Uniformly MXene‐Grafted Eutectic Aluminum‐Cerium Alloys as Flexible and Reversible Anode Materials for Rechargeable Aluminum‐Ion Battery

Aluminum is an attractive anode material in aqueous multivalent‐metal batteries for large‐scale energy storage because of its high Earth abundance, low cost, high theoretic capacity, and safety. However, state‐of‐the‐art aqueous aluminum‐ion batteries based on aluminum anode persistently suffer from...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 1
Main Authors Ran, Qing, Zeng, Shu‐Pei, Zhu, Mei‐Hua, Wan, Wu‐Bin, Meng, Huan, Shi, Hang, Wen, Zi, Lang, Xing‐You, Jiang, Qing
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aluminum is an attractive anode material in aqueous multivalent‐metal batteries for large‐scale energy storage because of its high Earth abundance, low cost, high theoretic capacity, and safety. However, state‐of‐the‐art aqueous aluminum‐ion batteries based on aluminum anode persistently suffer from poor rechargeability and low coulombic efficiency due to irreversibility of aluminum stripping/plating and dendrite growth. Here eutectic aluminum‐cerium alloys in situ grafted with uniform ultrathin MXene (MXene/E‐Al97Ce3) as flexible, reversible, and dendrite‐free anode materials for rechargeable aqueous aluminum‐ion batteries is reported. As a result of the MXene serving as stable solid electrolyte interphase to inhibit side reactions and the lamella‐nanostructured E‐Al97Ce3 enabling directional Al stripping and deposition by making use of symbiotic α‐Al metal and intermetallic Al11Ce3 lamellas, the MXene/E‐Al97Ce3 hybrid electrodes exhibit reversible and dendrite‐free Al stripping/plating with low voltage polarization of ± 54 mV for ≥1000 h in a low‐oxygen‐concentration aqueous aluminum trifluoromethanesulfonate (Al(OTF)3) electrolyte. These superior electrochemical properties endow soft‐package aluminum‐ion batteries assembled with MXene/E‐Al97Ce3 anode and AlxMnO2 cathode to have high initial discharge capacity of ≈360 mAh g−1 at 1 A g−1, and retain ≈85% after 500 cycles, along with the coulombic efficiency of as high as 99.5%. Flexible MXene/E‐Al97Ce3 hybrid electrode that is developed by facile and scalable metallurgy and surface processing technologies exhibits exceptionally reversible, stable, and dendrite‐free Al stripping/plating behaviors in aqueous aluminum trifluoromethanesulfonate electrolyte with ultralow oxygen concentration. When coupled with the AlxMnO2‐based cathode, this electrode significantly improves rechargeability and stability of its soft‐package aluminum‐ion battery for potential use in large‐scale energy storage.
AbstractList Aluminum is an attractive anode material in aqueous multivalent‐metal batteries for large‐scale energy storage because of its high Earth abundance, low cost, high theoretic capacity, and safety. However, state‐of‐the‐art aqueous aluminum‐ion batteries based on aluminum anode persistently suffer from poor rechargeability and low coulombic efficiency due to irreversibility of aluminum stripping/plating and dendrite growth. Here eutectic aluminum‐cerium alloys in situ grafted with uniform ultrathin MXene (MXene/E‐Al 97 Ce 3 ) as flexible, reversible, and dendrite‐free anode materials for rechargeable aqueous aluminum‐ion batteries is reported. As a result of the MXene serving as stable solid electrolyte interphase to inhibit side reactions and the lamella‐nanostructured E‐Al 97 Ce 3 enabling directional Al stripping and deposition by making use of symbiotic α‐Al metal and intermetallic Al 11 Ce 3 lamellas, the MXene/E‐Al 97 Ce 3 hybrid electrodes exhibit reversible and dendrite‐free Al stripping/plating with low voltage polarization of ± 54 mV for ≥1000 h in a low‐oxygen‐concentration aqueous aluminum trifluoromethanesulfonate (Al(OTF) 3 ) electrolyte. These superior electrochemical properties endow soft‐package aluminum‐ion batteries assembled with MXene/E‐Al 97 Ce 3 anode and Al x MnO 2 cathode to have high initial discharge capacity of ≈360 mAh g −1 at 1 A g −1 , and retain ≈85% after 500 cycles, along with the coulombic efficiency of as high as 99.5%.
Aluminum is an attractive anode material in aqueous multivalent‐metal batteries for large‐scale energy storage because of its high Earth abundance, low cost, high theoretic capacity, and safety. However, state‐of‐the‐art aqueous aluminum‐ion batteries based on aluminum anode persistently suffer from poor rechargeability and low coulombic efficiency due to irreversibility of aluminum stripping/plating and dendrite growth. Here eutectic aluminum‐cerium alloys in situ grafted with uniform ultrathin MXene (MXene/E‐Al97Ce3) as flexible, reversible, and dendrite‐free anode materials for rechargeable aqueous aluminum‐ion batteries is reported. As a result of the MXene serving as stable solid electrolyte interphase to inhibit side reactions and the lamella‐nanostructured E‐Al97Ce3 enabling directional Al stripping and deposition by making use of symbiotic α‐Al metal and intermetallic Al11Ce3 lamellas, the MXene/E‐Al97Ce3 hybrid electrodes exhibit reversible and dendrite‐free Al stripping/plating with low voltage polarization of ± 54 mV for ≥1000 h in a low‐oxygen‐concentration aqueous aluminum trifluoromethanesulfonate (Al(OTF)3) electrolyte. These superior electrochemical properties endow soft‐package aluminum‐ion batteries assembled with MXene/E‐Al97Ce3 anode and AlxMnO2 cathode to have high initial discharge capacity of ≈360 mAh g−1 at 1 A g−1, and retain ≈85% after 500 cycles, along with the coulombic efficiency of as high as 99.5%. Flexible MXene/E‐Al97Ce3 hybrid electrode that is developed by facile and scalable metallurgy and surface processing technologies exhibits exceptionally reversible, stable, and dendrite‐free Al stripping/plating behaviors in aqueous aluminum trifluoromethanesulfonate electrolyte with ultralow oxygen concentration. When coupled with the AlxMnO2‐based cathode, this electrode significantly improves rechargeability and stability of its soft‐package aluminum‐ion battery for potential use in large‐scale energy storage.
Aluminum is an attractive anode material in aqueous multivalent‐metal batteries for large‐scale energy storage because of its high Earth abundance, low cost, high theoretic capacity, and safety. However, state‐of‐the‐art aqueous aluminum‐ion batteries based on aluminum anode persistently suffer from poor rechargeability and low coulombic efficiency due to irreversibility of aluminum stripping/plating and dendrite growth. Here eutectic aluminum‐cerium alloys in situ grafted with uniform ultrathin MXene (MXene/E‐Al97Ce3) as flexible, reversible, and dendrite‐free anode materials for rechargeable aqueous aluminum‐ion batteries is reported. As a result of the MXene serving as stable solid electrolyte interphase to inhibit side reactions and the lamella‐nanostructured E‐Al97Ce3 enabling directional Al stripping and deposition by making use of symbiotic α‐Al metal and intermetallic Al11Ce3 lamellas, the MXene/E‐Al97Ce3 hybrid electrodes exhibit reversible and dendrite‐free Al stripping/plating with low voltage polarization of ± 54 mV for ≥1000 h in a low‐oxygen‐concentration aqueous aluminum trifluoromethanesulfonate (Al(OTF)3) electrolyte. These superior electrochemical properties endow soft‐package aluminum‐ion batteries assembled with MXene/E‐Al97Ce3 anode and AlxMnO2 cathode to have high initial discharge capacity of ≈360 mAh g−1 at 1 A g−1, and retain ≈85% after 500 cycles, along with the coulombic efficiency of as high as 99.5%.
Author Zhu, Mei‐Hua
Wan, Wu‐Bin
Lang, Xing‐You
Shi, Hang
Wen, Zi
Jiang, Qing
Meng, Huan
Ran, Qing
Zeng, Shu‐Pei
Author_xml – sequence: 1
  givenname: Qing
  surname: Ran
  fullname: Ran, Qing
  organization: Jilin University
– sequence: 2
  givenname: Shu‐Pei
  surname: Zeng
  fullname: Zeng, Shu‐Pei
  organization: Jilin University
– sequence: 3
  givenname: Mei‐Hua
  surname: Zhu
  fullname: Zhu, Mei‐Hua
  organization: Jilin University
– sequence: 4
  givenname: Wu‐Bin
  surname: Wan
  fullname: Wan, Wu‐Bin
  organization: Jilin University
– sequence: 5
  givenname: Huan
  surname: Meng
  fullname: Meng, Huan
  organization: Jilin University
– sequence: 6
  givenname: Hang
  surname: Shi
  fullname: Shi, Hang
  organization: Jilin University
– sequence: 7
  givenname: Zi
  surname: Wen
  fullname: Wen, Zi
  organization: Jilin University
– sequence: 8
  givenname: Xing‐You
  orcidid: 0000-0002-8227-9695
  surname: Lang
  fullname: Lang, Xing‐You
  email: xylang@jlu.edu.cn
  organization: Jilin University
– sequence: 9
  givenname: Qing
  surname: Jiang
  fullname: Jiang, Qing
  email: jiangq@jlu.edu.cn
  organization: Jilin University
BookMark eNqFkN9KIzEUxsOisFq99Tqw161JZjozvex2rRYsgij0bjhNTjRlJnGTjLtz5xOIz-iTGK0oLCxenX_f73zw7ZMd6ywScsTZiDMmjkHpdiSYEJyLkn8je7zgxTBjotr56PnqO9kPYcMYL8ss3yOP19Zo59ump8sVWnx-eDr1oCMqetJFlNFIOm261tiuTbcZetO1adO4PlAIdN7gX7NukIJV9BLv0Ye3cWqdQrqEmABoAk0e6Sxvwd8gvAk-ny6cpT8hJml_QHZ1kuPhex2Q6_nJ1exseH5xuphNz4dS5CUfSjnOsJRiUmGhNKvyTKHSQivkAFKu9ViqSS6ztMYCKsB1hhXLQawZjEGV2YD82P698-53hyHWG9d5myxrURaMF2OWsaQabVXSuxA86vrOmxZ8X3NWv2Zev2Zef2SegPwfQJoI0TgbPZjm_9hki_0xDfZfmNTTX_PlJ_sCHkCfgQ
CitedBy_id crossref_primary_10_1039_D4TA05711B
crossref_primary_10_1039_D3TA01840G
crossref_primary_10_1016_j_ensm_2024_103336
crossref_primary_10_1016_j_inoche_2024_113783
crossref_primary_10_1016_j_cej_2023_143644
crossref_primary_10_1016_j_cej_2023_144735
crossref_primary_10_1039_D4IM00031E
crossref_primary_10_1016_j_ensm_2023_103057
crossref_primary_10_1088_1361_6528_ad555c
crossref_primary_10_1039_D4CS00474D
crossref_primary_10_1016_j_cej_2024_154345
crossref_primary_10_1039_D4TA02176B
crossref_primary_10_1002_adfm_202303102
crossref_primary_10_1021_jacs_3c13003
crossref_primary_10_1016_j_pmatsci_2023_101227
crossref_primary_10_1016_j_ensm_2023_102953
crossref_primary_10_1016_j_jechem_2024_07_067
crossref_primary_10_1002_adma_202403803
crossref_primary_10_1002_cey2_639
crossref_primary_10_1016_j_ensm_2023_103141
crossref_primary_10_1039_D4GC04505J
crossref_primary_10_1002_adfm_202423454
crossref_primary_10_1039_D4QI00468J
crossref_primary_10_3390_nano14050442
crossref_primary_10_1016_j_cej_2023_143834
crossref_primary_10_1016_j_pmatsci_2024_101253
crossref_primary_10_1016_j_jpowsour_2024_234721
crossref_primary_10_1039_D4EE00400K
crossref_primary_10_1002_advs_202304874
crossref_primary_10_20517_microstructures_2024_27
crossref_primary_10_1002_advs_202304235
crossref_primary_10_1016_j_ensm_2024_103991
crossref_primary_10_1002_smtd_202300758
crossref_primary_10_1002_smll_202309252
crossref_primary_10_1002_solr_202400153
crossref_primary_10_1039_D4CS00929K
crossref_primary_10_1002_aenm_202302927
crossref_primary_10_1002_smll_202310722
crossref_primary_10_1016_j_est_2024_111287
crossref_primary_10_1002_smll_202405495
crossref_primary_10_1016_j_pmatsci_2024_101322
crossref_primary_10_1016_j_mattod_2023_12_009
crossref_primary_10_1002_sstr_202300201
crossref_primary_10_1063_5_0219080
crossref_primary_10_1039_D4NR01318B
crossref_primary_10_1016_j_jpowsour_2023_233504
crossref_primary_10_1016_j_jpowsour_2023_232736
crossref_primary_10_1021_acsaem_4c00264
crossref_primary_10_1002_adma_202403791
crossref_primary_10_1007_s11581_023_05066_z
crossref_primary_10_1016_j_cej_2025_160809
crossref_primary_10_1016_j_est_2023_110069
crossref_primary_10_1002_aenm_202401598
crossref_primary_10_1002_smll_202404093
crossref_primary_10_1007_s11426_023_1940_1
Cites_doi 10.1126/science.aak9991
10.1038/s41563-018-0063-z
10.1021/acs.chemrev.0c00767
10.1038/s41467-019-12274-7
10.1038/s41467-022-28238-3
10.1039/c2ee22987k
10.1002/adma.202106511
10.1002/anie.201912634
10.1126/science.1212741
10.1021/jacs.0c05054
10.1021/acsnano.0c01056
10.1038/s41467-018-07980-7
10.1038/s41560-020-0674-x
10.1038/nenergy.2016.39
10.1038/s41560-018-0107-2
10.1002/aenm.202100077
10.1002/adma.201707334
10.1002/anie.202012322
10.1149/1.1376118
10.1021/jacs.2c04820
10.1038/ncomms14283
10.1038/nmat1672
10.1039/D1EE02021H
10.1038/s41467-020-15478-4
10.1002/anie.202011144
10.1126/sciadv.aau8131
10.1002/adfm.202112609
10.1021/ja312241y
10.1002/anie.201814031
10.1149/1.1869984
10.1007/s40820-022-00867-9
10.1002/adma.201604118
10.1038/s41560-020-00728-y
10.1038/s41560-020-00734-0
10.1021/acsami.9b16125
10.1002/adma.201304138
10.1039/C5TA06187C
10.1038/nature14340
10.1002/adsu.201800111
10.1007/s10853-019-03892-z
10.1002/adma.201706310
10.1021/acsenergylett.7b00110
10.1126/sciadv.aao7233
10.1038/s41467-021-21108-4
10.1038/nchem.2085
10.1038/s41560-020-0655-0
10.1016/S1386-1425(03)00279-8
10.1016/S0378-7753(01)01014-X
10.1038/s41467-020-15991-6
10.1016/j.corsci.2011.05.047
10.1021/acsenergylett.8b01426
10.1016/S0013-4686(96)00231-9
10.1021/acs.chemmater.0c00359
10.3389/fchem.2019.00268
10.1021/acsami.1c08782
10.1038/s41560-018-0291-0
10.1021/acsenergylett.0c02684
10.1038/nenergy.2016.119
10.1038/s41557-018-0045-4
10.1039/D2EE00134A
10.1002/aenm.201600137
10.1002/adma.201601357
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202211271
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202211271
ADFM202211271
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51871107; 52130101; 52271217; 52201217; 51631004
– fundername: Chang Jiang Scholar Program of China
– fundername: Program for JLU Science and Technology Innovative Research Team
  funderid: JLUSTIRT; 2017TD‐09
– fundername: Postdoctoral Innovation Talents Support Program
  funderid: BX20220129
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c2471-cc53e7c298e6df0843dedf2fde1aaccbf5cd94c33dee6a8aeb3e804a2b0a5ad73
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 04:06:15 EDT 2025
Tue Jul 01 00:30:35 EDT 2025
Thu Apr 24 22:53:59 EDT 2025
Wed Jan 22 16:21:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2471-cc53e7c298e6df0843dedf2fde1aaccbf5cd94c33dee6a8aeb3e804a2b0a5ad73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8227-9695
PQID 2760165030
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2760165030
crossref_primary_10_1002_adfm_202211271
crossref_citationtrail_10_1002_adfm_202211271
wiley_primary_10_1002_adfm_202211271_ADFM202211271
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2017; 2
2017; 3
2004; 60
2002; 110
1997; 42
2019; 10
2019; 58
2011; 53
2014; 26
2020; 59
2020; 14
2020; 12
2020; 55
2020; 11
2021; 121
2017; 356
2001; 148
2020; 5
2018; 3
2018; 4
2022; 34
2018; 30
2022; 32
2019; 7
2021; 6
2019; 4
2019; 3
2005; 152
2015; 3
2020; 142
2015; 520
1996
2006; 5
2017; 29
2020; 32
2015; 7
2021; 14
2022; 144
2021; 13
2016; 6
2018; 17
2011; 3345
2016; 1
2021; 12
2021; 11
2022; 13
2022; 14
2022; 15
2013; 135
2016; 28
2021; 60
2018; 10
2012; 5
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Cahn R. W. (e_1_2_8_46_1) 1996
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 12
  start-page: 820
  year: 2021
  publication-title: Nat. Commun.
– volume: 152
  start-page: B140
  year: 2005
  publication-title: J. Electrochem. Soc.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 7564
  year: 2016
  publication-title: Adv. Mater.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 60
  start-page: 689
  year: 2004
  publication-title: Spectrochim. Acta. A
– volume: 59
  start-page: 3048
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 60
  start-page: 2861
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  start-page: 24
  year: 2020
  publication-title: J. Mater. Sci.
– volume: 15
  start-page: 2460
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 53
  start-page: 3007
  year: 2011
  publication-title: Corr. Sci.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 5
  start-page: 646
  year: 2020
  publication-title: Nat. Energy
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1043
  year: 2020
  publication-title: Nat. Energy
– volume: 26
  start-page: 992
  year: 2014
  publication-title: Adv. Mater.
– volume: 144
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 17
  start-page: 543
  year: 2018
  publication-title: Nat. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 32
  start-page: 3480
  year: 2020
  publication-title: Chem. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 267
  year: 2018
  publication-title: Nat. Energy
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 21
  year: 2021
  publication-title: Nat. Energy
– volume: 11
  start-page: 2077
  year: 2020
  publication-title: Nat. Commun.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 60
  start-page: 5794
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 19
  year: 2015
  publication-title: Nat. Chem.
– volume: 3
  start-page: 2480
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 12
  start-page: 3522
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 1634
  year: 2020
  publication-title: Nat. Commun.
– volume: 10
  start-page: 73
  year: 2019
  publication-title: Nat. Commun.
– volume: 7
  start-page: 268
  year: 2019
  publication-title: Front Chem
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 4292
  year: 2019
  publication-title: Nat. Commun.
– volume: 5
  start-page: 9743
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 51
  year: 2019
  publication-title: Nat. Energy
– volume: 148
  start-page: B251
  year: 2001
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 567
  year: 2006
  publication-title: Nat. Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 110
  start-page: 1
  year: 2002
  publication-title: J. Power Sources
– volume: 10
  start-page: 667
  year: 2018
  publication-title: Nat. Chem.
– year: 1996
– volume: 2
  start-page: 689
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 42
  start-page: 697
  year: 1997
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 1015
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 14
  start-page: 128
  year: 2022
  publication-title: Nano‐Micro Lett.
– volume: 3
  year: 2019
  publication-title: Adv. Sustainable Syst.
– volume: 121
  start-page: 1623
  year: 2021
  publication-title: Chem. Rev.
– volume: 356
  start-page: 415
  year: 2017
  publication-title: Science
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 14
  start-page: 4916
  year: 2020
  publication-title: ACS Nano
– volume: 14
  start-page: 5669
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 576
  year: 2022
  publication-title: Nat. Commun.
– volume: 3345
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 5
  start-page: 743
  year: 2020
  publication-title: Nat. Energy
– volume: 520
  start-page: 324
  year: 2015
  publication-title: Nature
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 4450
  year: 2013
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_8_11_1
  doi: 10.1126/science.aak9991
– ident: e_1_2_8_31_1
  doi: 10.1038/s41563-018-0063-z
– ident: e_1_2_8_2_1
  doi: 10.1021/acs.chemrev.0c00767
– ident: e_1_2_8_12_1
  doi: 10.1038/s41467-019-12274-7
– ident: e_1_2_8_42_1
  doi: 10.1038/s41467-022-28238-3
– ident: e_1_2_8_33_1
  doi: 10.1039/c2ee22987k
– ident: e_1_2_8_21_1
  doi: 10.1002/adma.202106511
– ident: e_1_2_8_37_1
  doi: 10.1002/anie.201912634
– ident: e_1_2_8_1_1
  doi: 10.1126/science.1212741
– ident: e_1_2_8_40_1
  doi: 10.1021/jacs.0c05054
– ident: e_1_2_8_53_1
  doi: 10.1021/acsnano.0c01056
– ident: e_1_2_8_35_1
  doi: 10.1038/s41467-018-07980-7
– ident: e_1_2_8_8_1
  doi: 10.1038/s41560-020-0674-x
– volume-title: Physical Metallurgy
  year: 1996
  ident: e_1_2_8_46_1
– ident: e_1_2_8_7_1
  doi: 10.1038/nenergy.2016.39
– ident: e_1_2_8_3_1
  doi: 10.1038/s41560-018-0107-2
– ident: e_1_2_8_44_1
  doi: 10.1002/aenm.202100077
– ident: e_1_2_8_52_1
  doi: 10.1002/adma.201707334
– ident: e_1_2_8_48_1
  doi: 10.1002/anie.202012322
– ident: e_1_2_8_57_1
  doi: 10.1149/1.1376118
– ident: e_1_2_8_36_1
  doi: 10.1021/jacs.2c04820
– ident: e_1_2_8_19_1
  doi: 10.1038/ncomms14283
– ident: e_1_2_8_63_1
  doi: 10.1038/nmat1672
– ident: e_1_2_8_9_1
  doi: 10.1039/D1EE02021H
– ident: e_1_2_8_56_1
  doi: 10.1038/s41467-020-15478-4
– ident: e_1_2_8_38_1
  doi: 10.1002/anie.202011144
– ident: e_1_2_8_43_1
  doi: 10.1126/sciadv.aau8131
– ident: e_1_2_8_61_1
  doi: 10.1002/adfm.202112609
– ident: e_1_2_8_58_1
  doi: 10.1021/ja312241y
– ident: e_1_2_8_22_1
  doi: 10.1002/anie.201814031
– ident: e_1_2_8_54_1
  doi: 10.1149/1.1869984
– ident: e_1_2_8_13_1
  doi: 10.1007/s40820-022-00867-9
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.201604118
– ident: e_1_2_8_16_1
  doi: 10.1038/s41560-020-00728-y
– ident: e_1_2_8_6_1
  doi: 10.1038/s41560-020-00734-0
– ident: e_1_2_8_60_1
  doi: 10.1021/acsami.9b16125
– ident: e_1_2_8_49_1
  doi: 10.1002/adma.201304138
– ident: e_1_2_8_20_1
  doi: 10.1039/C5TA06187C
– ident: e_1_2_8_18_1
  doi: 10.1038/nature14340
– ident: e_1_2_8_34_1
  doi: 10.1002/adsu.201800111
– ident: e_1_2_8_47_1
  doi: 10.1007/s10853-019-03892-z
– ident: e_1_2_8_27_1
  doi: 10.1002/adma.201706310
– ident: e_1_2_8_28_1
  doi: 10.1021/acsenergylett.7b00110
– ident: e_1_2_8_25_1
  doi: 10.1126/sciadv.aao7233
– ident: e_1_2_8_29_1
  doi: 10.1038/s41467-021-21108-4
– ident: e_1_2_8_4_1
  doi: 10.1038/nchem.2085
– ident: e_1_2_8_15_1
  doi: 10.1038/s41560-020-0655-0
– ident: e_1_2_8_62_1
  doi: 10.1016/S1386-1425(03)00279-8
– ident: e_1_2_8_41_1
  doi: 10.1016/S0378-7753(01)01014-X
– ident: e_1_2_8_51_1
  doi: 10.1038/s41467-020-15991-6
– ident: e_1_2_8_55_1
  doi: 10.1016/j.corsci.2011.05.047
– ident: e_1_2_8_10_1
  doi: 10.1021/acsenergylett.8b01426
– ident: e_1_2_8_59_1
  doi: 10.1016/S0013-4686(96)00231-9
– ident: e_1_2_8_50_1
  doi: 10.1021/acs.chemmater.0c00359
– ident: e_1_2_8_17_1
  doi: 10.3389/fchem.2019.00268
– ident: e_1_2_8_45_1
  doi: 10.1021/acsami.1c08782
– ident: e_1_2_8_26_1
  doi: 10.1038/s41560-018-0291-0
– ident: e_1_2_8_30_1
  doi: 10.1021/acsenergylett.0c02684
– ident: e_1_2_8_32_1
  doi: 10.1038/nenergy.2016.119
– ident: e_1_2_8_5_1
  doi: 10.1038/s41557-018-0045-4
– ident: e_1_2_8_39_1
  doi: 10.1039/D2EE00134A
– ident: e_1_2_8_23_1
  doi: 10.1002/aenm.201600137
– ident: e_1_2_8_14_1
  doi: 10.1002/adma.201601357
SSID ssj0017734
Score 2.6151342
Snippet Aluminum is an attractive anode material in aqueous multivalent‐metal batteries for large‐scale energy storage because of its high Earth abundance, low cost,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms alloy anodes
Aluminum
aluminum‐ion batteries
Anodes
aqueous rechargeable batteries
Cerium base alloys
Dendritic structure
Electrochemical analysis
Electrode materials
Electrode polarization
Electrolytes
Energy storage
eutectic alloys
Lamella
Low voltage
Materials science
MXenes
Plating
Rechargeable batteries
Solid electrolytes
Storage batteries
Title Uniformly MXene‐Grafted Eutectic Aluminum‐Cerium Alloys as Flexible and Reversible Anode Materials for Rechargeable Aluminum‐Ion Battery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202211271
https://www.proquest.com/docview/2760165030
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYquLQHoKUVtIB8qNRTIOs8nBwjYHmo6YGCtLdo_JIQS7ZiN4fl1F-A-I39JZ2Jd7NLpQoJjn4ntsf-bM98w9jX3Jk8NDYKnFQyiOMQAnBKBwpSRfhfKiDj5PJHenoVnw-SwZIVv-eH6C7cSDLa9ZoEHNT4YEEaCsaRJbnAE4xojchJYYtQ0UXHH9WT0j8rpz1S8OoN5qyNoTh4WvzprrSAmsuAtd1x-usM5t_qFU1u9puJ2tf3_9A4vuZnNtjaDI7yws-f9-yNrT-wd0skhZvsAWEpIdvhlJcDXBn__H48uSPX4oYfN_QEca15gUvcdd3cYtohFmtuMWY4mo45jHmfKDfV0HKoDb-wrRoIBYt6ZCwvYeJlgGMbmNwyN1loMywqPRvV3DOBTj-yq_7x5eFpMPPiEGiBO1-gdRJZqUWe2dS4MIsjY40TztgegNbKJdrksY4w2qaQAZ7ubRbGIFQICRgZfWIr9ai2W4xrjEqFizOduFjiSTGKJOSCGGgQ1alwmwXzUaz0jOKcPG0MK0_OLCrq56rr5232rcv_y5N7_DfnznxSVDMhH1eC9IkQ4UbYsGhH95laquKoX3ahzy8p9IW9JYf3_hJoh61M7hq7i7BoovbYanFUfv-514rAX-NHDBY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOQAHKC_RUsAHJE5ps3YSJ8dV6XYLTQ9VK-0tGr-kim0WdTeH7YlfgPiN_SWdiTfZFgkhwdHvxPbYn-2Zbxj7WHhbxNbJyCutoiSJIQKvTaQh04T_lQYyTi5PsvF58mWSdtqEZAsT-CH6CzeSjHa9JgGnC-m9NWsoWE-m5AKPMIKsyB-SW-_2VHXaM0gNlAoPy9mAVLwGk463MRZ798vf35fWYPMuZG33nNEzpruvDaom33abhd41178ROf7X72yypytEyodhCj1nD1z9gj25w1P4kv1EZErgdrrk5QQXx5sfvw6vyLu45QcNvUJcGD7EVe6ibi4xbR-LNZcYM50t5xzmfESsm3rqONSWn7pWE4SCw3pmHS9hEcSAYxuY3JI3OWgzrCs9mtU8kIEuX7Hz0cHZ_jhaOXKIjMDNLzImlU4ZUeQusz7OE2md9cJbNwAwRvvU2CIxEqNdBjngAd_lcQJCx5CCVfI126hntXvDuMGoTPgkN6lPFB4WpVRQCCKhQWCn4y0WdcNYmRXLOTnbmFaBn1lU1M9V389b7FOf_3vg9_hjzp1uVlQrOZ9XglSKEORKbFi0w_uXWqrh51HZh7b_pdAH9mh8Vh5Xx0cnX9-yxxgvw53QDttYXDXuHaKkhX7fysEtG1AOnQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT9swFLcQSGg7bIxtGhtsPkzaKZDaTpwcK0oG24oQGlJv0fM_CVFSRJtDd-ITID4jn4TnuE0L0oS0Hf38L7H97J_t934m5GvuTB4byyMnlYyEiCECp3SkIFUe_0sF3jm5f5wenokfg2Sw5MUf-CHaAzevGc187RX8yri9BWkoGOc9yRnuYJh3Il8TaZz5cd07bQmkOlKGe-W04y28OoM5bWPM9h7nf7wsLbDmMmJtlpziNYH5xwZLk4vdeqJ29Z8nPI7_8zcb5NUMj9JuGEBvyIqtNsnLJZbCt-QWcamHtsMp7Q9wary_uft-7d8WN_Sg9ncQ55p2cY47r-pLjNvHbPUlSoaj6ZjCmBaec1MNLYXK0FPb2IH4YLcaGUv7MAlKQLEOjG6omyw0CRaFHo0qGqhAp-_IWXHwe_8wmj3jEGmGS1-kdcKt1CzPbGpcnAlurHHMGdsB0Fq5RJtcaI5im0IGuL23WSyAqRgSMJK_J6vVqLIfCNUoSpkTmU6ckLhV5FxCzjwFDcI6FW-RaN6LpZ5xnPunNoZlYGdmpW_nsm3nLfKtTX8V2D3-mnJ7PijKmZaPS-YNihDicqyYNb37TCllt1f029DHf8n0hayf9Iry19Hxz0_kBYp5OBDaJquT69ruIESaqM-NFjwACK0NVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniformly+MXene%E2%80%90Grafted+Eutectic+Aluminum%E2%80%90Cerium+Alloys+as+Flexible+and+Reversible+Anode+Materials+for+Rechargeable+Aluminum%E2%80%90Ion+Battery&rft.jtitle=Advanced+functional+materials&rft.au=Ran%2C+Qing&rft.au=Zeng%2C+Shu%E2%80%90Pei&rft.au=Zhu%2C+Mei%E2%80%90Hua&rft.au=Wan%2C+Wu%E2%80%90Bin&rft.date=2023-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=1&rft_id=info:doi/10.1002%2Fadfm.202211271&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202211271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon