Existence of solutions for unilateral problems associated to some quasilinear anisotropic elliptic equations with measure data

In this paper, we will study the existence of solutions for some nonlinear anisotropic elliptic equation of the type where is a Leray-Lions operator, the Carathéodory function , , ) is a nonlinear lower order term that verify some natural growth and sign conditions, where the data = − div belongs to...

Full description

Saved in:
Bibliographic Details
Published inNonautonomous Dynamical Systems Vol. 9; no. 1; pp. 68 - 90
Main Authors Al-Hawmi, Mohammed, Hjiaj, Hassane
Format Journal Article
LanguageEnglish
Published De Gruyter 01.01.2022
Subjects
Online AccessGet full text
ISSN2353-0626
2353-0626
DOI10.1515/msds-2022-0147

Cover

Abstract In this paper, we will study the existence of solutions for some nonlinear anisotropic elliptic equation of the type where is a Leray-Lions operator, the Carathéodory function , , ) is a nonlinear lower order term that verify some natural growth and sign conditions, where the data = − div belongs to −dual and (·) ∈ , ).
AbstractList In this paper, we will study the existence of solutions for some nonlinear anisotropic elliptic equation of the type where is a Leray-Lions operator, the Carathéodory function , , ) is a nonlinear lower order term that verify some natural growth and sign conditions, where the data = − div belongs to −dual and (·) ∈ , ).
In this paper, we will study the existence of solutions for some nonlinear anisotropic elliptic equation of the type {Au+g(x,u,∇u)=μ−div φ(u)in Ω,u=0on  ∂Ω,\left\{ {\matrix{{Au + g\left( {x,u,\nabla u} \right) = \mu - div\,\phi \left( u \right)} \hfill & {in\,\Omega ,} \hfill \cr {u = 0} \hfill & {on\,\,\partial \Omega ,} \hfill \cr } } \right. where Au=−∑i=1N∂∂xiai(x,u,∇u)Au = - \sum\limits_{i = 1}^N {{\partial \over {\partial {x_i}}}{a_i}\left( {x,u,\nabla u} \right)} is a Leray-Lions operator, the Carathéodory function g(x, s, ξ) is a nonlinear lower order term that verify some natural growth and sign conditions, where the data µ = f − div F belongs to L1−dual and ϕ (·) ∈ C0(R, RN).
In this paper, we will study the existence of solutions for some nonlinear anisotropic elliptic equation of the type { A u + g ( x , u , ∇ u ) = μ − d i v   φ ( u ) i n   Ω , u = 0 o n     ∂ Ω , \left\{ {\matrix{{Au + g\left( {x,u,\nabla u} \right) = \mu - div\,\phi \left( u \right)} \hfill & {in\,\Omega ,} \hfill \cr {u = 0} \hfill & {on\,\,\partial \Omega ,} \hfill \cr } } \right. where A u = − ∑ i = 1 N ∂ ∂ x i a i ( x , u , ∇ u ) Au = - \sum\limits_{i = 1}^N {{\partial \over {\partial {x_i}}}{a_i}\left( {x,u,\nabla u} \right)} is a Leray-Lions operator, the Carathéodory function g ( x , s , ξ ) is a nonlinear lower order term that verify some natural growth and sign conditions, where the data µ = f − div F belongs to L 1 −dual and ϕ (·) ∈ C 0 ( R , R N ).
Author Hjiaj, Hassane
Al-Hawmi, Mohammed
Author_xml – sequence: 1
  givenname: Mohammed
  surname: Al-Hawmi
  fullname: Al-Hawmi, Mohammed
  email: m.alhomi2011@gmail.com
  organization: Department of Mathematics, Faculty of Education and Sciences, University of Saba Region, Marib, Yemen
– sequence: 2
  givenname: Hassane
  surname: Hjiaj
  fullname: Hjiaj, Hassane
  email: hjiajhassane@yahoo.fr
  organization: Department of Mathematics, Faculty of Sciences, University Abdelmalek Essaadi, BP 2121, Tetouan, Morocco
BookMark eNqlkU9vFSEUxYmpibV265ovMJU_AwzuTFO1SZNudE3uDJfKCzM8YSa1Gz-7jM8YN125gZOTe365cF6TsyUvSMhbzq644urdXH3tBBOiY7w3L8i5kEp2TAt99o9-RS5rPTDGuGmHZOfk582PWFdcJqQ50JrTtsa8VBpyodsSE6xYINFjyWPCuVKoNU-xuZ6uuc3PSL9vUGOKC0KhsMSa15KPcaKYUjyuu2gTJ-pjXL_RGaFuBamHFd6QlwFSxcs_9wX5-vHmy_Xn7u7-0-31h7tuEr2x3WS4kRpBSDF67SVMYRqlNlYhNNuoATznvfAgBO_ZMIwKlRmx94Z7NEFekNsT12c4uGOJM5QnlyG630YuDw5K2zWhsyiCVl5a2489C8M4CNTeazX4gNbKxro6saaSay0Y_vI4c3sZbi_D7WW4vYwWeH8KPEJq3-nxoWxPTbhD3srSnv1M0HJt_yc8yF9aS6oC
Cites_doi 10.57262/ade/1363266253
10.1016/j.na.2007.12.027
10.1016/j.matcom.2013.09.009
10.1016/j.jmaa.2007.09.015
10.1016/S0362-546X(97)00612-3
10.1016/0022-1236(80)90009-9
10.4171/ZAA/1438
10.1080/03605309208820857
10.1007/s13370-016-0448-6
10.1007/978-3-642-88044-5
10.1090/S0002-9947-09-04399-2
10.1016/j.na.2010.01.005
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/msds-2022-0147
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2353-0626
EndPage 90
ExternalDocumentID oai_doaj_org_article_9e2f65d3994b40f8b82e6dd658dfe993
10_1515_msds_2022_0147
10_1515_msds_2022_01479169
10_1515_msds_2022_01479168
GroupedDBID 5VS
AAFWJ
ABFKT
ADBBV
AFBDD
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
GROUPED_DOAJ
KQ8
M48
M~E
OK1
QD8
SLJYH
AAYXX
CITATION
ID FETCH-LOGICAL-c2479-c71736ea232bd6d3acfcb36795ea6ea758ad1142da2214088b5e57be4d71de7f3
IEDL.DBID DOA
ISSN 2353-0626
IngestDate Wed Aug 27 01:32:19 EDT 2025
Tue Jul 01 02:41:56 EDT 2025
Sat Sep 06 17:00:23 EDT 2025
Sat Sep 06 16:59:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2479-c71736ea232bd6d3acfcb36795ea6ea758ad1142da2214088b5e57be4d71de7f3
OpenAccessLink https://doaj.org/article/9e2f65d3994b40f8b82e6dd658dfe993
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_9e2f65d3994b40f8b82e6dd658dfe993
crossref_primary_10_1515_msds_2022_0147
walterdegruyter_journals_10_1515_msds_2022_01479169
walterdegruyter_journals_10_1515_msds_2022_01479168
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Nonautonomous Dynamical Systems
PublicationYear 2022
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References 2023021515375260436_j_msds-2022-0147_ref_020
2023021515375260436_j_msds-2022-0147_ref_009
2023021515375260436_j_msds-2022-0147_ref_008
2023021515375260436_j_msds-2022-0147_ref_019
2023021515375260436_j_msds-2022-0147_ref_007
2023021515375260436_j_msds-2022-0147_ref_018
2023021515375260436_j_msds-2022-0147_ref_006
2023021515375260436_j_msds-2022-0147_ref_017
2023021515375260436_j_msds-2022-0147_ref_005
2023021515375260436_j_msds-2022-0147_ref_016
2023021515375260436_j_msds-2022-0147_ref_004
2023021515375260436_j_msds-2022-0147_ref_015
2023021515375260436_j_msds-2022-0147_ref_003
2023021515375260436_j_msds-2022-0147_ref_014
2023021515375260436_j_msds-2022-0147_ref_002
2023021515375260436_j_msds-2022-0147_ref_013
2023021515375260436_j_msds-2022-0147_ref_001
2023021515375260436_j_msds-2022-0147_ref_012
2023021515375260436_j_msds-2022-0147_ref_011
2023021515375260436_j_msds-2022-0147_ref_022
2023021515375260436_j_msds-2022-0147_ref_010
2023021515375260436_j_msds-2022-0147_ref_021
References_xml – ident: 2023021515375260436_j_msds-2022-0147_ref_011
– ident: 2023021515375260436_j_msds-2022-0147_ref_015
  doi: 10.57262/ade/1363266253
– ident: 2023021515375260436_j_msds-2022-0147_ref_009
  doi: 10.1016/j.na.2007.12.027
– ident: 2023021515375260436_j_msds-2022-0147_ref_012
– ident: 2023021515375260436_j_msds-2022-0147_ref_005
– ident: 2023021515375260436_j_msds-2022-0147_ref_006
– ident: 2023021515375260436_j_msds-2022-0147_ref_013
– ident: 2023021515375260436_j_msds-2022-0147_ref_007
– ident: 2023021515375260436_j_msds-2022-0147_ref_003
– ident: 2023021515375260436_j_msds-2022-0147_ref_004
  doi: 10.1016/j.matcom.2013.09.009
– ident: 2023021515375260436_j_msds-2022-0147_ref_021
  doi: 10.1016/j.jmaa.2007.09.015
– ident: 2023021515375260436_j_msds-2022-0147_ref_010
  doi: 10.1016/S0362-546X(97)00612-3
– ident: 2023021515375260436_j_msds-2022-0147_ref_019
  doi: 10.1016/0022-1236(80)90009-9
– ident: 2023021515375260436_j_msds-2022-0147_ref_008
  doi: 10.4171/ZAA/1438
– ident: 2023021515375260436_j_msds-2022-0147_ref_014
  doi: 10.1080/03605309208820857
– ident: 2023021515375260436_j_msds-2022-0147_ref_020
– ident: 2023021515375260436_j_msds-2022-0147_ref_002
  doi: 10.1007/s13370-016-0448-6
– ident: 2023021515375260436_j_msds-2022-0147_ref_017
  doi: 10.1007/978-3-642-88044-5
– ident: 2023021515375260436_j_msds-2022-0147_ref_016
– ident: 2023021515375260436_j_msds-2022-0147_ref_018
– ident: 2023021515375260436_j_msds-2022-0147_ref_022
  doi: 10.1090/S0002-9947-09-04399-2
– ident: 2023021515375260436_j_msds-2022-0147_ref_001
  doi: 10.1016/j.na.2010.01.005
SSID ssj0001700030
Score 2.1682243
Snippet In this paper, we will study the existence of solutions for some nonlinear anisotropic elliptic equation of the type where is a Leray-Lions operator, the...
In this paper, we will study the existence of solutions for some nonlinear anisotropic elliptic equation of the type { A u + g ( x , u , ∇ u ) = μ − d i v   φ...
In this paper, we will study the existence of solutions for some nonlinear anisotropic elliptic equation of the type {Au+g(x,u,∇u)=μ−div φ(u)in Ω,u=0on ...
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Index Database
Publisher
StartPage 68
SubjectTerms 35J15
35J62
anisotropic Sobolev spaces
entropy solutions
measure data
nonlinear elliptic equations
Unilateral problem
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXOBQ3uqWh3xA4hRoHNuJD6gqqFWFBCdW6i3yY1wt2k26SVZtL_x2ZhJvEa8LQsohsWwnmm8cf2OPZxh75QQog9LPvDUmk8qrzMloM5_7wucCfBFHb4vP-nQuP56psx_-T0mA_R9NO8onNe-Wb67W14c44N-N2Xty9XbVhx7RFuRjIMvb7A7OSpoMsU-J6n-dwsSQQqe4jb83-2leGsP332O7l-OWdYDzbnM9bLdIx5nn5AHbTZSRH00YP2S3oHnE7if6yNPg7B-zb8dXhBk-8DbyG53iSEv5plksLR02XvKUQqbnNiGDnQwt1l8BX29svyDiaTtum0XfDl17sfCconbivwVv1lNo8J7TAi5fTSuMnPxMn7D5yfGXD6dZSq-QeSFLk3nagNdgkVO5oENhffSu0KVRYLEYDQkb6KRtsEKgGVZVToEqHchQ5gHKWDxlO03bwB7jufBQaeO1NWheIoUAYQ4qJwU4p2OVz9jrrXDriymKRk3WB8JQEww1wVATDDP2nmR_U4uiX48FbXdep8FUY_dRq4DcSjp5ECtXCdAhIJkKEZBwzVjxC3L1VrH-8lokydU_tTL7_-ODn7G7SRHxes52hm4DL5DsDO7lqMXfAYsaAtM
  priority: 102
  providerName: Scholars Portal
Title Existence of solutions for unilateral problems associated to some quasilinear anisotropic elliptic equations with measure data
URI https://www.degruyter.com/doi/10.1515/msds-2022-0147
https://doaj.org/article/9e2f65d3994b40f8b82e6dd658dfe993
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_SQRx908yg6FHoyWcuyLB2TkBAKzSmB3Iweo7AlaydrL20u-e2ZsZWwBEKgBIyxhWyLmU-eb_SYYeyHE1AalH7mrTGZLH2ZORlt5nNf-FyAL-Kw2uJcnV3KX1fl1UqqL1oTNoYHHgV3YEBEVQa0o9LJadROC1AhoOEMEdC40t93aqYrztSfMSgMwTdFaUSbfTDvQoeQELQQgXKprFihIVj_R7bxd5igDnC9WN73TxOig5053WIbiSDyw7Fh2-wDNJ_YZiKLPHXF7jN7OPlHGsIb3kb-jCCOJJQvm9mNpa3FNzwljOm4TXrAl_Qt1p8Dv1vabkY00y64bWZd2y_a25nnFKMT_yR4cTcGAu84Ddfy-TieyGlV6Rd2eXpycXyWpWQKmReyMpmn6XYFFhmUCyoU1kfvClWZEiwWo9tgA-2rDVYIdLq0diWUlQMZqjxAFYuvbK1pG_jGeC48aGW8sgadSSQMIMxUOynAORV1PmE_n4Rb344xM2ryNVANNamhJjXUpIYJOyLZP9eiWNdDASKgTgio30LAhBUvNFenfti98lmkxPq_njI779HgXbaegIjHHlvrF0vYR2rTu-8DivH8W-pHifb8Sg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gAcylssFPABiVO0jeM48bFULQuUcqCVerP8LCvtJm0earn0t3ecmKWAuFTKIbHsOPJnx9-Mx58B3mnqcoGtnxglRMJykyeaeZWY1GQmpc5kfoi2OOTzY_b5JD-5sRcmhFVad9r0P7tRIXVma9MHR9laawBn4NmqtS0CTENYAStmP7rV8i5scGT_dAIbO_OP37_99rQUA_GPio3_lv5jRhqE-x_A5sWwWL3-khtzzv4j2IxkkeyM6D6GO656Ag8jcSRxWLZP4WrvMqCFD6T2ZN2bCBJS0leLpQrbjJckHh7TEhUxwZd0NeZfOXLeq3YRKKdqiKoWbd019dnCkKDXiX8VvDkfRcFbEly3ZDX6FkmIMH0Gx_t7R7vzJB6skBjKCpGYsPTOnUI2pS23mTLe6IwXIncKk9GEUDbssbWKUjTAylLnLi-0Y7ZIrSt89hwmVV25F0BSalzJheFKoGGJ5MFRsV1qRp3W3JfpFN7_alx5NupnyGB3IAwywCADDDLAMIUPoe3XuYLu9ZBQN6cyDiOJr_c8t8iqmGbbvtQlddxapFHWO6RaU8j-Qk7GMdn-p1qkx-WtSomXt6rrLdybH309kAefDr-8gvuxF-K1BZOu6d1r5DidfhM78TVj2_5B
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVgKiFYtLwqphTwAolVNI3jOPayQIfhoYIEldhZflYjdZJpnAi66bdznbhDAbGplEVi2XHkY8fnXl8fI_RSE1cKaP3MKCEyWpoy09SrzOSmMDlxpvBDtMUxW5zQD9_Lq2jCkMIqrTtt-4tuVEid2cb00VG20RqAGXi2CjYAwCSGFdBqtrb-NtpiTBA-QVuHi3dfP_92tFQD70-Cjf8W_mNCGnT776HtH8Na9eZDrk058_toO3FFfDiC-wDdcvVDtJN4I06jMjxCl0c_I1jwgBuPN50JAx_Ffb08U3GX8RlOZ8cErBIk8JKugfwrh897FZaRcaoWq3oZmq5t1kuDo1wn_FTg5nzUBA84em7xanQt4hhg-hidzI--vVlk6VyFzBBaiczElXfmFJApbZktlPFGF6wSpVOQDBaEsnGLrVWEgP3FuS5dWWlHbZVbV_liF03qpnZPEM6JcZwJw5QAuxK4gyPigGtKnNbM83yKXl01rlyP8hkymh0Ag4wwyAiDjDBM0evY9ptcUfZ6SGjaU5lGkYTXe1ZaIFVU0wPPNSeOWQssynoHTGuKir-Qk2lIhv9UC-yY36iU2LtRXS_QnS9v5_LT--OPT9Hd1Anh2keTru3dM2A4nX6e-vAv8X39cA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existence+of+solutions+for+unilateral+problems+associated+to+some+quasilinear+anisotropic+elliptic+equations+with+measure+data&rft.jtitle=Nonautonomous+Dynamical+Systems&rft.au=Al-Hawmi+Mohammed&rft.au=Hjiaj+Hassane&rft.date=2022-01-01&rft.pub=De+Gruyter&rft.eissn=2353-0626&rft.volume=9&rft.issue=1&rft.spage=68&rft.epage=90&rft_id=info:doi/10.1515%2Fmsds-2022-0147&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9e2f65d3994b40f8b82e6dd658dfe993
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2353-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2353-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2353-0626&client=summon