_primary_10_1002_cctc_201600387
crossref_primary_10_1016_j_colsurfa_2023_132171
crossref_primary_10_1016_j_memsci_2014_01_011
crossref_primary_10_1039_C5NR01881A
crossref_primary_10_1016_j_jssc_2013_07_015
crossref_primary_10_3390_catal8020057
crossref_primary_10_1021_acs_chemrev_5b00267
crossref_primary_10_1142_S1793604713500628
crossref_primary_10_1021_acsami_7b18087
crossref_primary_10_1016_j_jcis_2013_07_045
crossref_primary_10_1016_j_apcatb_2017_10_021
crossref_primary_10_1039_C4CS00056K
crossref_primary_10_1039_C6RA01623E
crossref_primary_10_1016_j_apcata_2016_04_034
crossref_primary_10_1016_j_renene_2017_06_042
crossref_primary_10_1016_j_cej_2019_02_035
crossref_primary_10_1016_j_jallcom_2016_05_189
crossref_primary_10_1016_j_jallcom_2015_09_241
crossref_primary_10_1002_cssc_201801827
crossref_primary_10_3390_ijms16011590
crossref_primary_10_1016_j_apcata_2012_12_023
crossref_primary_10_1016_j_apsusc_2017_03_220
crossref_primary_10_1016_j_jece_2020_104551
crossref_primary_10_1016_j_jallcom_2016_01_047
crossref_primary_10_1039_C3RA46383D
crossref_primary_10_1039_D3NJ03799A
crossref_primary_10_1002_adfm_201401279
crossref_primary_10_1016_j_apsusc_2020_146194
crossref_primary_10_1016_j_jtice_2023_104734
crossref_primary_10_1021_am503244w
crossref_primary_10_1039_C8QI00122G
crossref_primary_10_3390_app9050855
crossref_primary_10_1016_j_apcata_2013_09_024
crossref_primary_10_1016_j_cej_2016_04_024
crossref_primary_10_1063_1_5011356
crossref_primary_10_3390_catal6080111
crossref_primary_10_1016_j_carbon_2013_07_006
crossref_primary_10_1039_c3nr03372d
crossref_primary_10_1007_s10853_018_2210_y
crossref_primary_10_3390_catal12121554
crossref_primary_10_1039_C4DT01702A
crossref_primary_10_1039_C6RA14858A
crossref_primary_10_1039_C5CS00064E
crossref_primary_10_1021_acsanm_1c03387
crossref_primary_10_1002_tcr_201500279
crossref_primary_10_1021_jz300491s
crossref_primary_10_1016_j_apsusc_2020_148029
crossref_primary_10_1021_jp408400c
crossref_primary_10_1016_j_pmatsci_2018_07_006
crossref_primary_10_1016_j_apsusc_2017_08_194
crossref_primary_10_1016_j_cplett_2017_10_060
crossref_primary_10_1016_j_jallcom_2016_07_133
crossref_primary_10_1021_acsami_2c21235
crossref_primary_10_3389_fchem_2018_00632
crossref_primary_10_1007_s11051_016_3596_6
crossref_primary_10_1002_adfm_201203547
crossref_primary_10_1021_jp512797t
crossref_primary_10_1002_cssc_201200480
crossref_primary_10_1039_C4TA02670E
crossref_primary_10_1016_j_apcatb_2014_04_007
crossref_primary_10_1016_j_apcatb_2015_01_004
crossref_primary_10_1021_am3029798
crossref_primary_10_1016_j_conbuildmat_2024_135066
crossref_primary_10_1016_j_apsusc_2021_150077
crossref_primary_10_1039_c3nr02682e
crossref_primary_10_1002_solr_201900577
crossref_primary_10_1039_C8RA02237B
crossref_primary_10_1557_jmr_2019_342
crossref_primary_10_1002_cphc_202100873
crossref_primary_10_1088_2053_1591_ab689d
crossref_primary_10_1002_slct_201702430
crossref_primary_10_1016_j_carbon_2018_03_025
crossref_primary_10_1039_C9NR06760D
crossref_primary_10_1039_C3TA13892E
crossref_primary_10_1016_j_watres_2015_04_038
crossref_primary_10_1039_C7RA09135D
crossref_primary_10_1039_c4nr01227e
crossref_primary_10_1021_jp405207e
crossref_primary_10_1039_c3ta12061a
crossref_primary_10_1142_S1793292020500186
crossref_primary_10_1016_j_ijhydene_2017_06_024
crossref_primary_10_1016_S2095_4956_14_60129_7
crossref_primary_10_1002_er_8087
crossref_primary_10_1039_C5NR03338A
crossref_primary_10_1002_adsu_201700006
crossref_primary_10_1039_c3ta10981j
crossref_primary_10_1039_C4RA03866E
crossref_primary_10_1002_aenm_201500010
crossref_primary_10_1039_C4TA05900J
crossref_primary_10_1039_C6GC02856J
crossref_primary_10_1016_j_apsusc_2014_07_038
crossref_primary_10_1016_j_jmrt_2019_10_020
crossref_primary_10_1021_acs_chemrev_8b00400
crossref_primary_10_1039_C4CS00213J
crossref_primary_10_1007_s11237_019_09591_9
crossref_primary_10_1016_j_flatc_2020_100180
crossref_primary_10_3390_nano8020105
crossref_primary_10_1016_j_jallcom_2016_11_366
crossref_primary_10_1002_cjoc_201900188
crossref_primary_10_1016_j_apcatb_2016_11_012
crossref_primary_10_1177_1847980417724046
crossref_primary_10_1039_c3nr04655a
crossref_primary_10_1007_s12274_014_0514_z
crossref_primary_10_1021_acsnano_8b06136
crossref_primary_10_1016_j_apsusc_2020_145451
crossref_primary_10_1016_j_ijhydene_2013_10_077
crossref_primary_10_1007_s10853_013_7474_7
crossref_primary_10_1039_C5CE01712B
crossref_primary_10_2166_ws_2019_154
crossref_primary_10_1016_j_ijhydene_2017_02_091
crossref_primary_10_1002_adfm_202002528
crossref_primary_10_1016_j_apsusc_2018_01_282
crossref_primary_10_1039_c3dt51498f
crossref_primary_10_1021_acs_jpcb_7b05518
crossref_primary_10_1039_c3cp53070a
crossref_primary_10_1016_j_ceramint_2017_11_214
crossref_primary_10_1016_j_materresbull_2012_11_045
crossref_primary_10_1021_acs_chemmater_5b02131
crossref_primary_10_1039_C7RA05770A
crossref_primary_10_1002_cctc_201800172
crossref_primary_10_1038_s41598_018_26447_9
crossref_primary_10_1016_j_physe_2017_02_022
crossref_primary_10_1039_C7CY00366H
crossref_primary_10_1039_c2cp43524a
crossref_primary_10_1155_2013_456586
crossref_primary_10_1007_s12598_018_1064_4
crossref_primary_10_1016_j_ceramint_2019_09_232
crossref_primary_10_1016_j_surfin_2024_104150
crossref_primary_10_1021_ie5027088
crossref_primary_10_1016_j_apsusc_2015_01_191
crossref_primary_10_1016_j_catcom_2012_12_018
crossref_primary_10_1007_s11581_024_05843_4
crossref_primary_10_1016_j_jcat_2012_11_021
crossref_primary_10_1016_j_jcat_2013_02_026
crossref_primary_10_1016_j_matchemphys_2019_121906
crossref_primary_10_1039_D4SU00531G
crossref_primary_10_1021_nn304154s
crossref_primary_10_1039_c4nr00116h
crossref_primary_10_1039_C5CC02704G
Cites_doi 10.1039/c1jm10100e
10.1021/nn900227d
10.1021/es800191n
10.1021/jz900265j
10.1021/nn102130m
10.1002/adma.200802738
10.1021/am3001852
10.1021/nn9014483
10.1016/j.apcatb.2010.10.007
10.1002/anie.200803630
10.1016/j.apcatb.2004.09.018
10.1021/cm981085u
10.1021/nn901221k
10.1039/c1ra00382h
10.1021/nn102767d
10.1039/C1CS15172J
10.1039/C0EE00295J
10.1021/nl9035109
10.1021/nn1007429
10.1021/nl2012906
10.1039/c2jm15009c
10.1021/ja8057327
10.1016/j.carbon.2010.10.010
10.1021/ja01539a017
10.1021/ja203296z
10.1126/science.1150878
10.1038/nchem.907
10.1039/b917240h
10.1021/ja1072299
10.1021/nn700349a
10.1021/jp205821b
10.1021/ja105089w
10.1021/nn202625c
10.1007/s10853-010-5116-x
10.1021/ja2025454
10.1021/cr900070d
10.1021/jp2008804
10.1039/C0NJ00623H
10.1016/j.apcata.2005.04.057
10.1021/jp2023617
10.1021/nn202519j
10.1021/nn1024219
10.1021/jp200953k
10.1039/c0ee00683a
10.1021/jp909855p
10.1021/jz201000a
10.1021/nn900150y
10.1039/c0cs00079e
10.1021/jp103472c
10.1126/science.1136836
10.1038/nature04969
10.1021/jp906325q
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7X8
DOI 10.1039/c2cp41318c
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 9175
ExternalDocumentID 22644332
26036372
10_1039_c2cp41318c
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
0UZ
123
1TJ
29O
2WC
4.4
53G
6TJ
705
70~
71~
7~J
87K
9M8
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACNCT
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
MVM
N9A
NDZJH
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCLXC
RCNCU
RIG
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
XJT
XOL
YNT
ZCG
IQODW
-JG
AGSTE
NPM
OK1
UCJ
7X8
ID FETCH-LOGICAL-c247t-374663429e655abfa67a5d92ebf57e1142fa9c30531c095249dff7c0cbc2085a3
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 09:48:59 EDT 2025
Wed Feb 19 01:51:20 EST 2025
Mon Jul 21 09:14:56 EDT 2025
Thu Apr 24 22:51:38 EDT 2025
Tue Jul 01 02:53:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords Binary compound
Oxygen
Semiconductor materials
Photocatalysis
Transition element compounds
Conductivity
Alcohol
Oxidant
Aldehyde
Conversion
Design
Lifetime
Synthesis
Solar energy
Defect
Nanocomposite
Titanium oxide
Interface
Electrons
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c247t-374663429e655abfa67a5d92ebf57e1142fa9c30531c095249dff7c0cbc2085a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22644332
PQID 1020047442
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1020047442
pubmed_primary_22644332
pascalfrancis_primary_26036372
crossref_citationtrail_10_1039_c2cp41318c
crossref_primary_10_1039_c2cp41318c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-Jul-07
PublicationDateYYYYMMDD 2012-07-07
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-Jul-07
  day: 07
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: England
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2012
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Guo (c2cp41318c-(cit13)/*[position()=1]) 2011; 40
Xiang (c2cp41318c-(cit29)/*[position()=1]) 2010; 115
Zhang (c2cp41318c-(cit28)/*[position()=1]) 2011; 46
Zhang (c2cp41318c-(cit17)/*[position()=1]) 2010; 4
Bekyarova (c2cp41318c-(cit14)/*[position()=1]) 2009; 131
Bunch (c2cp41318c-(cit7)/*[position()=1]) 2007; 315
Hummers (c2cp41318c-(cit35)/*[position()=1]) 1958; 80
Yao (c2cp41318c-(cit41)/*[position()=1]) 2008; 42
Du (c2cp41318c-(cit20)/*[position()=1]) 2011; 5
Zhang (c2cp41318c-(cit16)/*[position()=1]) 2010; 4
Zhang (c2cp41318c-(cit52)/*[position()=1]) 2012; 22
Pumera (c2cp41318c-(cit2)/*[position()=1]) 2011; 4
Lightcap (c2cp41318c-(cit4)/*[position()=1]) 2010; 10
Chen (c2cp41318c-(cit19)/*[position()=1]) 2010; 4
An (c2cp41318c-(cit21)/*[position()=1]) 2011; 1
Ruan (c2cp41318c-(cit10)/*[position()=1]) 2011; 5
Iwase (c2cp41318c-(cit30)/*[position()=1]) 2011; 133
Liang (c2cp41318c-(cit18)/*[position()=1]) 2011; 11
Kamat (c2cp41318c-(cit5)/*[position()=1]) 2010; 1
Zhang (c2cp41318c-(cit49)/*[position()=1]) 2008; 47
Zhang (c2cp41318c-(cit32)/*[position()=1]) 2011; 5
Zhang (c2cp41318c-(cit24)/*[position()=1]) 2010; 20
Zhang (c2cp41318c-(cit48)/*[position()=1]) 2011; 115
Akhavan (c2cp41318c-(cit45)/*[position()=1]) 2010; 114
Zhou (c2cp41318c-(cit26)/*[position()=1]) 2011; 35
Stankovich (c2cp41318c-(cit6)/*[position()=1]) 2006; 442
Kovtyukhova (c2cp41318c-(cit36)/*[position()=1]) 1999; 11
Li (c2cp41318c-(cit8)/*[position()=1]) 2008; 319
Guo (c2cp41318c-(cit11)/*[position()=1]) 2010; 4
Xu (c2cp41318c-(cit40)/*[position()=1]) 2010; 114
Worsley (c2cp41318c-(cit15)/*[position()=1]) 2010; 132
Xu (c2cp41318c-(cit31)/*[position()=1]) 2011; 101
Park (c2cp41318c-(cit9)/*[position()=1]) 2008; 2
Jia (c2cp41318c-(cit37)/*[position()=1]) 2011; 115
Akhavan (c2cp41318c-(cit44)/*[position()=1]) 2010; 4
Leary (c2cp41318c-(cit39)/*[position()=1]) 2011; 49
Tang (c2cp41318c-(cit51)/*[position()=1]) 2012; 4
Jahan (c2cp41318c-(cit34)/*[position()=1]) 2010; 132
Xiang (c2cp41318c-(cit22)/*[position()=1]) 2012; 41
Loh (c2cp41318c-(cit33)/*[position()=1]) 2010; 2
Allen (c2cp41318c-(cit1)/*[position()=1]) 2010; 110
Zhang (c2cp41318c-(cit50)/*[position()=1]) 2011; 21
Wang (c2cp41318c-(cit43)/*[position()=1]) 2005; 56
Wang (c2cp41318c-(cit46)/*[position()=1]) 2009; 3
Fan (c2cp41318c-(cit23)/*[position()=1]) 2011; 115
Sun (c2cp41318c-(cit3)/*[position()=1]) 2011; 4
Akhavan (c2cp41318c-(cit25)/*[position()=1]) 2009; 113
Sun (c2cp41318c-(cit12)/*[position()=1]) 2011; 2
Li (c2cp41318c-(cit27)/*[position()=1]) 2011; 133
Woan (c2cp41318c-(cit38)/*[position()=1]) 2009; 21
Guo (c2cp41318c-(cit47)/*[position()=1]) 2009; 3
Yu (c2cp41318c-(cit42)/*[position()=1]) 2005; 289
References_xml – volume: 21
  start-page: 8152
  year: 2011
  ident: c2cp41318c-(cit50)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm10100e
– volume: 3
  start-page: 2653
  year: 2009
  ident: c2cp41318c-(cit47)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn900227d
– volume: 42
  start-page: 4952
  year: 2008
  ident: c2cp41318c-(cit41)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es800191n
– volume: 1
  start-page: 520
  year: 2010
  ident: c2cp41318c-(cit5)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz900265j
– volume: 4
  start-page: 6425
  year: 2010
  ident: c2cp41318c-(cit19)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn102130m
– volume: 21
  start-page: 2233
  year: 2009
  ident: c2cp41318c-(cit38)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802738
– volume: 4
  start-page: 1512
  year: 2012
  ident: c2cp41318c-(cit51)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am3001852
– volume: 4
  start-page: 547
  year: 2010
  ident: c2cp41318c-(cit11)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn9014483
– volume: 101
  start-page: 382
  year: 2011
  ident: c2cp41318c-(cit31)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2010.10.007
– volume: 47
  start-page: 9730
  year: 2008
  ident: c2cp41318c-(cit49)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200803630
– volume: 56
  start-page: 305
  year: 2005
  ident: c2cp41318c-(cit43)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2004.09.018
– volume: 11
  start-page: 771
  year: 1999
  ident: c2cp41318c-(cit36)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm981085u
– volume: 4
  start-page: 380
  year: 2010
  ident: c2cp41318c-(cit17)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn901221k
– volume: 1
  start-page: 1426
  year: 2011
  ident: c2cp41318c-(cit21)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c1ra00382h
– volume: 5
  start-page: 590
  year: 2011
  ident: c2cp41318c-(cit20)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn102767d
– volume: 41
  start-page: 782
  year: 2012
  ident: c2cp41318c-(cit22)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15172J
– volume: 4
  start-page: 668
  year: 2011
  ident: c2cp41318c-(cit2)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C0EE00295J
– volume: 10
  start-page: 577
  year: 2010
  ident: c2cp41318c-(cit4)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl9035109
– volume: 4
  start-page: 4174
  year: 2010
  ident: c2cp41318c-(cit44)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn1007429
– volume: 11
  start-page: 2865
  year: 2011
  ident: c2cp41318c-(cit18)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl2012906
– volume: 22
  start-page: 5042
  year: 2012
  ident: c2cp41318c-(cit52)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm15009c
– volume: 131
  start-page: 1336
  year: 2009
  ident: c2cp41318c-(cit14)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8057327
– volume: 49
  start-page: 741
  year: 2011
  ident: c2cp41318c-(cit39)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.10.010
– volume: 80
  start-page: 1339
  year: 1958
  ident: c2cp41318c-(cit35)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01539a017
– volume: 133
  start-page: 11054
  year: 2011
  ident: c2cp41318c-(cit30)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja203296z
– volume: 319
  start-page: 1229
  year: 2008
  ident: c2cp41318c-(cit8)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1150878
– volume: 2
  start-page: 1015
  year: 2010
  ident: c2cp41318c-(cit33)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.907
– volume: 20
  start-page: 2801
  year: 2010
  ident: c2cp41318c-(cit24)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/b917240h
– volume: 132
  start-page: 14067
  year: 2010
  ident: c2cp41318c-(cit15)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1072299
– volume: 2
  start-page: 572
  year: 2008
  ident: c2cp41318c-(cit9)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn700349a
– volume: 115
  start-page: 22901
  year: 2011
  ident: c2cp41318c-(cit48)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp205821b
– volume: 132
  start-page: 14487
  year: 2010
  ident: c2cp41318c-(cit34)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105089w
– volume: 5
  start-page: 7601
  year: 2011
  ident: c2cp41318c-(cit10)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn202625c
– volume: 46
  start-page: 2622
  year: 2011
  ident: c2cp41318c-(cit28)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-010-5116-x
– volume: 133
  start-page: 10878
  year: 2011
  ident: c2cp41318c-(cit27)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2025454
– volume: 110
  start-page: 132
  year: 2010
  ident: c2cp41318c-(cit1)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr900070d
– volume: 115
  start-page: 10694
  year: 2011
  ident: c2cp41318c-(cit23)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2008804
– volume: 35
  start-page: 353
  year: 2011
  ident: c2cp41318c-(cit26)/*[position()=1]
  publication-title: New J. Chem.
  doi: 10.1039/C0NJ00623H
– volume: 289
  start-page: 186
  year: 2005
  ident: c2cp41318c-(cit42)/*[position()=1]
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2005.04.057
– volume: 115
  start-page: 11466
  year: 2011
  ident: c2cp41318c-(cit37)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2023617
– volume: 5
  start-page: 7426
  year: 2011
  ident: c2cp41318c-(cit32)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn202519j
– volume: 4
  start-page: 7303
  year: 2010
  ident: c2cp41318c-(cit16)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn1024219
– volume: 115
  start-page: 7355
  year: 2010
  ident: c2cp41318c-(cit29)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp200953k
– volume: 4
  start-page: 1113
  year: 2011
  ident: c2cp41318c-(cit3)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00683a
– volume: 114
  start-page: 2669
  year: 2010
  ident: c2cp41318c-(cit40)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp909855p
– volume: 2
  start-page: 2425
  year: 2011
  ident: c2cp41318c-(cit12)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz201000a
– volume: 3
  start-page: 907
  year: 2009
  ident: c2cp41318c-(cit46)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn900150y
– volume: 40
  start-page: 2644
  year: 2011
  ident: c2cp41318c-(cit13)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00079e
– volume: 114
  start-page: 12955
  year: 2010
  ident: c2cp41318c-(cit45)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp103472c
– volume: 315
  start-page: 490
  year: 2007
  ident: c2cp41318c-(cit7)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1136836
– volume: 442
  start-page: 282
  year: 2006
  ident: c2cp41318c-(cit6)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature04969
– volume: 113
  start-page: 20214
  year: 2009
  ident: c2cp41318c-(cit25)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp906325q
SSID ssj0001513
Score 2.5217483
Snippet Incessant interest has been shown in the synthesis of graphene (GR)-semiconductor nanocomposites as photocatalysts aiming to utilize the excellent electron...
SourceID proquest
pubmed
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 9167
SubjectTerms Chemistry
Exact sciences and technology
General and physical chemistry
Photochemistry
Physical chemistry of induced reactions (with radiations, particles and ultrasonics)
Surface physical chemistry
Title Improving the photocatalytic performance of graphene–TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact
URI https://www.ncbi.nlm.nih.gov/pubmed/22644332
https://www.proquest.com/docview/1020047442
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LitswFBUhs2ihlL6bPgaVdlOC21iyrfHShCmZoU2HkkA6myDLEhModpgkhXbVn-g39K-66Jf0SrJku6T0kYUxQlZM7onuQ-fei9AzIpTizFB1aBGAhoqDPAGBsDzmRRSmRWjImG-myWQenS7iRa_3vcVa2m3zF-Lz3ryS_5EqjIFcdZbsP0jWLwoDcA_yhStIGK5_JeMmImASni6qbWXCMZ90FdZ1KyUALEJTmRo2NsduiGert2RY8rLSrHJN3ZKb4UedoqVp5uAvgyW6saVrzSF8YexLE1kopOeAuFXrIk5-iq5Ccam4icdrNjwXnTOAM4cO4frN2Ts9ZGMtGxOrOBuPff7Z-2w6mZ8MzyfZ1PcDm2bT7sAsszlY56vgXVUrZRhezI2qWQWnu7Id5wgtJ5Z5ZNpoiqOyGqpK_YKt3TtKaADeftLZ3qMWjEnc2qzBMmYtxQ-Oa7xXqYyorskqiFiDxg-PRKM6HV3gF43qeY7gLNKEMjARDgi4MaSPDrLj2clrbyuAvUVt_pt9cVdAl6Yvm-_rmEzX1nwDwlC27crv_SJjH81uoOu1Y4Mzi9KbqCfLW-iK__luo28erRjQirtoxS204kphh6sfX75qnOIuTjHgFHPscIodTvWTDU5xjdP2ehhwihuc4hZOcY3TO2j-6ng2ngR1m5BAkIhtQUVGYDaDXSWTOOa54gnjcZESmauYSZ0rrngqqNY2AhwKEqWFUkyMRC50g1pO76J-WZXyPsIRE6kMBR8paVovpFTAZ5QQXhwxpegAPXeSWIq6hr5u5fJhabgcNF02Uhugp37u2laO2TvrsCNQP9VBZ4CeOAkvQWD6OI-XstptYCW9F7Iogjn3rOibp7WfQyl58KflH6KrzZ_tEepvL3fyMZjZ2_ywxupPnG_d9w
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+photocatalytic+performance+of+graphene%E2%80%95TiO2+nanocomposites+via+a+combined+strategy+of+decreasing+defects+of+graphene+and+increasing+interfacial+contact&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=YANHUI+ZHANG&rft.au=NAN+ZHANG&rft.au=TANG%2C+Zi-Rong&rft.au=XU%2C+Yi-Jun&rft.date=2012-07-07&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9076&rft.volume=14&rft.issue=25&rft.spage=9167&rft.epage=9175&rft_id=info:doi/10.1039%2Fc2cp41318c&rft.externalDBID=n%2Fa&rft.externalDocID=26036372
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon