Uniformly MXene‐Grafted Eutectic Aluminum‐Cerium Alloys as Flexible and Reversible Anode Materials for Rechargeable Aluminum‐Ion Battery
Aluminum is an attractive anode material in aqueous multivalent‐metal batteries for large‐scale energy storage because of its high Earth abundance, low cost, high theoretic capacity, and safety. However, state‐of‐the‐art aqueous aluminum‐ion batteries based on aluminum anode persistently suffer from...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 1 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aluminum is an attractive anode material in aqueous multivalent‐metal batteries for large‐scale energy storage because of its high Earth abundance, low cost, high theoretic capacity, and safety. However, state‐of‐the‐art aqueous aluminum‐ion batteries based on aluminum anode persistently suffer from poor rechargeability and low coulombic efficiency due to irreversibility of aluminum stripping/plating and dendrite growth. Here eutectic aluminum‐cerium alloys in situ grafted with uniform ultrathin MXene (MXene/E‐Al97Ce3) as flexible, reversible, and dendrite‐free anode materials for rechargeable aqueous aluminum‐ion batteries is reported. As a result of the MXene serving as stable solid electrolyte interphase to inhibit side reactions and the lamella‐nanostructured E‐Al97Ce3 enabling directional Al stripping and deposition by making use of symbiotic α‐Al metal and intermetallic Al11Ce3 lamellas, the MXene/E‐Al97Ce3 hybrid electrodes exhibit reversible and dendrite‐free Al stripping/plating with low voltage polarization of ± 54 mV for ≥1000 h in a low‐oxygen‐concentration aqueous aluminum trifluoromethanesulfonate (Al(OTF)3) electrolyte. These superior electrochemical properties endow soft‐package aluminum‐ion batteries assembled with MXene/E‐Al97Ce3 anode and AlxMnO2 cathode to have high initial discharge capacity of ≈360 mAh g−1 at 1 A g−1, and retain ≈85% after 500 cycles, along with the coulombic efficiency of as high as 99.5%.
Flexible MXene/E‐Al97Ce3 hybrid electrode that is developed by facile and scalable metallurgy and surface processing technologies exhibits exceptionally reversible, stable, and dendrite‐free Al stripping/plating behaviors in aqueous aluminum trifluoromethanesulfonate electrolyte with ultralow oxygen concentration. When coupled with the AlxMnO2‐based cathode, this electrode significantly improves rechargeability and stability of its soft‐package aluminum‐ion battery for potential use in large‐scale energy storage. |
---|---|
AbstractList | Aluminum is an attractive anode material in aqueous multivalent‐metal batteries for large‐scale energy storage because of its high Earth abundance, low cost, high theoretic capacity, and safety. However, state‐of‐the‐art aqueous aluminum‐ion batteries based on aluminum anode persistently suffer from poor rechargeability and low coulombic efficiency due to irreversibility of aluminum stripping/plating and dendrite growth. Here eutectic aluminum‐cerium alloys in situ grafted with uniform ultrathin MXene (MXene/E‐Al
97
Ce
3
) as flexible, reversible, and dendrite‐free anode materials for rechargeable aqueous aluminum‐ion batteries is reported. As a result of the MXene serving as stable solid electrolyte interphase to inhibit side reactions and the lamella‐nanostructured E‐Al
97
Ce
3
enabling directional Al stripping and deposition by making use of symbiotic α‐Al metal and intermetallic Al
11
Ce
3
lamellas, the MXene/E‐Al
97
Ce
3
hybrid electrodes exhibit reversible and dendrite‐free Al stripping/plating with low voltage polarization of ± 54 mV for ≥1000 h in a low‐oxygen‐concentration aqueous aluminum trifluoromethanesulfonate (Al(OTF)
3
) electrolyte. These superior electrochemical properties endow soft‐package aluminum‐ion batteries assembled with MXene/E‐Al
97
Ce
3
anode and Al
x
MnO
2
cathode to have high initial discharge capacity of ≈360 mAh g
−1
at 1 A g
−1
, and retain ≈85% after 500 cycles, along with the coulombic efficiency of as high as 99.5%. Aluminum is an attractive anode material in aqueous multivalent‐metal batteries for large‐scale energy storage because of its high Earth abundance, low cost, high theoretic capacity, and safety. However, state‐of‐the‐art aqueous aluminum‐ion batteries based on aluminum anode persistently suffer from poor rechargeability and low coulombic efficiency due to irreversibility of aluminum stripping/plating and dendrite growth. Here eutectic aluminum‐cerium alloys in situ grafted with uniform ultrathin MXene (MXene/E‐Al97Ce3) as flexible, reversible, and dendrite‐free anode materials for rechargeable aqueous aluminum‐ion batteries is reported. As a result of the MXene serving as stable solid electrolyte interphase to inhibit side reactions and the lamella‐nanostructured E‐Al97Ce3 enabling directional Al stripping and deposition by making use of symbiotic α‐Al metal and intermetallic Al11Ce3 lamellas, the MXene/E‐Al97Ce3 hybrid electrodes exhibit reversible and dendrite‐free Al stripping/plating with low voltage polarization of ± 54 mV for ≥1000 h in a low‐oxygen‐concentration aqueous aluminum trifluoromethanesulfonate (Al(OTF)3) electrolyte. These superior electrochemical properties endow soft‐package aluminum‐ion batteries assembled with MXene/E‐Al97Ce3 anode and AlxMnO2 cathode to have high initial discharge capacity of ≈360 mAh g−1 at 1 A g−1, and retain ≈85% after 500 cycles, along with the coulombic efficiency of as high as 99.5%. Flexible MXene/E‐Al97Ce3 hybrid electrode that is developed by facile and scalable metallurgy and surface processing technologies exhibits exceptionally reversible, stable, and dendrite‐free Al stripping/plating behaviors in aqueous aluminum trifluoromethanesulfonate electrolyte with ultralow oxygen concentration. When coupled with the AlxMnO2‐based cathode, this electrode significantly improves rechargeability and stability of its soft‐package aluminum‐ion battery for potential use in large‐scale energy storage. Aluminum is an attractive anode material in aqueous multivalent‐metal batteries for large‐scale energy storage because of its high Earth abundance, low cost, high theoretic capacity, and safety. However, state‐of‐the‐art aqueous aluminum‐ion batteries based on aluminum anode persistently suffer from poor rechargeability and low coulombic efficiency due to irreversibility of aluminum stripping/plating and dendrite growth. Here eutectic aluminum‐cerium alloys in situ grafted with uniform ultrathin MXene (MXene/E‐Al97Ce3) as flexible, reversible, and dendrite‐free anode materials for rechargeable aqueous aluminum‐ion batteries is reported. As a result of the MXene serving as stable solid electrolyte interphase to inhibit side reactions and the lamella‐nanostructured E‐Al97Ce3 enabling directional Al stripping and deposition by making use of symbiotic α‐Al metal and intermetallic Al11Ce3 lamellas, the MXene/E‐Al97Ce3 hybrid electrodes exhibit reversible and dendrite‐free Al stripping/plating with low voltage polarization of ± 54 mV for ≥1000 h in a low‐oxygen‐concentration aqueous aluminum trifluoromethanesulfonate (Al(OTF)3) electrolyte. These superior electrochemical properties endow soft‐package aluminum‐ion batteries assembled with MXene/E‐Al97Ce3 anode and AlxMnO2 cathode to have high initial discharge capacity of ≈360 mAh g−1 at 1 A g−1, and retain ≈85% after 500 cycles, along with the coulombic efficiency of as high as 99.5%. |
Author | Zhu, Mei‐Hua Wan, Wu‐Bin Lang, Xing‐You Shi, Hang Wen, Zi Jiang, Qing Meng, Huan Ran, Qing Zeng, Shu‐Pei |
Author_xml | – sequence: 1 givenname: Qing surname: Ran fullname: Ran, Qing organization: Jilin University – sequence: 2 givenname: Shu‐Pei surname: Zeng fullname: Zeng, Shu‐Pei organization: Jilin University – sequence: 3 givenname: Mei‐Hua surname: Zhu fullname: Zhu, Mei‐Hua organization: Jilin University – sequence: 4 givenname: Wu‐Bin surname: Wan fullname: Wan, Wu‐Bin organization: Jilin University – sequence: 5 givenname: Huan surname: Meng fullname: Meng, Huan organization: Jilin University – sequence: 6 givenname: Hang surname: Shi fullname: Shi, Hang organization: Jilin University – sequence: 7 givenname: Zi surname: Wen fullname: Wen, Zi organization: Jilin University – sequence: 8 givenname: Xing‐You orcidid: 0000-0002-8227-9695 surname: Lang fullname: Lang, Xing‐You email: xylang@jlu.edu.cn organization: Jilin University – sequence: 9 givenname: Qing surname: Jiang fullname: Jiang, Qing email: jiangq@jlu.edu.cn organization: Jilin University |
BookMark | eNqFkN9KIzEUxsOisFq99Tqw161JZjozvex2rRYsgij0bjhNTjRlJnGTjLtz5xOIz-iTGK0oLCxenX_f73zw7ZMd6ywScsTZiDMmjkHpdiSYEJyLkn8je7zgxTBjotr56PnqO9kPYcMYL8ss3yOP19Zo59ump8sVWnx-eDr1oCMqetJFlNFIOm261tiuTbcZetO1adO4PlAIdN7gX7NukIJV9BLv0Ye3cWqdQrqEmABoAk0e6Sxvwd8gvAk-ny6cpT8hJml_QHZ1kuPhex2Q6_nJ1exseH5xuphNz4dS5CUfSjnOsJRiUmGhNKvyTKHSQivkAFKu9ViqSS6ztMYCKsB1hhXLQawZjEGV2YD82P698-53hyHWG9d5myxrURaMF2OWsaQabVXSuxA86vrOmxZ8X3NWv2Zev2Zef2SegPwfQJoI0TgbPZjm_9hki_0xDfZfmNTTX_PlJ_sCHkCfgQ |
CitedBy_id | crossref_primary_10_1039_D4TA05711B crossref_primary_10_1039_D3TA01840G crossref_primary_10_1016_j_ensm_2024_103336 crossref_primary_10_1016_j_inoche_2024_113783 crossref_primary_10_1016_j_cej_2023_143644 crossref_primary_10_1016_j_cej_2023_144735 crossref_primary_10_1039_D4IM00031E crossref_primary_10_1016_j_ensm_2023_103057 crossref_primary_10_1088_1361_6528_ad555c crossref_primary_10_1039_D4CS00474D crossref_primary_10_1016_j_cej_2024_154345 crossref_primary_10_1039_D4TA02176B crossref_primary_10_1002_adfm_202303102 crossref_primary_10_1021_jacs_3c13003 crossref_primary_10_1016_j_pmatsci_2023_101227 crossref_primary_10_1016_j_ensm_2023_102953 crossref_primary_10_1016_j_jechem_2024_07_067 crossref_primary_10_1002_adma_202403803 crossref_primary_10_1002_cey2_639 crossref_primary_10_1016_j_ensm_2023_103141 crossref_primary_10_1039_D4GC04505J crossref_primary_10_1002_adfm_202423454 crossref_primary_10_1039_D4QI00468J crossref_primary_10_3390_nano14050442 crossref_primary_10_1016_j_cej_2023_143834 crossref_primary_10_1016_j_pmatsci_2024_101253 crossref_primary_10_1016_j_jpowsour_2024_234721 crossref_primary_10_1039_D4EE00400K crossref_primary_10_1002_advs_202304874 crossref_primary_10_20517_microstructures_2024_27 crossref_primary_10_1002_advs_202304235 crossref_primary_10_1016_j_ensm_2024_103991 crossref_primary_10_1002_smtd_202300758 crossref_primary_10_1002_smll_202309252 crossref_primary_10_1002_solr_202400153 crossref_primary_10_1039_D4CS00929K crossref_primary_10_1002_aenm_202302927 crossref_primary_10_1002_smll_202310722 crossref_primary_10_1016_j_est_2024_111287 crossref_primary_10_1002_smll_202405495 crossref_primary_10_1016_j_pmatsci_2024_101322 crossref_primary_10_1016_j_mattod_2023_12_009 crossref_primary_10_1002_sstr_202300201 crossref_primary_10_1063_5_0219080 crossref_primary_10_1039_D4NR01318B crossref_primary_10_1016_j_jpowsour_2023_233504 crossref_primary_10_1016_j_jpowsour_2023_232736 crossref_primary_10_1021_acsaem_4c00264 crossref_primary_10_1002_adma_202403791 crossref_primary_10_1007_s11581_023_05066_z crossref_primary_10_1016_j_cej_2025_160809 crossref_primary_10_1016_j_est_2023_110069 crossref_primary_10_1002_aenm_202401598 crossref_primary_10_1002_smll_202404093 crossref_primary_10_1007_s11426_023_1940_1 |
Cites_doi | 10.1126/science.aak9991 10.1038/s41563-018-0063-z 10.1021/acs.chemrev.0c00767 10.1038/s41467-019-12274-7 10.1038/s41467-022-28238-3 10.1039/c2ee22987k 10.1002/adma.202106511 10.1002/anie.201912634 10.1126/science.1212741 10.1021/jacs.0c05054 10.1021/acsnano.0c01056 10.1038/s41467-018-07980-7 10.1038/s41560-020-0674-x 10.1038/nenergy.2016.39 10.1038/s41560-018-0107-2 10.1002/aenm.202100077 10.1002/adma.201707334 10.1002/anie.202012322 10.1149/1.1376118 10.1021/jacs.2c04820 10.1038/ncomms14283 10.1038/nmat1672 10.1039/D1EE02021H 10.1038/s41467-020-15478-4 10.1002/anie.202011144 10.1126/sciadv.aau8131 10.1002/adfm.202112609 10.1021/ja312241y 10.1002/anie.201814031 10.1149/1.1869984 10.1007/s40820-022-00867-9 10.1002/adma.201604118 10.1038/s41560-020-00728-y 10.1038/s41560-020-00734-0 10.1021/acsami.9b16125 10.1002/adma.201304138 10.1039/C5TA06187C 10.1038/nature14340 10.1002/adsu.201800111 10.1007/s10853-019-03892-z 10.1002/adma.201706310 10.1021/acsenergylett.7b00110 10.1126/sciadv.aao7233 10.1038/s41467-021-21108-4 10.1038/nchem.2085 10.1038/s41560-020-0655-0 10.1016/S1386-1425(03)00279-8 10.1016/S0378-7753(01)01014-X 10.1038/s41467-020-15991-6 10.1016/j.corsci.2011.05.047 10.1021/acsenergylett.8b01426 10.1016/S0013-4686(96)00231-9 10.1021/acs.chemmater.0c00359 10.3389/fchem.2019.00268 10.1021/acsami.1c08782 10.1038/s41560-018-0291-0 10.1021/acsenergylett.0c02684 10.1038/nenergy.2016.119 10.1038/s41557-018-0045-4 10.1039/D2EE00134A 10.1002/aenm.201600137 10.1002/adma.201601357 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202211271 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202211271 ADFM202211271 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51871107; 52130101; 52271217; 52201217; 51631004 – fundername: Chang Jiang Scholar Program of China – fundername: Program for JLU Science and Technology Innovative Research Team funderid: JLUSTIRT; 2017TD‐09 – fundername: Postdoctoral Innovation Talents Support Program funderid: BX20220129 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c2471-cc53e7c298e6df0843dedf2fde1aaccbf5cd94c33dee6a8aeb3e804a2b0a5ad73 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 04:06:15 EDT 2025 Tue Jul 01 00:30:35 EDT 2025 Thu Apr 24 22:53:59 EDT 2025 Wed Jan 22 16:21:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2471-cc53e7c298e6df0843dedf2fde1aaccbf5cd94c33dee6a8aeb3e804a2b0a5ad73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8227-9695 |
PQID | 2760165030 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2760165030 crossref_primary_10_1002_adfm_202211271 crossref_citationtrail_10_1002_adfm_202211271 wiley_primary_10_1002_adfm_202211271_ADFM202211271 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2017; 2 2017; 3 2004; 60 2002; 110 1997; 42 2019; 10 2019; 58 2011; 53 2014; 26 2020; 59 2020; 14 2020; 12 2020; 55 2020; 11 2021; 121 2017; 356 2001; 148 2020; 5 2018; 3 2018; 4 2022; 34 2018; 30 2022; 32 2019; 7 2021; 6 2019; 4 2019; 3 2005; 152 2015; 3 2020; 142 2015; 520 1996 2006; 5 2017; 29 2020; 32 2015; 7 2021; 14 2022; 144 2021; 13 2016; 6 2018; 17 2011; 3345 2016; 1 2021; 12 2021; 11 2022; 13 2022; 14 2022; 15 2013; 135 2016; 28 2021; 60 2018; 10 2012; 5 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Cahn R. W. (e_1_2_8_46_1) 1996 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 12 start-page: 820 year: 2021 publication-title: Nat. Commun. – volume: 152 start-page: B140 year: 2005 publication-title: J. Electrochem. Soc. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 7564 year: 2016 publication-title: Adv. Mater. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 60 start-page: 689 year: 2004 publication-title: Spectrochim. Acta. A – volume: 59 start-page: 3048 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 60 start-page: 2861 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 55 start-page: 24 year: 2020 publication-title: J. Mater. Sci. – volume: 15 start-page: 2460 year: 2022 publication-title: Energy Environ. Sci. – volume: 53 start-page: 3007 year: 2011 publication-title: Corr. Sci. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 5 start-page: 646 year: 2020 publication-title: Nat. Energy – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 5 start-page: 1043 year: 2020 publication-title: Nat. Energy – volume: 26 start-page: 992 year: 2014 publication-title: Adv. Mater. – volume: 144 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 17 start-page: 543 year: 2018 publication-title: Nat. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 32 start-page: 3480 year: 2020 publication-title: Chem. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 267 year: 2018 publication-title: Nat. Energy – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 6 start-page: 21 year: 2021 publication-title: Nat. Energy – volume: 11 start-page: 2077 year: 2020 publication-title: Nat. Commun. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 60 start-page: 5794 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 19 year: 2015 publication-title: Nat. Chem. – volume: 3 start-page: 2480 year: 2018 publication-title: ACS Energy Lett. – volume: 12 start-page: 3522 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 1634 year: 2020 publication-title: Nat. Commun. – volume: 10 start-page: 73 year: 2019 publication-title: Nat. Commun. – volume: 7 start-page: 268 year: 2019 publication-title: Front Chem – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 10 start-page: 4292 year: 2019 publication-title: Nat. Commun. – volume: 5 start-page: 9743 year: 2012 publication-title: Energy Environ. Sci. – volume: 4 start-page: 51 year: 2019 publication-title: Nat. Energy – volume: 148 start-page: B251 year: 2001 publication-title: J. Electrochem. Soc. – volume: 5 start-page: 567 year: 2006 publication-title: Nat. Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 110 start-page: 1 year: 2002 publication-title: J. Power Sources – volume: 10 start-page: 667 year: 2018 publication-title: Nat. Chem. – year: 1996 – volume: 2 start-page: 689 year: 2017 publication-title: ACS Energy Lett. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 42 start-page: 697 year: 1997 publication-title: Electrochim. Acta – volume: 6 start-page: 1015 year: 2021 publication-title: ACS Energy Lett. – volume: 14 start-page: 128 year: 2022 publication-title: Nano‐Micro Lett. – volume: 3 year: 2019 publication-title: Adv. Sustainable Syst. – volume: 121 start-page: 1623 year: 2021 publication-title: Chem. Rev. – volume: 356 start-page: 415 year: 2017 publication-title: Science – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 14 start-page: 4916 year: 2020 publication-title: ACS Nano – volume: 14 start-page: 5669 year: 2021 publication-title: Energy Environ. Sci. – volume: 13 start-page: 576 year: 2022 publication-title: Nat. Commun. – volume: 3345 start-page: 928 year: 2011 publication-title: Science – volume: 5 start-page: 743 year: 2020 publication-title: Nat. Energy – volume: 520 start-page: 324 year: 2015 publication-title: Nature – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 4450 year: 2013 publication-title: J. Am. Chem. Soc. – ident: e_1_2_8_11_1 doi: 10.1126/science.aak9991 – ident: e_1_2_8_31_1 doi: 10.1038/s41563-018-0063-z – ident: e_1_2_8_2_1 doi: 10.1021/acs.chemrev.0c00767 – ident: e_1_2_8_12_1 doi: 10.1038/s41467-019-12274-7 – ident: e_1_2_8_42_1 doi: 10.1038/s41467-022-28238-3 – ident: e_1_2_8_33_1 doi: 10.1039/c2ee22987k – ident: e_1_2_8_21_1 doi: 10.1002/adma.202106511 – ident: e_1_2_8_37_1 doi: 10.1002/anie.201912634 – ident: e_1_2_8_1_1 doi: 10.1126/science.1212741 – ident: e_1_2_8_40_1 doi: 10.1021/jacs.0c05054 – ident: e_1_2_8_53_1 doi: 10.1021/acsnano.0c01056 – ident: e_1_2_8_35_1 doi: 10.1038/s41467-018-07980-7 – ident: e_1_2_8_8_1 doi: 10.1038/s41560-020-0674-x – volume-title: Physical Metallurgy year: 1996 ident: e_1_2_8_46_1 – ident: e_1_2_8_7_1 doi: 10.1038/nenergy.2016.39 – ident: e_1_2_8_3_1 doi: 10.1038/s41560-018-0107-2 – ident: e_1_2_8_44_1 doi: 10.1002/aenm.202100077 – ident: e_1_2_8_52_1 doi: 10.1002/adma.201707334 – ident: e_1_2_8_48_1 doi: 10.1002/anie.202012322 – ident: e_1_2_8_57_1 doi: 10.1149/1.1376118 – ident: e_1_2_8_36_1 doi: 10.1021/jacs.2c04820 – ident: e_1_2_8_19_1 doi: 10.1038/ncomms14283 – ident: e_1_2_8_63_1 doi: 10.1038/nmat1672 – ident: e_1_2_8_9_1 doi: 10.1039/D1EE02021H – ident: e_1_2_8_56_1 doi: 10.1038/s41467-020-15478-4 – ident: e_1_2_8_38_1 doi: 10.1002/anie.202011144 – ident: e_1_2_8_43_1 doi: 10.1126/sciadv.aau8131 – ident: e_1_2_8_61_1 doi: 10.1002/adfm.202112609 – ident: e_1_2_8_58_1 doi: 10.1021/ja312241y – ident: e_1_2_8_22_1 doi: 10.1002/anie.201814031 – ident: e_1_2_8_54_1 doi: 10.1149/1.1869984 – ident: e_1_2_8_13_1 doi: 10.1007/s40820-022-00867-9 – ident: e_1_2_8_24_1 doi: 10.1002/adma.201604118 – ident: e_1_2_8_16_1 doi: 10.1038/s41560-020-00728-y – ident: e_1_2_8_6_1 doi: 10.1038/s41560-020-00734-0 – ident: e_1_2_8_60_1 doi: 10.1021/acsami.9b16125 – ident: e_1_2_8_49_1 doi: 10.1002/adma.201304138 – ident: e_1_2_8_20_1 doi: 10.1039/C5TA06187C – ident: e_1_2_8_18_1 doi: 10.1038/nature14340 – ident: e_1_2_8_34_1 doi: 10.1002/adsu.201800111 – ident: e_1_2_8_47_1 doi: 10.1007/s10853-019-03892-z – ident: e_1_2_8_27_1 doi: 10.1002/adma.201706310 – ident: e_1_2_8_28_1 doi: 10.1021/acsenergylett.7b00110 – ident: e_1_2_8_25_1 doi: 10.1126/sciadv.aao7233 – ident: e_1_2_8_29_1 doi: 10.1038/s41467-021-21108-4 – ident: e_1_2_8_4_1 doi: 10.1038/nchem.2085 – ident: e_1_2_8_15_1 doi: 10.1038/s41560-020-0655-0 – ident: e_1_2_8_62_1 doi: 10.1016/S1386-1425(03)00279-8 – ident: e_1_2_8_41_1 doi: 10.1016/S0378-7753(01)01014-X – ident: e_1_2_8_51_1 doi: 10.1038/s41467-020-15991-6 – ident: e_1_2_8_55_1 doi: 10.1016/j.corsci.2011.05.047 – ident: e_1_2_8_10_1 doi: 10.1021/acsenergylett.8b01426 – ident: e_1_2_8_59_1 doi: 10.1016/S0013-4686(96)00231-9 – ident: e_1_2_8_50_1 doi: 10.1021/acs.chemmater.0c00359 – ident: e_1_2_8_17_1 doi: 10.3389/fchem.2019.00268 – ident: e_1_2_8_45_1 doi: 10.1021/acsami.1c08782 – ident: e_1_2_8_26_1 doi: 10.1038/s41560-018-0291-0 – ident: e_1_2_8_30_1 doi: 10.1021/acsenergylett.0c02684 – ident: e_1_2_8_32_1 doi: 10.1038/nenergy.2016.119 – ident: e_1_2_8_5_1 doi: 10.1038/s41557-018-0045-4 – ident: e_1_2_8_39_1 doi: 10.1039/D2EE00134A – ident: e_1_2_8_23_1 doi: 10.1002/aenm.201600137 – ident: e_1_2_8_14_1 doi: 10.1002/adma.201601357 |
SSID | ssj0017734 |
Score | 2.6151342 |
Snippet | Aluminum is an attractive anode material in aqueous multivalent‐metal batteries for large‐scale energy storage because of its high Earth abundance, low cost,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | alloy anodes Aluminum aluminum‐ion batteries Anodes aqueous rechargeable batteries Cerium base alloys Dendritic structure Electrochemical analysis Electrode materials Electrode polarization Electrolytes Energy storage eutectic alloys Lamella Low voltage Materials science MXenes Plating Rechargeable batteries Solid electrolytes Storage batteries |
Title | Uniformly MXene‐Grafted Eutectic Aluminum‐Cerium Alloys as Flexible and Reversible Anode Materials for Rechargeable Aluminum‐Ion Battery |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202211271 https://www.proquest.com/docview/2760165030 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYquLQHoKUVtIB8qNRTIOs8nBwjYHmo6YGCtLdo_JIQS7ZiN4fl1F-A-I39JZ2Jd7NLpQoJjn4ntsf-bM98w9jX3Jk8NDYKnFQyiOMQAnBKBwpSRfhfKiDj5PJHenoVnw-SwZIVv-eH6C7cSDLa9ZoEHNT4YEEaCsaRJbnAE4xojchJYYtQ0UXHH9WT0j8rpz1S8OoN5qyNoTh4WvzprrSAmsuAtd1x-usM5t_qFU1u9puJ2tf3_9A4vuZnNtjaDI7yws-f9-yNrT-wd0skhZvsAWEpIdvhlJcDXBn__H48uSPX4oYfN_QEca15gUvcdd3cYtohFmtuMWY4mo45jHmfKDfV0HKoDb-wrRoIBYt6ZCwvYeJlgGMbmNwyN1loMywqPRvV3DOBTj-yq_7x5eFpMPPiEGiBO1-gdRJZqUWe2dS4MIsjY40TztgegNbKJdrksY4w2qaQAZ7ubRbGIFQICRgZfWIr9ai2W4xrjEqFizOduFjiSTGKJOSCGGgQ1alwmwXzUaz0jOKcPG0MK0_OLCrq56rr5232rcv_y5N7_DfnznxSVDMhH1eC9IkQ4UbYsGhH95laquKoX3ahzy8p9IW9JYf3_hJoh61M7hq7i7BoovbYanFUfv-514rAX-NHDBY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOQAHKC_RUsAHJE5ps3YSJ8dV6XYLTQ9VK-0tGr-kim0WdTeH7YlfgPiN_SWdiTfZFgkhwdHvxPbYn-2Zbxj7WHhbxNbJyCutoiSJIQKvTaQh04T_lQYyTi5PsvF58mWSdtqEZAsT-CH6CzeSjHa9JgGnC-m9NWsoWE-m5AKPMIKsyB-SW-_2VHXaM0gNlAoPy9mAVLwGk463MRZ798vf35fWYPMuZG33nNEzpruvDaom33abhd41178ROf7X72yypytEyodhCj1nD1z9gj25w1P4kv1EZErgdrrk5QQXx5sfvw6vyLu45QcNvUJcGD7EVe6ibi4xbR-LNZcYM50t5xzmfESsm3rqONSWn7pWE4SCw3pmHS9hEcSAYxuY3JI3OWgzrCs9mtU8kIEuX7Hz0cHZ_jhaOXKIjMDNLzImlU4ZUeQusz7OE2md9cJbNwAwRvvU2CIxEqNdBjngAd_lcQJCx5CCVfI126hntXvDuMGoTPgkN6lPFB4WpVRQCCKhQWCn4y0WdcNYmRXLOTnbmFaBn1lU1M9V389b7FOf_3vg9_hjzp1uVlQrOZ9XglSKEORKbFi0w_uXWqrh51HZh7b_pdAH9mh8Vh5Xx0cnX9-yxxgvw53QDttYXDXuHaKkhX7fysEtG1AOnQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT9swFLcQSGg7bIxtGhtsPkzaKZDaTpwcK0oG24oQGlJv0fM_CVFSRJtDd-ITID4jn4TnuE0L0oS0Hf38L7H97J_t934m5GvuTB4byyMnlYyEiCECp3SkIFUe_0sF3jm5f5wenokfg2Sw5MUf-CHaAzevGc187RX8yri9BWkoGOc9yRnuYJh3Il8TaZz5cd07bQmkOlKGe-W04y28OoM5bWPM9h7nf7wsLbDmMmJtlpziNYH5xwZLk4vdeqJ29Z8nPI7_8zcb5NUMj9JuGEBvyIqtNsnLJZbCt-QWcamHtsMp7Q9wary_uft-7d8WN_Sg9ncQ55p2cY47r-pLjNvHbPUlSoaj6ZjCmBaec1MNLYXK0FPb2IH4YLcaGUv7MAlKQLEOjG6omyw0CRaFHo0qGqhAp-_IWXHwe_8wmj3jEGmGS1-kdcKt1CzPbGpcnAlurHHMGdsB0Fq5RJtcaI5im0IGuL23WSyAqRgSMJK_J6vVqLIfCNUoSpkTmU6ckLhV5FxCzjwFDcI6FW-RaN6LpZ5xnPunNoZlYGdmpW_nsm3nLfKtTX8V2D3-mnJ7PijKmZaPS-YNihDicqyYNb37TCllt1f029DHf8n0hayf9Iry19Hxz0_kBYp5OBDaJquT69ruIESaqM-NFjwACK0NVQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniformly+MXene%E2%80%90Grafted+Eutectic+Aluminum%E2%80%90Cerium+Alloys+as+Flexible+and+Reversible+Anode+Materials+for+Rechargeable+Aluminum%E2%80%90Ion+Battery&rft.jtitle=Advanced+functional+materials&rft.au=Ran%2C+Qing&rft.au=Zeng%2C+Shu%E2%80%90Pei&rft.au=Zhu%2C+Mei%E2%80%90Hua&rft.au=Wan%2C+Wu%E2%80%90Bin&rft.date=2023-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=1&rft_id=info:doi/10.1002%2Fadfm.202211271&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202211271 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |