Existence of solutions for unilateral problems associated to some quasilinear anisotropic elliptic equations with measure data
In this paper, we will study the existence of solutions for some nonlinear anisotropic elliptic equation of the type where is a Leray-Lions operator, the Carathéodory function , , ) is a nonlinear lower order term that verify some natural growth and sign conditions, where the data = − div belongs to...
Saved in:
Published in | Nonautonomous Dynamical Systems Vol. 9; no. 1; pp. 68 - 90 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
De Gruyter
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2353-0626 2353-0626 |
DOI | 10.1515/msds-2022-0147 |
Cover
Abstract | In this paper, we will study the existence of solutions for some nonlinear anisotropic elliptic equation of the type
where
is a Leray-Lions operator, the Carathéodory function
,
,
) is a nonlinear lower order term that verify some natural growth and sign conditions, where the data
=
− div
belongs to
−dual and
(·) ∈
,
). |
---|---|
AbstractList | In this paper, we will study the existence of solutions for some nonlinear anisotropic elliptic equation of the type
where
is a Leray-Lions operator, the Carathéodory function
,
,
) is a nonlinear lower order term that verify some natural growth and sign conditions, where the data
=
− div
belongs to
−dual and
(·) ∈
,
). In this paper, we will study the existence of solutions for some nonlinear anisotropic elliptic equation of the type {Au+g(x,u,∇u)=μ−div φ(u)in Ω,u=0on ∂Ω,\left\{ {\matrix{{Au + g\left( {x,u,\nabla u} \right) = \mu - div\,\phi \left( u \right)} \hfill & {in\,\Omega ,} \hfill \cr {u = 0} \hfill & {on\,\,\partial \Omega ,} \hfill \cr } } \right. where Au=−∑i=1N∂∂xiai(x,u,∇u)Au = - \sum\limits_{i = 1}^N {{\partial \over {\partial {x_i}}}{a_i}\left( {x,u,\nabla u} \right)} is a Leray-Lions operator, the Carathéodory function g(x, s, ξ) is a nonlinear lower order term that verify some natural growth and sign conditions, where the data µ = f − div F belongs to L1−dual and ϕ (·) ∈ C0(R, RN). In this paper, we will study the existence of solutions for some nonlinear anisotropic elliptic equation of the type { A u + g ( x , u , ∇ u ) = μ − d i v φ ( u ) i n Ω , u = 0 o n ∂ Ω , \left\{ {\matrix{{Au + g\left( {x,u,\nabla u} \right) = \mu - div\,\phi \left( u \right)} \hfill & {in\,\Omega ,} \hfill \cr {u = 0} \hfill & {on\,\,\partial \Omega ,} \hfill \cr } } \right. where A u = − ∑ i = 1 N ∂ ∂ x i a i ( x , u , ∇ u ) Au = - \sum\limits_{i = 1}^N {{\partial \over {\partial {x_i}}}{a_i}\left( {x,u,\nabla u} \right)} is a Leray-Lions operator, the Carathéodory function g ( x , s , ξ ) is a nonlinear lower order term that verify some natural growth and sign conditions, where the data µ = f − div F belongs to L 1 −dual and ϕ (·) ∈ C 0 ( R , R N ). |
Author | Hjiaj, Hassane Al-Hawmi, Mohammed |
Author_xml | – sequence: 1 givenname: Mohammed surname: Al-Hawmi fullname: Al-Hawmi, Mohammed email: m.alhomi2011@gmail.com organization: Department of Mathematics, Faculty of Education and Sciences, University of Saba Region, Marib, Yemen – sequence: 2 givenname: Hassane surname: Hjiaj fullname: Hjiaj, Hassane email: hjiajhassane@yahoo.fr organization: Department of Mathematics, Faculty of Sciences, University Abdelmalek Essaadi, BP 2121, Tetouan, Morocco |
BookMark | eNqlkU9vFSEUxYmpibV265ovMJU_AwzuTFO1SZNudE3uDJfKCzM8YSa1Gz-7jM8YN125gZOTe365cF6TsyUvSMhbzq644urdXH3tBBOiY7w3L8i5kEp2TAt99o9-RS5rPTDGuGmHZOfk582PWFdcJqQ50JrTtsa8VBpyodsSE6xYINFjyWPCuVKoNU-xuZ6uuc3PSL9vUGOKC0KhsMSa15KPcaKYUjyuu2gTJ-pjXL_RGaFuBamHFd6QlwFSxcs_9wX5-vHmy_Xn7u7-0-31h7tuEr2x3WS4kRpBSDF67SVMYRqlNlYhNNuoATznvfAgBO_ZMIwKlRmx94Z7NEFekNsT12c4uGOJM5QnlyG630YuDw5K2zWhsyiCVl5a2489C8M4CNTeazX4gNbKxro6saaSay0Y_vI4c3sZbi_D7WW4vYwWeH8KPEJq3-nxoWxPTbhD3srSnv1M0HJt_yc8yF9aS6oC |
Cites_doi | 10.57262/ade/1363266253 10.1016/j.na.2007.12.027 10.1016/j.matcom.2013.09.009 10.1016/j.jmaa.2007.09.015 10.1016/S0362-546X(97)00612-3 10.1016/0022-1236(80)90009-9 10.4171/ZAA/1438 10.1080/03605309208820857 10.1007/s13370-016-0448-6 10.1007/978-3-642-88044-5 10.1090/S0002-9947-09-04399-2 10.1016/j.na.2010.01.005 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1515/msds-2022-0147 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2353-0626 |
EndPage | 90 |
ExternalDocumentID | oai_doaj_org_article_9e2f65d3994b40f8b82e6dd658dfe993 10_1515_msds_2022_0147 10_1515_msds_2022_01479169 10_1515_msds_2022_01479168 |
GroupedDBID | 5VS AAFWJ ABFKT ADBBV AFBDD AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV GROUPED_DOAJ KQ8 M48 M~E OK1 QD8 SLJYH AAYXX CITATION |
ID | FETCH-LOGICAL-c2479-c71736ea232bd6d3acfcb36795ea6ea758ad1142da2214088b5e57be4d71de7f3 |
IEDL.DBID | DOA |
ISSN | 2353-0626 |
IngestDate | Wed Aug 27 01:32:19 EDT 2025 Tue Jul 01 02:41:56 EDT 2025 Sat Sep 06 17:00:23 EDT 2025 Sat Sep 06 16:59:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2479-c71736ea232bd6d3acfcb36795ea6ea758ad1142da2214088b5e57be4d71de7f3 |
OpenAccessLink | https://doaj.org/article/9e2f65d3994b40f8b82e6dd658dfe993 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9e2f65d3994b40f8b82e6dd658dfe993 crossref_primary_10_1515_msds_2022_0147 walterdegruyter_journals_10_1515_msds_2022_01479169 walterdegruyter_journals_10_1515_msds_2022_01479168 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Nonautonomous Dynamical Systems |
PublicationYear | 2022 |
Publisher | De Gruyter |
Publisher_xml | – name: De Gruyter |
References | 2023021515375260436_j_msds-2022-0147_ref_020 2023021515375260436_j_msds-2022-0147_ref_009 2023021515375260436_j_msds-2022-0147_ref_008 2023021515375260436_j_msds-2022-0147_ref_019 2023021515375260436_j_msds-2022-0147_ref_007 2023021515375260436_j_msds-2022-0147_ref_018 2023021515375260436_j_msds-2022-0147_ref_006 2023021515375260436_j_msds-2022-0147_ref_017 2023021515375260436_j_msds-2022-0147_ref_005 2023021515375260436_j_msds-2022-0147_ref_016 2023021515375260436_j_msds-2022-0147_ref_004 2023021515375260436_j_msds-2022-0147_ref_015 2023021515375260436_j_msds-2022-0147_ref_003 2023021515375260436_j_msds-2022-0147_ref_014 2023021515375260436_j_msds-2022-0147_ref_002 2023021515375260436_j_msds-2022-0147_ref_013 2023021515375260436_j_msds-2022-0147_ref_001 2023021515375260436_j_msds-2022-0147_ref_012 2023021515375260436_j_msds-2022-0147_ref_011 2023021515375260436_j_msds-2022-0147_ref_022 2023021515375260436_j_msds-2022-0147_ref_010 2023021515375260436_j_msds-2022-0147_ref_021 |
References_xml | – ident: 2023021515375260436_j_msds-2022-0147_ref_011 – ident: 2023021515375260436_j_msds-2022-0147_ref_015 doi: 10.57262/ade/1363266253 – ident: 2023021515375260436_j_msds-2022-0147_ref_009 doi: 10.1016/j.na.2007.12.027 – ident: 2023021515375260436_j_msds-2022-0147_ref_012 – ident: 2023021515375260436_j_msds-2022-0147_ref_005 – ident: 2023021515375260436_j_msds-2022-0147_ref_006 – ident: 2023021515375260436_j_msds-2022-0147_ref_013 – ident: 2023021515375260436_j_msds-2022-0147_ref_007 – ident: 2023021515375260436_j_msds-2022-0147_ref_003 – ident: 2023021515375260436_j_msds-2022-0147_ref_004 doi: 10.1016/j.matcom.2013.09.009 – ident: 2023021515375260436_j_msds-2022-0147_ref_021 doi: 10.1016/j.jmaa.2007.09.015 – ident: 2023021515375260436_j_msds-2022-0147_ref_010 doi: 10.1016/S0362-546X(97)00612-3 – ident: 2023021515375260436_j_msds-2022-0147_ref_019 doi: 10.1016/0022-1236(80)90009-9 – ident: 2023021515375260436_j_msds-2022-0147_ref_008 doi: 10.4171/ZAA/1438 – ident: 2023021515375260436_j_msds-2022-0147_ref_014 doi: 10.1080/03605309208820857 – ident: 2023021515375260436_j_msds-2022-0147_ref_020 – ident: 2023021515375260436_j_msds-2022-0147_ref_002 doi: 10.1007/s13370-016-0448-6 – ident: 2023021515375260436_j_msds-2022-0147_ref_017 doi: 10.1007/978-3-642-88044-5 – ident: 2023021515375260436_j_msds-2022-0147_ref_016 – ident: 2023021515375260436_j_msds-2022-0147_ref_018 – ident: 2023021515375260436_j_msds-2022-0147_ref_022 doi: 10.1090/S0002-9947-09-04399-2 – ident: 2023021515375260436_j_msds-2022-0147_ref_001 doi: 10.1016/j.na.2010.01.005 |
SSID | ssj0001700030 |
Score | 2.1682243 |
Snippet | In this paper, we will study the existence of solutions for some nonlinear anisotropic elliptic equation of the type
where
is a Leray-Lions operator, the... In this paper, we will study the existence of solutions for some nonlinear anisotropic elliptic equation of the type { A u + g ( x , u , ∇ u ) = μ − d i v φ... In this paper, we will study the existence of solutions for some nonlinear anisotropic elliptic equation of the type {Au+g(x,u,∇u)=μ−div φ(u)in Ω,u=0on ... |
SourceID | doaj crossref walterdegruyter |
SourceType | Open Website Index Database Publisher |
StartPage | 68 |
SubjectTerms | 35J15 35J62 anisotropic Sobolev spaces entropy solutions measure data nonlinear elliptic equations Unilateral problem |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXOBQ3uqWh3xA4hRoHNuJD6gqqFWFBCdW6i3yY1wt2k26SVZtL_x2ZhJvEa8LQsohsWwnmm8cf2OPZxh75QQog9LPvDUmk8qrzMloM5_7wucCfBFHb4vP-nQuP56psx_-T0mA_R9NO8onNe-Wb67W14c44N-N2Xty9XbVhx7RFuRjIMvb7A7OSpoMsU-J6n-dwsSQQqe4jb83-2leGsP332O7l-OWdYDzbnM9bLdIx5nn5AHbTZSRH00YP2S3oHnE7if6yNPg7B-zb8dXhBk-8DbyG53iSEv5plksLR02XvKUQqbnNiGDnQwt1l8BX29svyDiaTtum0XfDl17sfCconbivwVv1lNo8J7TAi5fTSuMnPxMn7D5yfGXD6dZSq-QeSFLk3nagNdgkVO5oENhffSu0KVRYLEYDQkb6KRtsEKgGVZVToEqHchQ5gHKWDxlO03bwB7jufBQaeO1NWheIoUAYQ4qJwU4p2OVz9jrrXDriymKRk3WB8JQEww1wVATDDP2nmR_U4uiX48FbXdep8FUY_dRq4DcSjp5ECtXCdAhIJkKEZBwzVjxC3L1VrH-8lokydU_tTL7_-ODn7G7SRHxes52hm4DL5DsDO7lqMXfAYsaAtM priority: 102 providerName: Scholars Portal |
Title | Existence of solutions for unilateral problems associated to some quasilinear anisotropic elliptic equations with measure data |
URI | https://www.degruyter.com/doi/10.1515/msds-2022-0147 https://doaj.org/article/9e2f65d3994b40f8b82e6dd658dfe993 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_SQRx908yg6FHoyWcuyLB2TkBAKzSmB3Iweo7AlaydrL20u-e2ZsZWwBEKgBIyxhWyLmU-eb_SYYeyHE1AalH7mrTGZLH2ZORlt5nNf-FyAL-Kw2uJcnV3KX1fl1UqqL1oTNoYHHgV3YEBEVQa0o9LJadROC1AhoOEMEdC40t93aqYrztSfMSgMwTdFaUSbfTDvQoeQELQQgXKprFihIVj_R7bxd5igDnC9WN73TxOig5053WIbiSDyw7Fh2-wDNJ_YZiKLPHXF7jN7OPlHGsIb3kb-jCCOJJQvm9mNpa3FNzwljOm4TXrAl_Qt1p8Dv1vabkY00y64bWZd2y_a25nnFKMT_yR4cTcGAu84Ddfy-TieyGlV6Rd2eXpycXyWpWQKmReyMpmn6XYFFhmUCyoU1kfvClWZEiwWo9tgA-2rDVYIdLq0diWUlQMZqjxAFYuvbK1pG_jGeC48aGW8sgadSSQMIMxUOynAORV1PmE_n4Rb344xM2ryNVANNamhJjXUpIYJOyLZP9eiWNdDASKgTgio30LAhBUvNFenfti98lmkxPq_njI779HgXbaegIjHHlvrF0vYR2rTu-8DivH8W-pHifb8Sg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gAcylssFPABiVO0jeM48bFULQuUcqCVerP8LCvtJm0earn0t3ecmKWAuFTKIbHsOPJnx9-Mx58B3mnqcoGtnxglRMJykyeaeZWY1GQmpc5kfoi2OOTzY_b5JD-5sRcmhFVad9r0P7tRIXVma9MHR9laawBn4NmqtS0CTENYAStmP7rV8i5scGT_dAIbO_OP37_99rQUA_GPio3_lv5jRhqE-x_A5sWwWL3-khtzzv4j2IxkkeyM6D6GO656Ag8jcSRxWLZP4WrvMqCFD6T2ZN2bCBJS0leLpQrbjJckHh7TEhUxwZd0NeZfOXLeq3YRKKdqiKoWbd019dnCkKDXiX8VvDkfRcFbEly3ZDX6FkmIMH0Gx_t7R7vzJB6skBjKCpGYsPTOnUI2pS23mTLe6IwXIncKk9GEUDbssbWKUjTAylLnLi-0Y7ZIrSt89hwmVV25F0BSalzJheFKoGGJ5MFRsV1qRp3W3JfpFN7_alx5NupnyGB3IAwywCADDDLAMIUPoe3XuYLu9ZBQN6cyDiOJr_c8t8iqmGbbvtQlddxapFHWO6RaU8j-Qk7GMdn-p1qkx-WtSomXt6rrLdybH309kAefDr-8gvuxF-K1BZOu6d1r5DidfhM78TVj2_5B |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVgKiFYtLwqphTwAolVNI3jOPayQIfhoYIEldhZflYjdZJpnAi66bdznbhDAbGplEVi2XHkY8fnXl8fI_RSE1cKaP3MKCEyWpoy09SrzOSmMDlxpvBDtMUxW5zQD9_Lq2jCkMIqrTtt-4tuVEid2cb00VG20RqAGXi2CjYAwCSGFdBqtrb-NtpiTBA-QVuHi3dfP_92tFQD70-Cjf8W_mNCGnT776HtH8Na9eZDrk058_toO3FFfDiC-wDdcvVDtJN4I06jMjxCl0c_I1jwgBuPN50JAx_Ffb08U3GX8RlOZ8cErBIk8JKugfwrh897FZaRcaoWq3oZmq5t1kuDo1wn_FTg5nzUBA84em7xanQt4hhg-hidzI--vVlk6VyFzBBaiczElXfmFJApbZktlPFGF6wSpVOQDBaEsnGLrVWEgP3FuS5dWWlHbZVbV_liF03qpnZPEM6JcZwJw5QAuxK4gyPigGtKnNbM83yKXl01rlyP8hkymh0Ag4wwyAiDjDBM0evY9ptcUfZ6SGjaU5lGkYTXe1ZaIFVU0wPPNSeOWQssynoHTGuKir-Qk2lIhv9UC-yY36iU2LtRXS_QnS9v5_LT--OPT9Hd1Anh2keTru3dM2A4nX6e-vAv8X39cA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existence+of+solutions+for+unilateral+problems+associated+to+some+quasilinear+anisotropic+elliptic+equations+with+measure+data&rft.jtitle=Nonautonomous+Dynamical+Systems&rft.au=Al-Hawmi+Mohammed&rft.au=Hjiaj+Hassane&rft.date=2022-01-01&rft.pub=De+Gruyter&rft.eissn=2353-0626&rft.volume=9&rft.issue=1&rft.spage=68&rft.epage=90&rft_id=info:doi/10.1515%2Fmsds-2022-0147&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9e2f65d3994b40f8b82e6dd658dfe993 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2353-0626&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2353-0626&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2353-0626&client=summon |