Waste glass as a precursor in alkali‐activated materials: Mechanical, durability, and microstructural properties
The long‐term characteristics and durability of alkali‐activated mortars based on waste glass are crucial to better understand their performance in aggressive environments. In this regard, the performance of waste glass as a building material and its characteristics such as mechanical (compressive,...
Saved in:
Published in | Structural concrete : journal of the FIB Vol. 23; no. 6; pp. 3651 - 3671 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY‐VCH Verlag GmbH & Co. KGaA
01.12.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The long‐term characteristics and durability of alkali‐activated mortars based on waste glass are crucial to better understand their performance in aggressive environments. In this regard, the performance of waste glass as a building material and its characteristics such as mechanical (compressive, flexural, and tensile strengths), durability (chloride migration coefficient, sulfate resistance, and drying shrinkage), and microstructural properties [x‐ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) with energy dispersive x‐ray analysis (SEM/EDX)] were evaluated. For this purpose, the specimens with different amounts of silica modulus and Na2O content were prepared. The specimens were cured at 95°C for 20 h and then kept at a relative humidity of 50% at room temperature until testing. The specimen with 10% Na2O and a silica modulus of 1.5 demonstrated the highest compressive, flexural, and tensile strengths. The specimens illustrated a lower chloride migration coefficient and lower expansion than the Portland cement one. By increasing both silica modulus and Na2O contents, the drying shrinkage of the specimens increased due to the presence of more free water. The microstructural results indicated that amorphous gels such as sodium aluminum silicate hydrate (N‐A‐S‐H) and sodium (calcium) silicate aluminum hydrate [N‐(C)‐A‐S‐H] were formed. The results of this study signify the utilization possibility of waste glass as an eco‐friendly material with desirable characteristics. |
---|---|
AbstractList | The long‐term characteristics and durability of alkali‐activated mortars based on waste glass are crucial to better understand their performance in aggressive environments. In this regard, the performance of waste glass as a building material and its characteristics such as mechanical (compressive, flexural, and tensile strengths), durability (chloride migration coefficient, sulfate resistance, and drying shrinkage), and microstructural properties [x‐ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) with energy dispersive x‐ray analysis (SEM/EDX)] were evaluated. For this purpose, the specimens with different amounts of silica modulus and Na2O content were prepared. The specimens were cured at 95°C for 20 h and then kept at a relative humidity of 50% at room temperature until testing. The specimen with 10% Na2O and a silica modulus of 1.5 demonstrated the highest compressive, flexural, and tensile strengths. The specimens illustrated a lower chloride migration coefficient and lower expansion than the Portland cement one. By increasing both silica modulus and Na2O contents, the drying shrinkage of the specimens increased due to the presence of more free water. The microstructural results indicated that amorphous gels such as sodium aluminum silicate hydrate (N‐A‐S‐H) and sodium (calcium) silicate aluminum hydrate [N‐(C)‐A‐S‐H] were formed. The results of this study signify the utilization possibility of waste glass as an eco‐friendly material with desirable characteristics. Abstract The long‐term characteristics and durability of alkali‐activated mortars based on waste glass are crucial to better understand their performance in aggressive environments. In this regard, the performance of waste glass as a building material and its characteristics such as mechanical (compressive, flexural, and tensile strengths), durability (chloride migration coefficient, sulfate resistance, and drying shrinkage), and microstructural properties [x‐ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) with energy dispersive x‐ray analysis (SEM/EDX)] were evaluated. For this purpose, the specimens with different amounts of silica modulus and Na 2 O content were prepared. The specimens were cured at 95°C for 20 h and then kept at a relative humidity of 50% at room temperature until testing. The specimen with 10% Na 2 O and a silica modulus of 1.5 demonstrated the highest compressive, flexural, and tensile strengths. The specimens illustrated a lower chloride migration coefficient and lower expansion than the Portland cement one. By increasing both silica modulus and Na 2 O contents, the drying shrinkage of the specimens increased due to the presence of more free water. The microstructural results indicated that amorphous gels such as sodium aluminum silicate hydrate (N‐A‐S‐H) and sodium (calcium) silicate aluminum hydrate [N‐(C)‐A‐S‐H] were formed. The results of this study signify the utilization possibility of waste glass as an eco‐friendly material with desirable characteristics. |
Author | Azizi, Shahab Shirzadi Javid, Ali Akbar Ghoroqi, Mahyar Mobasheri, Fatemeh Mirvalad, Sajjad |
Author_xml | – sequence: 1 givenname: Fatemeh surname: Mobasheri fullname: Mobasheri, Fatemeh email: mobasherifatemeh72@gmail.com organization: Iran University of Science and Technology – sequence: 2 givenname: Sajjad orcidid: 0000-0001-5113-7478 surname: Mirvalad fullname: Mirvalad, Sajjad email: mirvalad@iust.ac.ir organization: Iran University of Science and Technology – sequence: 3 givenname: Ali Akbar surname: Shirzadi Javid fullname: Shirzadi Javid, Ali Akbar email: shirzad@iust.ac.ir organization: Iran University of Science and Technology – sequence: 4 givenname: Shahab surname: Azizi fullname: Azizi, Shahab email: shahabazizi17@gmail.com organization: Iran University of Science and Technology – sequence: 5 givenname: Mahyar orcidid: 0000-0002-5493-4891 surname: Ghoroqi fullname: Ghoroqi, Mahyar email: mahyar.ghoroqi@gmail.com organization: Iran University of Science and Technology |
BookMark | eNqFkM1KAzEUhYMo2Fa3rgNuOzWZn2TiTop_UOlCi8twJ5PR1HSmJhmlOx_BZ_RJTKnoUrjk3pDvnBvOEO23XasROqFkQglJz3yvuklK0nhhnO6hAeUFTTjLy_045yxPcsr5IRp6v4x8nIsBco_gg8ZPFrzHEAuvnVa9853DpsVgX8Car49PUMG8QdA1XsXTGbD-HN9p9QytUWDHuO4dVMaasBljaCNmlOt8cL0K8cVG226tXTDaH6GDJsr18U8focXV5cP0JpnNr2-nF7NEpTmniRJK5I2qMk0qBiCIqAvCiaAiVVmqGigIlI3QtCA0azSwWlc1pZQJxkTBaDZCpzvfuPq11z7IZde7Nq6UKS9KUaYF45Ga7Kjtd73TjVw7swK3kZTIba5ym6v8zTUKxE7wbqze_EPL-8V0_qf9BlgfgTM |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2024_04_432 crossref_primary_10_1016_j_conbuildmat_2022_129076 crossref_primary_10_1002_suco_202201220 crossref_primary_10_1002_suco_202400026 |
Cites_doi | 10.1016/j.aej.2018.07.011 10.1179/1743676115Y.0000000057 10.1016/j.conbuildmat.2015.06.010 10.1016/j.jclepro.2020.124358 10.1016/j.conbuildmat.2017.12.079 10.1016/j.jclepro.2018.12.318 10.1016/j.jobe.2020.102010 10.1016/j.resconrec.2007.01.013 10.1016/j.conbuildmat.2018.04.092 10.1016/j.conbuildmat.2015.12.141 10.1016/j.cemconcomp.2011.03.006 10.1016/j.conbuildmat.2017.02.071 10.1016/j.conbuildmat.2018.07.075 10.1016/j.jclepro.2020.120228 10.1016/j.conbuildmat.2020.119303 10.1016/j.jclepro.2017.11.125 10.1016/j.jobe.2021.103861 10.1016/j.conbuildmat.2014.09.021 10.1016/j.apt.2018.09.023 10.1016/j.conbuildmat.2014.12.065 10.3390/ma13020383 10.1016/j.conbuildmat.2018.06.040 10.1016/j.wasman.2021.04.060 10.1016/j.jece.2014.03.016 10.1016/j.jclepro.2014.11.074 10.1016/j.cemconcomp.2012.01.010 10.1007/s10853-006-0637-z 10.1016/j.jclepro.2021.127435 10.1016/j.jclepro.2019.118852 10.1016/j.cemconcomp.2013.09.006 10.1016/j.conbuildmat.2019.03.107 10.1016/j.cemconres.2011.03.016 10.1016/j.jclepro.2020.120369 10.1016/j.conbuildmat.2020.118013 10.1016/j.conbuildmat.2017.04.004 10.1016/j.conbuildmat.2014.05.101 10.1016/j.conbuildmat.2015.05.005 10.1016/j.conbuildmat.2013.07.106 10.1016/j.conbuildmat.2014.09.059 10.1016/j.jclepro.2019.118502 10.1016/j.colsurfa.2006.12.064 10.1016/j.resconrec.2019.02.007 10.1061/(ASCE)MT.1943-5533.0002053 10.1016/j.cemconcomp.2021.104081 10.3390/app10093321 10.1088/1757-899X/877/1/012013 10.1016/j.conbuildmat.2019.117983 10.1016/j.cemconcomp.2019.103392 10.1016/j.cemconres.2016.08.010 10.1016/j.conbuildmat.2018.09.124 10.1016/j.cemconcomp.2012.08.029 10.1016/j.jclepro.2012.08.001 10.1617/s11527-015-0747-7 10.1016/j.compositesb.2013.10.082 10.1139/l11-107 10.1016/j.conbuildmat.2017.07.027 10.1016/j.jclepro.2020.124972 10.1016/j.conbuildmat.2015.02.072 10.1016/j.cemconres.2004.09.002 10.1016/j.compositesb.2018.12.057 10.1016/j.cemconres.2005.03.003 10.1016/j.cemconcomp.2019.103492 10.1016/j.conbuildmat.2020.119531 10.1016/j.conbuildmat.2015.08.089 10.1016/j.jclepro.2019.119610 10.1016/j.cemconres.2013.12.005 10.1016/j.cemconres.2016.10.003 10.1016/j.conbuildmat.2013.05.023 10.1016/j.conbuildmat.2020.119115 10.1016/j.jclepro.2015.06.026 10.1016/j.conbuildmat.2019.117804 10.1016/j.ceramint.2013.05.031 10.1016/j.ceramint.2014.09.075 10.1021/ie051251p 10.1016/j.matdes.2014.03.037 10.1016/j.wasman.2016.04.003 10.1016/j.jobe.2021.102776 10.1016/j.cemconres.2014.10.024 10.1016/S0008-8846(01)00717-7 10.1016/j.cemconcomp.2021.104088 10.1016/j.cemconres.2013.01.007 10.1016/j.conbuildmat.2013.01.023 10.1016/j.cemconres.2018.11.008 10.1016/j.jobe.2020.101934 10.1016/j.conbuildmat.2012.07.075 10.1016/j.conbuildmat.2018.09.125 10.1007/s12205-017-1714-3 10.1007/s12613-012-0641-z 10.1016/j.conbuildmat.2019.05.161 10.1016/j.apt.2016.09.034 10.1065/lca2007.05.327 10.1016/j.conbuildmat.2016.03.022 10.1016/j.cemconcomp.2013.09.011 10.1111/jace.12831 10.1088/1742-6596/2046/1/012047 10.1016/j.conbuildmat.2013.12.003 10.3151/jact.16.293 10.1016/S0008-8846(00)00327-6 10.1007/s10853-011-6107-2 10.1016/j.jclepro.2018.08.255 10.1016/j.conbuildmat.2016.05.026 10.1016/j.conbuildmat.2007.10.011 10.1016/j.cemconcomp.2018.02.001 |
ContentType | Journal Article |
Copyright | 2022 International Federation for Structural Concrete. 2022 fib. International Federation for Structural Concrete |
Copyright_xml | – notice: 2022 International Federation for Structural Concrete. – notice: 2022 fib. International Federation for Structural Concrete |
DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD F28 FR3 JG9 KR7 |
DOI | 10.1002/suco.202100671 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Ceramic Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-7648 |
EndPage | 3671 |
ExternalDocumentID | 10_1002_suco_202100671 SUCO202100671 |
Genre | article |
GroupedDBID | ..I .GA .Y3 05W 0R~ 123 1OC 31~ 33P 3SF 4.4 50Z 52M 52U 8-0 8-1 8-3 8-4 8-5 930 A03 AABWP AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABDBF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BRXPI CS3 D-E D-F DCZOG DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 FEDTE G-S GODZA H.T H.X HF~ HGLYW HVGLF HZ~ ITG ITH LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ N04 N05 NF~ O66 O9- P2W P2X Q.N QB0 ROL RTT SUPJJ UB1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WXSBR WYISQ XG2 ~WT AAYXX CITATION 7QQ 7SR 8BQ 8FD F28 FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c2471-c9c94fcb3e0b6aa909d50709192c32cfa50a8f9e15013fea6debd111696695613 |
ISSN | 1464-4177 |
IngestDate | Thu Oct 10 18:01:44 EDT 2024 Fri Aug 23 00:47:38 EDT 2024 Sat Aug 24 00:53:05 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2471-c9c94fcb3e0b6aa909d50709192c32cfa50a8f9e15013fea6debd111696695613 |
ORCID | 0000-0002-5493-4891 0000-0001-5113-7478 |
PQID | 2758982567 |
PQPubID | 136230 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2758982567 crossref_primary_10_1002_suco_202100671 wiley_primary_10_1002_suco_202100671_SUCO202100671 |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: London |
PublicationTitle | Structural concrete : journal of the FIB |
PublicationYear | 2022 |
Publisher | WILEY‐VCH Verlag GmbH & Co. KGaA Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY‐VCH Verlag GmbH & Co. KGaA – name: Wiley Subscription Services, Inc |
References | 2018; 162 2019; 209 2015; 77 2018; 203 2021; 280 2012; 19 2020; 13 2017; 152 2020; 10 2021; 286 2019; 160 2018; 175 2018; 172 2015; 84 2015; 91 2015; 90 2016; 49 2014; 97 2021; 308 2018; 186 2018; 29 2018; 181 2019; 104 2020; 35 2012; 39 2012; 37 2018; 22 2012; 34 2018; 190 2007; 12 2014; 45 2017; 139 1999 2015; 68 2006; 45 2015; 114 2019; 214 2021; 130 2019; 219 2012; 47 2017; 145 2018; 11 2018; 16 2016; 8 2007; 301 2021; 2046 2020; 240 2020; 242 2020; 241 2014; 68 2016; 106 2020; 244 2021; 121 2018; 88 2014; 3 2021; 34 2014; 2 2016; 119 2020; 252 2015; 41 2016; 112 2019; 116 2014; 59 2014; 58 2014; 57 2020; 255 2020; 254 2020; 257 2020; 256 2021; 41 2005; 35 2016; 89 2014; 53 2009; 23 2013; 48 2013; 47 2013; 43 2017; 28 2015; 96 2002; 32 2015; 98 2009 2022; 47 2016; 52 2011; 33 2020; 107 2017; 29 2007; 52 2014; 111 2019; 144 2017; 91 2013; 39 2013; 35 2021 2020 2000; 30 2011; 41 2020; 239 2018 2020; 877 2007; 42 2014; 72 2018; 57 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 Du H (e_1_2_7_11_1) 2014; 111 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 C1012M‐18b AC (e_1_2_7_56_1) 2018 e_1_2_7_37_1 C348‐21 A (e_1_2_7_51_1) 2021 e_1_2_7_79_1 Henry‐Lanier E (e_1_2_7_116_1) 2016; 8 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_105_1 e_1_2_7_8_1 Pehlivan AO (e_1_2_7_48_1) 2020; 10 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_29_1 e_1_2_7_113_1 e_1_2_7_70_1 e_1_2_7_93_1 Tran TT (e_1_2_7_78_1) 2018; 11 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 Pascual AB (e_1_2_7_18_1) 2014; 3 Aashto T (e_1_2_7_52_1) 2009 e_1_2_7_5_1 C305‐20 A (e_1_2_7_49_1) 2020 e_1_2_7_106_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 C596‐18 A (e_1_2_7_57_1) 2018 C109 A (e_1_2_7_50_1) 2020 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 492 NB (e_1_2_7_55_1) 1999 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_38_1 |
References_xml | – volume: 45 start-page: 46 year: 2014 end-page: 56 article-title: Microstructure, strength, and moisture stability of alkali activated glass powder‐based binders publication-title: Cem and Concr Compos – volume: 175 start-page: 41 year: 2018 end-page: 54 article-title: Effects of fly ash characteristics and alkaline activator components on compressive strength of fly ash‐based geopolymer mortar publication-title: Construct Build Mater – volume: 98 start-page: 407 year: 2015 end-page: 16 article-title: Effect of glass powders on the mechanical and durability properties of cementitious materials publication-title: Construct Build Mater – volume: 160 start-page: 519 year: 2019 end-page: 34 article-title: Ambient‐cured geopolymer mortars prepared with waste‐based sands: mechanical and durability‐related properties and microstructure publication-title: Compos Part B Eng – year: 2009 article-title: 132‐87 Standard method of test for tensile strength of hydraulic cement mortars publication-title: AASHTO – volume: 106 start-page: 500 year: 2016 end-page: 11 article-title: The effect of different Na O and K O ratios of alkali activator on compressive strength of fly ash based‐geopolymer publication-title: Construct Build Mater – volume: 256 year: 2020 article-title: Development of eco‐friendly geopolymers with ground mixed recycled aggregates and slag publication-title: J Clean Prod – volume: 34 start-page: 700 issue: 5 year: 2012 end-page: 8 article-title: Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack publication-title: Cem and Concr Compos – volume: 139 start-page: 342 year: 2017 end-page: 54 article-title: Waste glass as a precursor in alkaline activation: chemical process and hydration products publication-title: Construct Build Mater – volume: 47 start-page: 2782 issue: 6 year: 2012 end-page: 97 article-title: Properties of inorganic polymer (geopolymer) mortars made of glass cullet publication-title: J Mater Sci – volume: 214 start-page: 633 year: 2019 end-page: 43 article-title: Design and preparation of ultra‐high performance concrete with low environmental impact publication-title: J Clean Prod – volume: 190 start-page: 533 year: 2018 end-page: 50 article-title: Drying shrinkage in alkali‐activated binders—a critical review publication-title: Construct Build Mater – volume: 252 year: 2020 article-title: Strength, microstructure, efflorescence behavior and environmental impacts of waste glass geopolymers cured at ambient temperature publication-title: J Clean Prod – volume: 96 start-page: 673 year: 2015 end-page: 8 article-title: Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration publication-title: Construct Build Mater – volume: 11 start-page: 1296 issue: 8 year: 2018 article-title: Influence of activator Na O concentration on residual strengths of alkali‐activated slag mortar upon exposure to elevated temperatures publication-title: Maternite – volume: 104 year: 2019 article-title: Compressive strength, pore structure and chloride transport properties of alkali‐activated slag/fly ash mortars publication-title: Cem and Concr Compos – volume: 72 start-page: 283 year: 2014 end-page: 92 article-title: Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar publication-title: Construct Build Mater – volume: 48 start-page: 1187 year: 2013 end-page: 201 article-title: Influence of fly ash on the water and chloride permeability of alkali‐activated slag mortars and concretes publication-title: Construct Build Mater – volume: 186 start-page: 550 year: 2018 end-page: 76 article-title: A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete publication-title: Construct Build Mater – volume: 35 start-page: 118 issue: 1 year: 2013 end-page: 26 article-title: Use of waste glass as sand in mortar: Part II–alkali–silica reaction and mitigation methods publication-title: Cem Concr Compos – volume: 280 year: 2021 article-title: Mechanical and microstructural characterization of geopolymers from assorted construction and demolition waste‐based masonry and glass publication-title: J Clean Prod – volume: 28 start-page: 215 issue: 1 year: 2017 end-page: 22 article-title: High strength geopolymer binder based on waste‐glass powder publication-title: Adv Powder Technol – volume: 22 start-page: 1854 issue: 5 year: 2018 end-page: 64 article-title: Shrinkage performance of fly ash alkali‐activated cement based binder mortars publication-title: KSCE J Civ Eng – volume: 301 start-page: 246 issue: 1–3 year: 2007 end-page: 54 article-title: Effect of synthesis parameters on the mechanical properties of fly ash‐based geopolymers publication-title: Colloids Surf A Physicochem Eng Asp – volume: 19 start-page: 872 issue: 9 year: 2012 end-page: 8 article-title: Thermal treatment and utilization of Al‐rich waste in high calcium fly ash geopolymeric materials publication-title: Int J Mine Metall Mater – volume: 152 start-page: 598 year: 2017 end-page: 613 article-title: Durability of alkali‐activated materials in aggressive environments: a review on recent studies publication-title: Construct Build Mater – volume: 35 year: 2020 article-title: Application of eco‐friendly alternative activators in alkali‐activated materials: a review publication-title: J Build Eng – volume: 88 start-page: 73 year: 2018 end-page: 85 article-title: An integrated design method of engineered Geopolymer composite publication-title: Cem and Concr Compos – year: 1999 article-title: Concrete, mortar and cement‐based repair materials: chloride migration coefficient from non‐steady‐state migration experiments publication-title: NORDTEST – volume: 68 start-page: 102 year: 2014 end-page: 9 article-title: The effect of glass powder on the microstructure of ultra high performance concrete publication-title: Construct Build Mater – volume: 30 start-page: 1401 issue: 9 year: 2000 end-page: 6 article-title: Effect of pore size distribution on drying shrinking of alkali‐activated slag concrete publication-title: Cem Concr Res – volume: 52 start-page: 245 year: 2016 end-page: 55 article-title: Waste glass from end‐of‐life fluorescent lamps as raw material in geopolymers publication-title: Waste Manag – volume: 242 year: 2020 article-title: Mechanical property, nanopore structure and drying shrinkage of metakaolin‐based geopolymer with waste glass powder publication-title: J Clean Prod – volume: 112 start-page: 962 year: 2016 end-page: 9 article-title: A study of the engineering properties of alkali‐activated waste glass material (AAWGM) publication-title: Construct Build Mater – volume: 47 start-page: 840 year: 2013 end-page: 4 article-title: The effects of waste glass powder usage on polymer concrete properties publication-title: Construct Build Mater – volume: 181 start-page: 527 year: 2018 end-page: 34 article-title: Influence of waste glass powder usage on the properties of alkali‐activated slag mortars based on response surface methodology publication-title: Construct Build Mater – volume: 47 start-page: 31 year: 2013 end-page: 42 article-title: Electrically induced chloride ion transport in alkali activated slag concretes and the influence of microstructure publication-title: Cem Concr Res – volume: 130 start-page: 1 year: 2021 end-page: 11 article-title: Extensive use of waste glass in one‐part alkali‐activated materials: towards sustainable construction practices publication-title: Waste Manag – volume: 10 start-page: 3321 issue: 9 year: 2020 article-title: Bonding strength characteristics of FA‐based geopolymer paste as a repair material when applied on opc substrate publication-title: Appl Sci – volume: 119 start-page: 175 year: 2016 end-page: 84 article-title: Assessing the porosity and shrinkage of alkali activated slag‐fly ash composites designed applying a packing model publication-title: Construct Build Mater – volume: 41 year: 2021 article-title: Experimental investigations on the structural behaviour of reinforced geopolymer beams produced from recycled construction materials publication-title: J Build Eng – volume: 34 year: 2021 article-title: Effect of waste glass powder as a partial precursor in ambient cured alkali activated fly ash and fly ash‐GGBFS mortars publication-title: J Build Eng – volume: 286 year: 2021 article-title: An overview of factors influencing the properties of alkali‐activated binders publication-title: J Clean Prod – volume: 43 start-page: 125 year: 2013 end-page: 30 article-title: Carbon dioxide equivalent (CO2‐e) emissions: A comparison between geopolymer and OPC cement concrete publication-title: Construct Build Mater – volume: 39 start-page: 265 year: 2013 end-page: 72 article-title: Assessment of CO2 reduction of alkali‐activated concrete publication-title: J Clean Prod – volume: 2046 year: 2021 article-title: Evaluation of the mechanical strength of alkaline‐activated mortars made of granulated blast furnace publication-title: J Phys Conf Ser – volume: 172 start-page: 2892 year: 2018 end-page: 8 article-title: Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash publication-title: J Clean Prod – volume: 145 start-page: 253 year: 2017 end-page: 60 article-title: Effect of Na O content, SiO /Na O molar ratio, and curing conditions on the compressive strength of FA‐based geopolymer publication-title: Construct Build Mater – volume: 244 year: 2020 article-title: Effects of Si/Al ratio on the efflorescence and properties of fly ash based geopolymer publication-title: J Clean Prod – volume: 114 start-page: 372 issue: 7 year: 2015 end-page: 7 article-title: Stoichiometrically controlled C–(A)–S–H/N–A–S–H gel blends via alkali‐activation of synthetic precursors publication-title: Adv Appl Ceram – volume: 257 year: 2020 article-title: Effect of activator nature on the impact behaviour of alkali‐activated slag mortar publication-title: Construct Build Mater – volume: 877 year: 2020 article-title: The effects of solid to liquid ratio on Fly ash based lightweight Geopolymer publication-title: IOP Conference Series: Materials Science and Engineering – volume: 57 start-page: 3375 issue: 4 year: 2018 end-page: 86 article-title: Compressive strength and microstructure of assorted wastes incorporated geopolymer mortars: effect of solution molarity publication-title: Alex Eng J – volume: 58 start-page: 371 year: 2014 end-page: 7 article-title: The influence of the NaOH solution on the properties of the fly ash‐based geopolymer mortar cured at different temperatures publication-title: Compos Part B Eng – volume: 37 start-page: 440 year: 2012 end-page: 51 article-title: Optimization of solids‐to‐liquid and alkali activator ratios of calcined kaolin geopolymeric powder publication-title: Construct Build Mater – volume: 240 year: 2020 article-title: A ternary optimization of alkali‐activated cement mortars incorporating glass powder, slag and calcium aluminate cement publication-title: Construct Build Mater – volume: 32 start-page: 1181 issue: 8 year: 2002 end-page: 8 article-title: Effects of dosage and modulus of water glass on early hydration of alkali–slag cements publication-title: Cem Concr Res – volume: 16 start-page: 293 issue: 7 year: 2018 end-page: 305 article-title: The effect of alkali concentration and sodium silicate modulus on the properties of alkali‐activated slag concrete publication-title: J Adv Concrete Technol – volume: 53 start-page: 503 year: 2014 end-page: 10 article-title: Effects SiO /Na O molar ratio on mechanical properties and the microstructure of nano‐SiO metakaolin‐based geopolymers publication-title: Construct Build Mater – volume: 209 start-page: 555 year: 2019 end-page: 65 article-title: Comparative study of geopolymer and alkali activated slag concrete comprising waste foundry sand publication-title: Construct Build Mater – volume: 3 start-page: 32 issue: 13 year: 2014 end-page: 6 article-title: Waste glass powder‐based alkali‐activated mortar publication-title: Int J Res Eng Technol – volume: 41 start-page: 750 issue: 7 year: 2011 end-page: 63 article-title: New cements for the 21st century: the pursuit of an alternative to Portland cement publication-title: Cem Concr Res – volume: 39 start-page: 34 issue: 1 year: 2012 end-page: 43 article-title: Effect of Na O content on durability of geopolymer pastes in magnesium sulfate solution publication-title: Can J Civ Eng – volume: 91 start-page: 17 year: 2015 end-page: 22 article-title: Application of the Taguchi approach for the composition optimization of alkali activated fly ash binders publication-title: Construct Build Mater – year: 2021 – volume: 116 start-page: 45 year: 2019 end-page: 56 article-title: Production of sodium silicate powder from waste glass cullet for alkali activation of alternative binders publication-title: Cem Concr Res – volume: 33 start-page: 653 issue: 6 year: 2011 end-page: 60 article-title: The effects of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali‐activated fly ash‐based geopolymers publication-title: Cem Conc Compos – volume: 121 year: 2021 article-title: Construction and demolition waste‐based geopolymers suited for use in 3‐dimensional additive manufacturing publication-title: Cem and Concr Compos – volume: 29 issue: 10 year: 2017 article-title: Durability of geopolymer mortar based on waste‐glass powder and calcium aluminate cement in acid solutions publication-title: J Mater Civ Eng – volume: 121 year: 2021 article-title: Effects of self‐healing on the microstructure, transport, and electrical properties of 100% construction‐and demolition‐waste‐based geopolymer composites publication-title: Cem and Concr Compos – year: 2018 – volume: 10 start-page: 177 issue: 2 year: 2020 end-page: 85 article-title: Effect of alkali content and activator modulus on mechanical properties of alkali activated mortars publication-title: Karaelmas Fen ve Mühendislik Dergisi – volume: 219 start-page: 31 year: 2019 end-page: 43 article-title: Effect of silica modulus on the geopolymerization activity of natural pozzolans publication-title: Construct Build Mater – volume: 42 start-page: 2917 issue: 9 year: 2007 end-page: 33 article-title: Geopolymer technology: the current state of the art publication-title: J Mater Sci – volume: 84 start-page: 301 year: 2015 end-page: 6 article-title: Designing more sustainable and greener self‐compacting concrete publication-title: Construct Build Mater – volume: 47 year: 2022 article-title: Shear behaviour of reinforced construction and demolition waste‐based geopolymer concrete beams publication-title: J Build Eng – volume: 57 start-page: 95 year: 2014 end-page: 104 article-title: Use of glass waste as an activator in the preparation of alkali‐activated slag. Mechanical strength and paste characterisation publication-title: Cem Concr Res – volume: 52 start-page: 234 issue: 2 year: 2007 end-page: 47 article-title: A review on the use of waste glasses in the production of cement and concrete publication-title: Resour Conserv Recycl – volume: 13 start-page: 383 issue: 2 year: 2020 article-title: Alkali activation of waste clay bricks: influence of the silica modulus, SiO /Na O, H O/Na O molar ratio, and liquid/solid ratio publication-title: Mater Ther – volume: 84 start-page: 224 year: 2015 end-page: 9 article-title: The fresh and engineering properties of alkali activated slag as a function of fly ash replacement and alkali concentration publication-title: Construct Build Mater – volume: 45 start-page: 3559 issue: 10 year: 2006 end-page: 68 article-title: Effect of curing temperature and silicate concentration on fly‐ash‐based geopolymerization publication-title: Ind Eng Chem Res – volume: 162 start-page: 724 year: 2018 end-page: 31 article-title: Effect of alkali activation thin film transistor‐liquid crystal display waste glass on the mechanical behavior of geopolymers publication-title: Construct Build Mater – volume: 45 start-page: 125 year: 2014 end-page: 35 article-title: Modification of phase evolution in alkali‐activated blast furnace slag by the incorporation of fly ash publication-title: Cem Concr Compos – volume: 2 start-page: 1767 issue: 3 year: 2014 end-page: 75 article-title: Waste glass in the production of cement and concrete—a review publication-title: J Environ Chem Eng – volume: 308 year: 2021 article-title: Optimization study of waste glass powder‐based alkali activated materials incorporating metakaolin: activation and curing conditions publication-title: J Clean Prod – volume: 252 year: 2020 article-title: Experimental investigation of waste glass powder, basalt fibre, and carbon nanotube on the mechanical properties of concrete publication-title: Construct Build Mater – volume: 254 year: 2020 article-title: Atomic‐structure, microstructure and mechanical properties of glass powder modified metakaolin‐based geopolymer publication-title: Construct Build Mater – volume: 68 start-page: 75 year: 2015 end-page: 82 article-title: The shrinkage of alkali activated fly ash publication-title: Cem Concr Res – volume: 112 start-page: 837 year: 2016 end-page: 44 article-title: Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate publication-title: J Clean Prod – volume: 190 start-page: 191 year: 2018 end-page: 9 article-title: Alkali activated slag concretes designed for a desired slump, strength and chloride diffusivity publication-title: Construct Build Mater – volume: 12 start-page: 282 issue: 5 year: 2007 end-page: 8 article-title: Green house gas emissions due to concrete manufacture publication-title: Int J Life Cycle Assess – volume: 89 start-page: 120 year: 2016 end-page: 35 article-title: Phase evolution of C‐(N)‐ASH/NASH gel blends investigated via alkali‐activation of synthetic calcium aluminosilicate precursors publication-title: Cem Concr Res – volume: 49 start-page: 3663 issue: 9 year: 2016 end-page: 77 article-title: Chloride transport and the resulting corrosion of steel bars in alkali activated slag concretes publication-title: Mater Struct – volume: 107 year: 2020 article-title: Effect of waste glass incorporation on the properties of geopolymers formulated with low purity metakaolin publication-title: Cem Concr Compos – volume: 91 start-page: 13 year: 2017 end-page: 23 article-title: On drying shrinkage in alkali‐activated concrete: improving dimensional stability by aging or heat‐curing publication-title: Cem Concr Res – volume: 241 year: 2020 article-title: Effect of soda‐lime glass powder on alkali‐activated binders: rheology, strength and microstructure characterization publication-title: Construct Build Mater – volume: 239 year: 2020 article-title: Performance of recycled waste glass sand as partial replacement of sand in concrete publication-title: Construct Build Mater – volume: 97 start-page: 997 issue: 4 year: 2014 end-page: 1008 article-title: Durability of alkali‐activated materials: progress and perspectives publication-title: J Am Ceram Soc – volume: 41 start-page: 1421 issue: 1 year: 2015 end-page: 35 article-title: Physical–mechanical and microstructural properties of alkali‐activated fly ash–blast furnace slag blends publication-title: Ceram Int – volume: 35 start-page: 1233 issue: 6 year: 2005 end-page: 46 article-title: Durability of geopolymer materials in sodium and magnesium sulfate solutions publication-title: Cem Concr Res – volume: 23 start-page: 548 issue: 1 year: 2009 end-page: 55 article-title: Influence of activator on the strength and drying shrinkage of alkali‐activated slag mortar publication-title: Construct Build Mater – volume: 255 year: 2020 article-title: Optimizing the use of recycled glass materials in alkali activated cement (AAC) based mortars publication-title: J Clean Prod – volume: 59 start-page: 532 year: 2014 end-page: 9 article-title: Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar publication-title: Mater Des – volume: 29 start-page: 3448 issue: 12 year: 2018 end-page: 54 article-title: Novel use of waste glass powder: production of geopolymeric tiles publication-title: Adv Powder Technol – volume: 144 start-page: 297 year: 2019 end-page: 309 article-title: An overview on the reuse of waste glasses in alkali‐activated materials publication-title: Resour Conserv Recycl – volume: 90 start-page: 397 year: 2015 end-page: 408 article-title: Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation publication-title: J Clean Prod – year: 2020 – volume: 203 start-page: 746 year: 2018 end-page: 56 article-title: Alternation of traditional cement mortars using fly ash‐based geopolymer mortars modified by slag publication-title: J Clean Prod – volume: 77 start-page: 370 year: 2015 end-page: 95 article-title: An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by‐products publication-title: Construct Build Mater – volume: 111 start-page: 47 issue: 1 year: 2014 end-page: 57 article-title: Concrete with recycled glass as fine aggregates publication-title: ACI Mater J – volume: 35 start-page: 1984 issue: 10 year: 2005 end-page: 92 article-title: Composition and microstructure of alkali activated fly ash binder: effect of the activator publication-title: Cem Concr Res – volume: 8 start-page: 81 issue: 3 year: 2016 end-page: 6 article-title: Optimisation of the environmental footprint of calcium‐aluminate‐cement containing Castables publication-title: Technol Trends – volume: 39 start-page: 9237 issue: 8 year: 2013 end-page: 45 article-title: Alkali‐activated blends of calcium aluminate cement and slag/diatomite publication-title: Ceram Int – ident: e_1_2_7_73_1 doi: 10.1016/j.aej.2018.07.011 – ident: e_1_2_7_107_1 doi: 10.1179/1743676115Y.0000000057 – ident: e_1_2_7_9_1 doi: 10.1016/j.conbuildmat.2015.06.010 – ident: e_1_2_7_27_1 doi: 10.1016/j.jclepro.2020.124358 – ident: e_1_2_7_35_1 doi: 10.1016/j.conbuildmat.2017.12.079 – volume: 111 start-page: 47 issue: 1 year: 2014 ident: e_1_2_7_11_1 article-title: Concrete with recycled glass as fine aggregates publication-title: ACI Mater J contributor: fullname: Du H – ident: e_1_2_7_61_1 doi: 10.1016/j.jclepro.2018.12.318 – ident: e_1_2_7_32_1 doi: 10.1016/j.jobe.2020.102010 – ident: e_1_2_7_7_1 doi: 10.1016/j.resconrec.2007.01.013 – ident: e_1_2_7_72_1 doi: 10.1016/j.conbuildmat.2018.04.092 – ident: e_1_2_7_75_1 doi: 10.1016/j.conbuildmat.2015.12.141 – ident: e_1_2_7_74_1 doi: 10.1016/j.cemconcomp.2011.03.006 – ident: e_1_2_7_22_1 doi: 10.1016/j.conbuildmat.2017.02.071 – ident: e_1_2_7_105_1 doi: 10.1016/j.conbuildmat.2018.07.075 – ident: e_1_2_7_16_1 doi: 10.1016/j.jclepro.2020.120228 – ident: e_1_2_7_34_1 doi: 10.1016/j.conbuildmat.2020.119303 – ident: e_1_2_7_8_1 doi: 10.1016/j.jclepro.2017.11.125 – ident: e_1_2_7_28_1 doi: 10.1016/j.jobe.2021.103861 – ident: e_1_2_7_67_1 doi: 10.1016/j.conbuildmat.2014.09.021 – ident: e_1_2_7_3_1 doi: 10.1016/j.apt.2018.09.023 – ident: e_1_2_7_65_1 doi: 10.1016/j.conbuildmat.2014.12.065 – year: 2009 ident: e_1_2_7_52_1 article-title: 132‐87 Standard method of test for tensile strength of hydraulic cement mortars publication-title: AASHTO contributor: fullname: Aashto T – ident: e_1_2_7_69_1 doi: 10.3390/ma13020383 – ident: e_1_2_7_33_1 doi: 10.1016/j.conbuildmat.2018.06.040 – ident: e_1_2_7_30_1 doi: 10.1016/j.wasman.2021.04.060 – ident: e_1_2_7_4_1 doi: 10.1016/j.jece.2014.03.016 – ident: e_1_2_7_20_1 doi: 10.1016/j.jclepro.2014.11.074 – ident: e_1_2_7_89_1 doi: 10.1016/j.cemconcomp.2012.01.010 – ident: e_1_2_7_100_1 doi: 10.1007/s10853-006-0637-z – ident: e_1_2_7_39_1 doi: 10.1016/j.jclepro.2021.127435 – ident: e_1_2_7_99_1 doi: 10.1016/j.jclepro.2019.118852 – ident: e_1_2_7_109_1 doi: 10.1016/j.cemconcomp.2013.09.006 – ident: e_1_2_7_115_1 doi: 10.1016/j.conbuildmat.2019.03.107 – ident: e_1_2_7_44_1 doi: 10.1016/j.cemconres.2011.03.016 – ident: e_1_2_7_112_1 doi: 10.1016/j.jclepro.2020.120369 – volume-title: Standard test method for drying shrinkage of mortar containing hydraulic cement year: 2018 ident: e_1_2_7_57_1 contributor: fullname: C596‐18 A – ident: e_1_2_7_37_1 doi: 10.1016/j.conbuildmat.2020.118013 – volume: 10 start-page: 177 issue: 2 year: 2020 ident: e_1_2_7_48_1 article-title: Effect of alkali content and activator modulus on mechanical properties of alkali activated mortars publication-title: Karaelmas Fen ve Mühendislik Dergisi contributor: fullname: Pehlivan AO – ident: e_1_2_7_70_1 doi: 10.1016/j.conbuildmat.2017.04.004 – ident: e_1_2_7_13_1 doi: 10.1016/j.conbuildmat.2014.05.101 – ident: e_1_2_7_106_1 doi: 10.1016/j.conbuildmat.2015.05.005 – ident: e_1_2_7_85_1 doi: 10.1016/j.conbuildmat.2013.07.106 – ident: e_1_2_7_88_1 doi: 10.1016/j.conbuildmat.2014.09.059 – ident: e_1_2_7_5_1 doi: 10.1016/j.jclepro.2019.118502 – ident: e_1_2_7_102_1 doi: 10.1016/j.colsurfa.2006.12.064 – ident: e_1_2_7_15_1 doi: 10.1016/j.resconrec.2019.02.007 – ident: e_1_2_7_21_1 doi: 10.1061/(ASCE)MT.1943-5533.0002053 – volume-title: Standard test method for compressive strength of hydraulic cement mortars (using 2‐in or [50 mm] cube specimens) year: 2020 ident: e_1_2_7_50_1 contributor: fullname: C109 A – ident: e_1_2_7_25_1 doi: 10.1016/j.cemconcomp.2021.104081 – ident: e_1_2_7_63_1 doi: 10.3390/app10093321 – ident: e_1_2_7_76_1 doi: 10.1088/1757-899X/877/1/012013 – ident: e_1_2_7_45_1 doi: 10.1016/j.conbuildmat.2019.117983 – ident: e_1_2_7_80_1 doi: 10.1016/j.cemconcomp.2019.103392 – ident: e_1_2_7_108_1 doi: 10.1016/j.cemconres.2016.08.010 – ident: e_1_2_7_83_1 doi: 10.1016/j.conbuildmat.2018.09.124 – ident: e_1_2_7_10_1 doi: 10.1016/j.cemconcomp.2012.08.029 – ident: e_1_2_7_59_1 doi: 10.1016/j.jclepro.2012.08.001 – ident: e_1_2_7_81_1 doi: 10.1617/s11527-015-0747-7 – volume: 8 start-page: 81 issue: 3 year: 2016 ident: e_1_2_7_116_1 article-title: Optimisation of the environmental footprint of calcium‐aluminate‐cement containing Castables publication-title: Technol Trends contributor: fullname: Henry‐Lanier E – ident: e_1_2_7_41_1 doi: 10.1016/j.compositesb.2013.10.082 – ident: e_1_2_7_82_1 doi: 10.1139/l11-107 – ident: e_1_2_7_87_1 doi: 10.1016/j.conbuildmat.2017.07.027 – ident: e_1_2_7_58_1 doi: 10.1016/j.jclepro.2020.124972 – ident: e_1_2_7_60_1 doi: 10.1016/j.conbuildmat.2015.02.072 – ident: e_1_2_7_86_1 doi: 10.1016/j.cemconres.2004.09.002 – ident: e_1_2_7_2_1 doi: 10.1016/j.compositesb.2018.12.057 – ident: e_1_2_7_103_1 doi: 10.1016/j.cemconres.2005.03.003 – volume-title: Standard test method for flexural strength of hydraulic‐cement mortars year: 2021 ident: e_1_2_7_51_1 contributor: fullname: C348‐21 A – ident: e_1_2_7_17_1 doi: 10.1016/j.cemconcomp.2019.103492 – ident: e_1_2_7_47_1 doi: 10.1016/j.conbuildmat.2020.119531 – ident: e_1_2_7_77_1 doi: 10.1016/j.conbuildmat.2015.08.089 – ident: e_1_2_7_6_1 doi: 10.1016/j.jclepro.2019.119610 – ident: e_1_2_7_31_1 doi: 10.1016/j.cemconres.2013.12.005 – ident: e_1_2_7_93_1 doi: 10.1016/j.cemconres.2016.10.003 – ident: e_1_2_7_12_1 doi: 10.1016/j.conbuildmat.2013.05.023 – volume: 11 start-page: 1296 issue: 8 year: 2018 ident: e_1_2_7_78_1 article-title: Influence of activator Na2O concentration on residual strengths of alkali‐activated slag mortar upon exposure to elevated temperatures publication-title: Maternite contributor: fullname: Tran TT – ident: e_1_2_7_40_1 doi: 10.1016/j.conbuildmat.2020.119115 – ident: e_1_2_7_114_1 doi: 10.1016/j.jclepro.2015.06.026 – ident: e_1_2_7_14_1 doi: 10.1016/j.conbuildmat.2019.117804 – ident: e_1_2_7_46_1 doi: 10.1016/j.ceramint.2013.05.031 – ident: e_1_2_7_64_1 doi: 10.1016/j.ceramint.2014.09.075 – ident: e_1_2_7_71_1 doi: 10.1021/ie051251p – ident: e_1_2_7_104_1 doi: 10.1016/j.matdes.2014.03.037 – ident: e_1_2_7_36_1 doi: 10.1016/j.wasman.2016.04.003 – ident: e_1_2_7_26_1 doi: 10.1016/j.jobe.2021.102776 – ident: e_1_2_7_92_1 doi: 10.1016/j.cemconres.2014.10.024 – ident: e_1_2_7_96_1 doi: 10.1016/S0008-8846(01)00717-7 – ident: e_1_2_7_24_1 doi: 10.1016/j.cemconcomp.2021.104088 – ident: e_1_2_7_54_1 doi: 10.1016/j.cemconres.2013.01.007 – ident: e_1_2_7_62_1 doi: 10.1016/j.conbuildmat.2013.01.023 – volume-title: Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency year: 2020 ident: e_1_2_7_49_1 contributor: fullname: C305‐20 A – ident: e_1_2_7_29_1 doi: 10.1016/j.cemconres.2018.11.008 – ident: e_1_2_7_23_1 doi: 10.1016/j.jobe.2020.101934 – ident: e_1_2_7_42_1 doi: 10.1016/j.conbuildmat.2012.07.075 – ident: e_1_2_7_97_1 doi: 10.1016/j.conbuildmat.2018.09.125 – ident: e_1_2_7_91_1 doi: 10.1007/s12205-017-1714-3 – ident: e_1_2_7_110_1 doi: 10.1007/s12613-012-0641-z – ident: e_1_2_7_68_1 doi: 10.1016/j.conbuildmat.2019.05.161 – ident: e_1_2_7_43_1 doi: 10.1016/j.apt.2016.09.034 – ident: e_1_2_7_111_1 doi: 10.1065/lca2007.05.327 – ident: e_1_2_7_19_1 doi: 10.1016/j.conbuildmat.2016.03.022 – ident: e_1_2_7_38_1 doi: 10.1016/j.cemconcomp.2013.09.011 – ident: e_1_2_7_53_1 doi: 10.1111/jace.12831 – ident: e_1_2_7_98_1 doi: 10.1088/1742-6596/2046/1/012047 – ident: e_1_2_7_101_1 doi: 10.1016/j.conbuildmat.2013.12.003 – volume-title: Standard test method for length change of hydraulic‐cement mortars exposed to a sulfate solution year: 2018 ident: e_1_2_7_56_1 contributor: fullname: C1012M‐18b AC – ident: e_1_2_7_94_1 doi: 10.3151/jact.16.293 – ident: e_1_2_7_95_1 doi: 10.1016/S0008-8846(00)00327-6 – ident: e_1_2_7_66_1 doi: 10.1007/s10853-011-6107-2 – ident: e_1_2_7_84_1 doi: 10.1016/j.jclepro.2018.08.255 – ident: e_1_2_7_90_1 doi: 10.1016/j.conbuildmat.2016.05.026 – volume: 3 start-page: 32 issue: 13 year: 2014 ident: e_1_2_7_18_1 article-title: Waste glass powder‐based alkali‐activated mortar publication-title: Int J Res Eng Technol contributor: fullname: Pascual AB – ident: e_1_2_7_79_1 doi: 10.1016/j.conbuildmat.2007.10.011 – ident: e_1_2_7_113_1 doi: 10.1016/j.cemconcomp.2018.02.001 – year: 1999 ident: e_1_2_7_55_1 article-title: Concrete, mortar and cement‐based repair materials: chloride migration coefficient from non‐steady‐state migration experiments publication-title: NORDTEST contributor: fullname: 492 NB |
SSID | ssj0021775 ssib035781430 |
Score | 2.3367 |
Snippet | The long‐term characteristics and durability of alkali‐activated mortars based on waste glass are crucial to better understand their performance in aggressive... Abstract The long‐term characteristics and durability of alkali‐activated mortars based on waste glass are crucial to better understand their performance in... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 3651 |
SubjectTerms | alkali‐activated waste glass Aluminum Calcium silicate hydrate Chloride resistance Drying drying shrinkage Durability embodied CO2 Fourier transforms Gels mechanical characteristic microstructural properties Mortars (material) Portland cements Relative humidity Room temperature Scanning electron microscopy Shrinkage Silica Silicon dioxide Sodium aluminum silicates Sulfate resistance Thermal expansion |
Title | Waste glass as a precursor in alkali‐activated materials: Mechanical, durability, and microstructural properties |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsuco.202100671 https://www.proquest.com/docview/2758982567 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AIHxFOkFLQHJA6pwV4_EnNLS6NSNe0hicjNmrXXivsIlZsgkRM_gT_HH-CXMONdP1IQBaTIijfWZjPzeTwzmfmWsVdgByAcRa1bYWh5gehZ0hWxBX0BqQi9FFJqFB6dBIdT72jmz1qt742qpdVSvonXv-0r-R-t4hjqlbpk_0Gz1aQ4gO9Rv3hEDePxr3T8EVBH3cIBpv1igDr-Ywz_ixrzLlyco5NdVTNQB8NnIAcTnVS9OkoHjBT1_pKqSNrJKtfE3V_Kss5LqtjTLLMFQ8cVZe_zZVl7aPzacX0BBtjoieK6aPYGMQV5uMMP1T88IzQkVI5fVBMMcUWXqspMj7IcxQQmZX12BkmFy4usOziXkHfH8yxfQ5J1j-qqfPx8na2LGcdzmINs5jSEuFEfcrvlbFhsL_AszzF7wSg91vMdqxdoCs_SzOu2ZgPnps12A0N5q8yp3hPml2eL5qq9XsXUM4qRsm0u3CTxPjmNhtPj42hyMJvcYVuC-AfbbGuw935vWBo6YhhyCtp7kxnA5fu6DU7_lpJd1BZvN79v03uqQ6JmYFV4RpMH7L4JafhA4_Mha6nFI3avQXT5mOUFUnmBVA744hVSebbgGqk_vn6rMMorjL7jNUJ3eY3PXY7o5DfQyWt0PmHT4cFk_9Ayu31YsUAPyYrDGE1DLF1lywAgtMMEYxV0Z0MRo_VIwbehn4YKIxjHTRUEiZIJPqkDDNipO9t9ytqLTwv1jHFPSXAg8N1YOR76-30v7Lmp7HuOxPA5gQ57XUoxutKkLpGm7xYRyTuq5N1hO6WQI3PHXEcCY-ywj7FCr8NEIfhbZonG0_3T6mz7z3M-Z3frW2KHtVGE6gU6vkv50sDoJ5p9sGw |
link.rule.ids | 315,783,787,27937,27938 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Waste+glass+as+a+precursor+in+alkali%E2%80%90activated+materials%3A+Mechanical%2C+durability%2C+and+microstructural+properties&rft.jtitle=Structural+concrete+%3A+journal+of+the+FIB&rft.au=Mobasheri%2C+Fatemeh&rft.au=Mirvalad%2C+Sajjad&rft.au=Ali+Akbar+Shirzadi+Javid&rft.au=Azizi%2C+Shahab&rft.date=2022-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1464-4177&rft.eissn=1751-7648&rft.volume=23&rft.issue=6&rft.spage=3651&rft.epage=3671&rft_id=info:doi/10.1002%2Fsuco.202100671&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-4177&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-4177&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-4177&client=summon |