Hydration reactivity difference between dicalcium silicate and tricalcium silicate revealed from structural and Bader charge analysis
Cement hydration is the underlying mechanism for the strength development in cement-based materials. The structural and electronic properties of calcium silicates should be elucidated to reveal their difference in hydration reactivity. Here, we comprehensively compared β-C 2 S and M3-C 3 S and inves...
Saved in:
Published in | International journal of minerals, metallurgy and materials Vol. 29; no. 2; pp. 335 - 344 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Beijing
University of Science and Technology Beijing
01.02.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cement hydration is the underlying mechanism for the strength development in cement-based materials. The structural and electronic properties of calcium silicates should be elucidated to reveal their difference in hydration reactivity. Here, we comprehensively compared β-C
2
S and M3-C
3
S and investigated their structural properties and Bader charge in the unit cell, during surface reconstruction and after single water adsorption via density functional theory. We identified different types of atoms in β-C
2
S and M3-C
3
S by considering the bonding characteristics and Bader charge. We then divided the atoms into the following groups: for β-C
2
S, Ca and O atoms divided into two and four groups, respectively; for M3-C
3
S, Ca, O, and Si atoms divided into four, four, and three groups, respectively. Results revealed that the valence electron distribution on the surface was more uniform than that on the unit cell, indicating that some atoms became more reactive after surface relaxation. During water adsorption, the electrons of β-C
2
S and M3-C
3
S were transferred from the surface to the adsorbed water molecules through position redistribution and bond formation/breaking. On this basis, we explained why β-C
2
S and M3-C
3
S had activity differences. A type of O atom with special bond characteristics (no O-Si bonds) and high reactivity existed in the unit cell of M3-C
3
S. Bader charge analysis showed that the reactivity of Ca and O atoms was generally higher in M3-C
3
S than in β-C
2
S. Ca/O atoms had average valence electron numbers of 6.437/7.550 in β-C
2
S and 6.481/7.537 in M3-C
3
S. Moreover, the number of electrons gained by water molecules in M3-C
3
S at the surface was higher than that in β-C
2
S. The average variations in the valence electrons of H
2
O on β-C
2
S and M3-C
3
S were 0.041 and 0.226, respectively. This study further explains the differences in the hydration reactivity of calcium silicates and would be also useful for the design of highly reactive and environmentally friendly cements. |
---|---|
AbstractList | Cement hydration is the underlying mechanism for the strength development in cement-based materials. The structural and electronic properties of calcium silicates should be elucidated to reveal their difference in hydration reactivity. Here, we comprehensively compared β-C
2
S and M3-C
3
S and investigated their structural properties and Bader charge in the unit cell, during surface reconstruction and after single water adsorption via density functional theory. We identified different types of atoms in β-C
2
S and M3-C
3
S by considering the bonding characteristics and Bader charge. We then divided the atoms into the following groups: for β-C
2
S, Ca and O atoms divided into two and four groups, respectively; for M3-C
3
S, Ca, O, and Si atoms divided into four, four, and three groups, respectively. Results revealed that the valence electron distribution on the surface was more uniform than that on the unit cell, indicating that some atoms became more reactive after surface relaxation. During water adsorption, the electrons of β-C
2
S and M3-C
3
S were transferred from the surface to the adsorbed water molecules through position redistribution and bond formation/breaking. On this basis, we explained why β-C
2
S and M3-C
3
S had activity differences. A type of O atom with special bond characteristics (no O-Si bonds) and high reactivity existed in the unit cell of M3-C
3
S. Bader charge analysis showed that the reactivity of Ca and O atoms was generally higher in M3-C
3
S than in β-C
2
S. Ca/O atoms had average valence electron numbers of 6.437/7.550 in β-C
2
S and 6.481/7.537 in M3-C
3
S. Moreover, the number of electrons gained by water molecules in M3-C
3
S at the surface was higher than that in β-C
2
S. The average variations in the valence electrons of H
2
O on β-C
2
S and M3-C
3
S were 0.041 and 0.226, respectively. This study further explains the differences in the hydration reactivity of calcium silicates and would be also useful for the design of highly reactive and environmentally friendly cements. Cement hydration is the underlying mechanism for the strength development in cement-based materials. The structural and electronic properties of calcium silicates should be elucidated to reveal their difference in hydration reactivity. Here, we comprehensively compared β-C2S and M3-C3S and investigated their structural properties and Bader charge in the unit cell, during surface reconstruction and after single water adsorption via density functional theory. We identified different types of atoms in β-C2S and M3-C3S by considering the bonding characteristics and Bader charge. We then divided the atoms into the following groups: for β-C2S, Ca and O atoms divided into two and four groups, respectively; for M3-C3S, Ca, O, and Si atoms divided into four, four, and three groups, respectively. Results revealed that the valence electron distribution on the surface was more uniform than that on the unit cell, indicating that some atoms became more reactive after surface relaxation. During water adsorption, the electrons of β-C2S and M3-C3S were transferred from the surface to the adsorbed water molecules through position redistribution and bond formation/breaking. On this basis, we explained why β-C2S and M3-C3S had activity differences. A type of O atom with special bond characteristics (no O-Si bonds) and high reactivity existed in the unit cell of M3-C3S. Bader charge analysis showed that the reactivity of Ca and O atoms was generally higher in M3-C3S than in β-C2S. Ca/O atoms had average valence electron numbers of 6.437/7.550 in β-C2S and 6.481/7.537 in M3-C3S. Moreover, the number of electrons gained by water molecules in M3-C3S at the surface was higher than that in β-C2S. The average variations in the valence electrons of H2O on β-C2S and M3-C3S were 0.041 and 0.226, respectively. This study further explains the differences in the hydration reactivity of calcium silicates and would be also useful for the design of highly reactive and environmentally friendly cements. |
Author | Xu, Xinhang Qi, Chongchong Chen, Qiusong |
Author_xml | – sequence: 1 givenname: Chongchong surname: Qi fullname: Qi, Chongchong email: chongchong.qi@csu.edu.cn organization: School of Resources and Safety Engineering, Central South University, School of Molecular Science, University of Western Australia – sequence: 2 givenname: Xinhang surname: Xu fullname: Xu, Xinhang organization: School of Resources and Safety Engineering, Central South University – sequence: 3 givenname: Qiusong surname: Chen fullname: Chen, Qiusong organization: School of Resources and Safety Engineering, Central South University |
BookMark | eNp9kMFKxDAQhoMouK4-gLeC52qStklzVFFXELwoeAtpOlmz1HadpMo-gO9tdlcQFD3N8PN_w_AdkN1-6IGQY0ZPGaXyLDAuWJFTznJeiDKvdsiE1ULljBZPu2kXssxLqdQ-OQhhQamQksoJ-ZitWjTRD32GYGz0bz6ustY7Bwi9hayB-A7Qp8iazvrxJQu-S3uEzPRtFvF3jvAGpoM2czikOOJo44im2wAXpgXM7LPB-fqC6VbBh0Oy50wX4OhrTsnj9dXD5Sy_u7-5vTy_yy0vRcyd5LRuCsp4VRklecF562rrKiGcrKkBKXjhSuXapqlVwxtRt5VMDTC0aigrpuRke3eJw-sIIerFMGJ6ImiumCplXSmVWnLbsjiEgOC09XHjKKLxnWZUr53rrXOdnOu1c10lkv0gl-hfDK7-ZfiWCanbzwG_f_ob-gR9r5i5 |
CitedBy_id | crossref_primary_10_1002_ange_202400627 crossref_primary_10_3390_cryst12040556 crossref_primary_10_1016_j_conbuildmat_2022_128777 crossref_primary_10_1016_j_envpol_2022_120072 crossref_primary_10_3390_min12040447 crossref_primary_10_1016_j_envres_2022_114412 crossref_primary_10_1016_j_ijhydene_2024_07_422 crossref_primary_10_1007_s11665_024_09494_4 crossref_primary_10_1016_j_jpowsour_2024_234783 crossref_primary_10_1016_j_conbuildmat_2022_127880 crossref_primary_10_3390_min12020271 crossref_primary_10_1016_j_fuel_2022_125685 crossref_primary_10_1016_j_mtcomm_2023_106878 crossref_primary_10_1007_s11356_022_19238_3 crossref_primary_10_1016_j_cej_2024_156788 crossref_primary_10_1016_j_ceramint_2024_12_043 crossref_primary_10_1007_s12613_023_2609_6 crossref_primary_10_3390_ma15103491 crossref_primary_10_3390_ma15093339 crossref_primary_10_1038_s41467_024_46962_w crossref_primary_10_1016_j_jobe_2024_108500 crossref_primary_10_1016_j_cplett_2023_140677 crossref_primary_10_1016_j_jwpe_2024_106668 crossref_primary_10_1016_j_jnucmat_2022_154084 crossref_primary_10_1016_j_conbuildmat_2024_137916 crossref_primary_10_1111_jace_18358 crossref_primary_10_1007_s12613_023_2640_7 crossref_primary_10_1016_j_jobe_2024_110648 crossref_primary_10_1016_j_cscm_2023_e02817 crossref_primary_10_1155_2022_3807013 crossref_primary_10_1039_D5TA00849B crossref_primary_10_1016_j_chemosphere_2022_135772 crossref_primary_10_1016_j_ijmst_2022_10_002 crossref_primary_10_1002_anie_202400627 |
Cites_doi | 10.1016/j.susc.2015.11.009 10.1016/j.conbuildmat.2021.123659 10.1016/j.mineng.2019.106025 10.1016/j.cemconres.2020.106334 10.1680/cc.25929 10.1088/0953-8984/21/39/395502 10.1016/j.cemconres.2019.05.013 10.1016/j.mineng.2019.01.011 10.1016/j.cemconres.2019.105916 10.1016/j.apsusc.2018.12.063 10.1016/j.ultras.2013.04.013 10.1016/j.cemconres.2004.12.004 10.1103/PhysRevB.47.558 10.1021/jp408325f 10.3390/min9040202 10.1107/S0567740877006918 10.1016/j.conbuildmat.2020.120788 10.1021/cr00005a013 10.3390/min10080665 10.1016/j.conbuildmat.2021.122873 10.1021/acs.jpcc.5b08286 10.1007/s12613-021-2274-6 10.1016/j.susc.2018.10.018 10.1016/j.cemconres.2018.11.013 10.1021/acs.jpcc.9b05117 10.1007/s12613-020-2081-5 10.1088/0022-3719/12/22/036 10.1016/j.cemconres.2016.02.001 10.1016/j.conbuildmat.2021.123951 10.1016/j.apsusc.2021.149960 10.1016/j.commatsci.2005.04.010 10.1016/j.cemconres.2020.106344 10.1088/0953-8984/21/8/084204 10.1016/j.susc.2021.121864 10.1016/j.jhazmat.2020.124504 10.1016/j.cemconres.2021.106515 10.1016/j.susc.2021.121798 10.1016/j.apsusc.2015.09.223 10.1021/jp110998e 10.1016/j.apsusc.2020.146255 10.1016/S0039-6028(01)00922-0 10.1021/jp308870d 10.1021/cm203127m 10.1063/1.4773248 10.1016/j.cemconres.2021.106461 10.1016/j.susc.2018.08.013 10.1002/ange.202009278 10.1016/j.susc.2014.07.020 10.1016/j.apsusc.2016.06.079 10.1016/j.apsusc.2014.05.052 10.1111/jace.15381 10.1103/PhysRevLett.77.3865 10.1016/j.cemconres.2019.105965 10.1016/0927-0256(96)00008-0 10.1016/j.powtec.2021.02.013 |
ContentType | Journal Article |
Copyright | University of Science and Technology Beijing 2022 University of Science and Technology Beijing 2022. |
Copyright_xml | – notice: University of Science and Technology Beijing 2022 – notice: University of Science and Technology Beijing 2022. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO HCIFZ KB. PCBAR PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s12613-021-2364-5 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1869-103X |
EndPage | 344 |
ExternalDocumentID | 10_1007_s12613_021_2364_5 |
GroupedDBID | --K -EM -SB -S~ 06D 0R~ 0VY 188 1B1 1N0 1~5 2B. 2C0 2KG 2LR 2VQ 30V 4.4 406 408 40D 4G. 67Z 7-5 71M 8RM 92H 92I 96X AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAXUO AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BENPR BGLVJ BGNMA BHPHI BKSAR CAG CAJEB CCPQU COF CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FDB FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HMJXF HRMNR HVGLF HZ~ IKXTQ IWAJR IXD J-C JBSCW JZLTJ KB. KOV LLZTM M41 M4Y NPVJJ NQJWS NU0 O9- O9J OZT P2P P9N PCBAR PDBOC PT4 Q-- R9I RIG ROL RSV S1Z S27 S3B SCL SCM SDG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TCJ TGT TSG U1G U2A U5L UG4 UGNYK UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W48 WK8 Z5O Z7R Z7V Z7X Z7Y Z7Z Z85 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ D1I DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c246t-f7208b301255a972322df8cf566f780ae7623f49fdbb89b2b68d57f8cea05b013 |
IEDL.DBID | U2A |
ISSN | 1674-4799 |
IngestDate | Fri Jul 25 11:04:03 EDT 2025 Thu Apr 24 23:05:47 EDT 2025 Tue Jul 01 01:18:46 EDT 2025 Fri Feb 21 02:46:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | hydration reactivity first-principle calculations calcium silicates Portland cement |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-f7208b301255a972322df8cf566f780ae7623f49fdbb89b2b68d57f8cea05b013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2919478599 |
PQPubID | 2043631 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2919478599 crossref_citationtrail_10_1007_s12613_021_2364_5 crossref_primary_10_1007_s12613_021_2364_5 springer_journals_10_1007_s12613_021_2364_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220200 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | International journal of minerals, metallurgy and materials |
PublicationTitleAbbrev | Int J Miner Metall Mater |
PublicationYear | 2022 |
Publisher | University of Science and Technology Beijing Springer Nature B.V |
Publisher_xml | – name: University of Science and Technology Beijing – name: Springer Nature B.V |
References | ChenQSSunSYLiuYKQiCCZhouHBZhangQLImmobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfillInt. J. Miner. Metall. Mater.202128914401:CAS:528:DC%2BB3MXislWlu7bE10.1007/s12613-021-2274-6 X.Y. Pang, W. Cuello Jimenez, and J. Singh, Measuring and modeling cement hydration kinetics at variable temperature conditions, Constr. Build. Mater., 262(2020), art. No. 120788. S. Tontapha, N. Shinsuphan, W. Sang-Aroon, L. Temprom, S. Krongsuk, W. Jarernboon, P. Chindaprasirt, and V. Amornkitbamrung, A DFT study on electrocatalytic performance of 12CaO·7Al2O3 (C12A7) with electrolytic LiI applied in DSSCs, Surf. Sci., 711(2021), art. No. 121864. SarugakuSArakawaMKawanoTTerasakiAElectronic and geometric effects on chemical reactivity of 3d-transition-metal-doped silver cluster cations toward oxygen moleculesJ. Phys. Chem. C201912342258901:CAS:528:DC%2BC1MXhvVylsrbL10.1021/acs.jpcc.9b05117 de NoirfontaineMNDunstetterFCourtialMGaseckiGSignes-FrehelMPolymorphism of tricalcium silicate, the major compound of Portland cement clinker: 2. Modelling alite for Rietveld analysis, an industrial challengeCem. Concr. Res.2006361541:CAS:528:DC%2BD2MXht12isbbK10.1016/j.cemconres.2004.12.004 DurgunEManzanoHKumarPVGrossmanJCThe characterization, stability, and reactivity of synthetic calcium silicate surfaces from first principlesJ. Phys. Chem. C201411828152141:CAS:528:DC%2BC2cXhtFSmsLfK10.1021/jp408325f NogueraCPolar oxide surfacesJ. Phys.: Condens. Matter20001231R3671:CAS:528:DC%2BD3cXmt1Ogt70%3D MascaraqueAGarzaLMMichelEGElectronic structure and reactivity of the Co/MoS2(0001) interfaceSurf. Sci.2001482–48566410.1016/S0039-6028(01)00922-0 TaylorHFCement Chemistry1997LondonThomas Telford110.1680/cc.25929 YinSHWangLMChenXWuAXAgglomeration and leaching behaviors of copper oxides with different chemical bindersInt. J. Miner. Metall. Mater.202128711271:CAS:528:DC%2BB3MXislWlu77F10.1007/s12613-020-2081-5 W. Tang, E. Sanville, and G. Henkelman, A grid-based Bader analysis algorithm without lattice bias, J. Phys.: Condens. Matter, 21(2009), No. 8, art. No. 084204. O. Linderoth, L. Wadsö, and D. Jansen, Long-term cement hydration studies with isothermal calorimetry, Cem. Concr. Res., 141(2021), art. No. 106344. Y.G. Zhang, C. Bouillon, N. Vlasopoulos, and J.J. Chen, Measuring and modeling hydration kinetics of well cements under elevated temperature and pressure using chemical shrinkage test method, Cem. Concr. Res., 123(2019), art. No. 105768. PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys. Rev. Lett.1996771838651:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.3865 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter, 21(2009), No. 39, art. No. 395502. C.X. Cai, S.S. Wei, Z.P. Yin, J. Bai, W.W. Xie, Y. Li, F.W. Qin, Y. Su, and D.J. Wang, Oxygen vacancy formation and uniformity of conductive filaments in Si-doped Ta2O5 RRAM, Appl. Surf. Sci., 560(2021), art. No. 149960. PengCLMinFFLiuLYChenJA periodic DFT study of adsorption of water on sodium-montmorillonite (001) basal and (010) edge surfaceAppl. Surf. Sci.20163873081:CAS:528:DC%2BC28XhtVSgsrnM10.1016/j.apsusc.2016.06.079 LiuJWenSMDengJSChenXMFengQCDFT study of ethyl xanthate interaction with sphalerite (110) surface in the absence and presence of copperAppl. Surf. Sci.20143112581:CAS:528:DC%2BC2cXos1eltrk%3D10.1016/j.apsusc.2014.05.052 JostKHZiemerBSeydelRRedetermination of the structure of β-dicalcium silicateActa Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem.1977336169610.1107/S0567740877006918 WyrzykowskiMScrivenerKLuraPBasic creep of cement paste at early age—The role of cement hydrationCem. Concr. Res.20191161911:CAS:528:DC%2BC1cXisVarsLvJ10.1016/j.cemconres.2018.11.013 LalanPDauzèresADe WindtLBartierDSammaljärviJBarnichonJDTecherIDetilleuxVImpact of a 70°C temperature on an ordinary Portland cement paste/claystone interface: An in situ experimentCem. Concr. Res.2016831641:CAS:528:DC%2BC28Xis1aqsro%3D10.1016/j.cemconres.2016.02.001 Y. Briki, M. Zajac, M.B. Haha, and K. Scrivener, Impact of limestone fineness on cement hydration at early age, Cem. Concr. Res., 147(2021), art. No. 106515. ShepardRShepardSSmeuMAb initio investigation into the physisorption of noble gases on grapheneSurf. Sci.2019682381:CAS:528:DC%2BC1MXls1Smug%3D%3D10.1016/j.susc.2018.10.018 TereshchukPda SilvaJLFEthanol and water adsorption on close-packed 3d, 4d, and 5d transition-metal surfaces: A density functional theory investigation with van der Waals correctionJ. Phys. Chem. C201211646246951:CAS:528:DC%2BC38Xhs1WlsLrN10.1021/jp308870d R. Li, L. Lei, T.B. Sui, and J. Plank, Effectiveness of PCE superplasticizers in calcined clay blended cements, Cem. Concr. Res., 141(2021), art. No. 106334. N.L. Mai, N.H. Hoang, H.T. Do, M. Pilz, and T.T. Trinh, Elastic and thermodynamic properties of the major clinker phases of Portland cement: Insights from first principles calculations, Constr. Build. Mater., 287(2021), art. No. 122873. SchersonYDAboudSJWilcoxJCantwellBJSurface structure and reactivity of rhodium oxideJ. Phys. Chem. C201111522110361:CAS:528:DC%2BC3MXmtFSnsLw%3D10.1021/jp110998e C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. HenkelmanGArnaldssonAJónssonHA fast and robust algorithm for Bader decomposition of charge densityComput. Mater. Sci.200636335410.1016/j.commatsci.2005.04.010 J.Y. Huo, Z.J. Wang, T.H. Zhang, R. He, and H.X. Chen, Influences of interaction between cement and ionic paraffin emulsion on cement hydration, Constr. Build. Mater., 299(2021), art. No. 123951. R.H. Yang and T.S. He, Influence of liquid accelerators combined with mineral admixtures on early hydration of cement pastes, Constr. Build. Mater., 295(2021), art. No. 123659. M. Laanaiya, A. Bouibes, and A. Zaoui, Understanding why Alite is responsible of the main mechanical characteristics in Portland cement, Cem. Concr. Res., 126(2019), art. No. 105916. XinYHouSCXiangLYuYXAdsorption and sub-stitution effects of Mg on the growth of calcium sulfate hemihydrate: An ab initio DFT studyAppl. Surf. Sci.201535715521:CAS:528:DC%2BC2MXhs1aksLvM10.1016/j.apsusc.2015.09.223 N. Kuriakose, A. Mohan T, and P. Ghosh, Coverage dependent CO2 activation on Ti2C(111) surface: Effect of intrinsic subsurface Carbon vacancies, Surf. Sci., 706(2021), art. No. 121798. JiangZQinPFangTInvestigation on adsorption and decomposition of H2S on Pd (100) surface: A DFT studySurf. Sci.20156321951:CAS:528:DC%2BC2cXht1Kksr%2FE10.1016/j.susc.2014.07.020 TaskerPWThe stability of ionic crystal surfacesJ. Phys. C: Solid State Phys.1979122249771:CAS:528:DyaL3cXhtlGrt7s%3D10.1088/0022-3719/12/22/036 HuangJWangBYuYTValenzanoLBauchyMSantGElectronic origin of doping-induced enhancements of reactivity: Case study of tricalcium silicateJ. Phys. Chem. C201511946259911:CAS:528:DC%2BC2MXhslSqu7fK10.1021/acs.jpcc.5b08286 KresseGHafnerJAb initio molecular dynamics for liquid metalsPhys. Rev. B19934715581:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558 QiCCFourieAChenQSLiuPFApplication of first-principles theory in ferrite phases of cemented paste backfillMiner. Eng.2019133471:CAS:528:DC%2BC1MXpsVGrtQ%3D%3D10.1016/j.mineng.2019.01.011 ZhangYLuXYHeZSongDSMolecular and dissociative adsorption of a single water molecule on a β-dicalcium silicate (100) surface explored by a DFT approachJ. Am. Ceram. Soc.2018101624281:CAS:528:DC%2BC2sXitVamsLvN10.1111/jace.15381 ZhangYLuXYSongDSLiuSBThe adsorption of a single water molecule on low-index C3S surfaces: A DFT approachAppl. Surf. Sci.20194716581:CAS:528:DC%2BC1cXisVOhurbP10.1016/j.apsusc.2018.12.063 LiGJHuWGSunYNXuJYCaiXChengXLZhangYYTangACLiuXChenMYDingWPZhuYReactivity and lability modulated by a valence electron moving in and out of 25-atom gold nanoclustersAngew. Chem.2020132472132110.1002/ange.202009278 DurgunEManzanoHPellenqRJMGrossmanJCUnderstanding and controlling the reactivity of the calcium silicate phases from first principlesChem. Mater.201224712621:CAS:528:DC%2BC38Xkslalurw%3D10.1021/cm203127m J.P. Zhu, K. Yang, Y. Chen, G.X. Fan, L. Zhang, B.K. Guo, X.M. Guan, and R.Q. Zhao, Revealing the substitution preference of zinc in ordinary Portland cement clinker phases: A study from experiments and DFT calculations, J. Hazard. Mater., 409(2021), art. No. 124504. Z.D. Zhang and G.W. Scherer, Physical and chemical effects of isopropanol exchange in cement-based materials, Cem. Concr. Res., 145(2021), art. No. 106461. I.H. Svenum, I.G. Ringdalen, F.L. Bleken, J. Friis, D. Höche, and O. Swang, Structure, hydration, and chloride ingress in C—S—H: Insight from DFT calculations, Cem. Concr. Res., 129(2020), art. No. 105965. TjungSJZhangQRepickyJJYukSFNieXWSantagataNMAsthagiriAGuptaJASTM and DFT studies of CO2 adsorption on O-Cu(100) surfaceSurf. Sci.2019679501:CAS:528:DC%2BC1cXhslSntrzJ10.1016/j.susc.2018.08.013 ErcikdiBYılmazTKülekciGStrength and ultrasonic properties of cemented paste backfillUltrasonics20145411951:CAS:528:DC%2BC3sXosFenurw%3D10.1016/j.ultras.2013.04.013 C.C. Qi, D. Spagnoli, and A. Fourie, DFT-D study of single water adsorption on low-index surfaces of calcium silicate phases in cement, Appl. Surf. Sci., 518(2020), art. No. 146255. CrowJMThe concrete conundrumChem. World2008562 C.C. Qi, L. Liu, J.Y. He, Q.S. Chen, L.J. Yu, and P.F. Liu, Understanding cement hydration of cemented paste backfill: DFT study of water adsorption on tricalcium silicate (111) surface, Minerals, 9(2019), No. 4, art. No. G Kresse (2364_CR30) 1993; 47 C Noguera (2364_CR37) 2000; 12 2364_CR21 2364_CR22 J Huang (2364_CR29) 2015; 119 SJ Tjung (2364_CR38) 2019; 679 P Tereshchuk (2364_CR41) 2012; 116 2364_CR25 I Cavusoglu (2364_CR9) 2021; 384 2364_CR27 2364_CR28 MN de Noirfontaine (2364_CR35) 2006; 36 S Sarugaku (2364_CR56) 2019; 123 J Liu (2364_CR45) 2014; 311 GJ Li (2364_CR55) 2020; 132 Z Jiang (2364_CR39) 2015; 632 KH Jost (2364_CR34) 1977; 33 2364_CR2 Y Zhang (2364_CR24) 2018; 101 2364_CR1 CC Qi (2364_CR26) 2019; 133 G Henkelman (2364_CR50) 2006; 36 2364_CR51 2364_CR52 2364_CR10 2364_CR54 2364_CR7 2364_CR11 JM Crow (2364_CR6) 2008; 5 2364_CR12 2364_CR13 YD Scherson (2364_CR49) 2011; 115 2364_CR14 2364_CR15 CL Peng (2364_CR43) 2016; 387 2364_CR18 2364_CR19 QS Chen (2364_CR4) 2021; 28 G Kresse (2364_CR31) 1996; 6 E Durgun (2364_CR53) 2012; 24 SH Yin (2364_CR3) 2021; 28 HF Taylor (2364_CR5) 1997 Y Zhang (2364_CR23) 2019; 471 R Shepard (2364_CR42) 2019; 682 A Lloyd (2364_CR40) 2016; 645 2364_CR46 P Lalan (2364_CR17) 2016; 83 PW Tasker (2364_CR36) 1979; 12 2364_CR48 RFW Bader (2364_CR47) 1991; 91 JP Perdew (2364_CR33) 1996; 77 M Wyrzykowski (2364_CR16) 2019; 116 Y Xin (2364_CR44) 2015; 357 2364_CR32 B Ercikdi (2364_CR8) 2014; 54 A Mascaraque (2364_CR57) 2001; 482–485 E Durgun (2364_CR20) 2014; 118 |
References_xml | – reference: M. Laanaiya, A. Bouibes, and A. Zaoui, Understanding why Alite is responsible of the main mechanical characteristics in Portland cement, Cem. Concr. Res., 126(2019), art. No. 105916. – reference: ZhangYLuXYSongDSLiuSBThe adsorption of a single water molecule on low-index C3S surfaces: A DFT approachAppl. Surf. Sci.20194716581:CAS:528:DC%2BC1cXisVOhurbP10.1016/j.apsusc.2018.12.063 – reference: KresseGFurthmüllerJEfficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis setComput. Mater. Sci.199661151:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0 – reference: P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter, 21(2009), No. 39, art. No. 395502. – reference: R.H. Yang and T.S. He, Influence of liquid accelerators combined with mineral admixtures on early hydration of cement pastes, Constr. Build. Mater., 295(2021), art. No. 123659. – reference: QiCCFourieAChenQSLiuPFApplication of first-principles theory in ferrite phases of cemented paste backfillMiner. Eng.2019133471:CAS:528:DC%2BC1MXpsVGrtQ%3D%3D10.1016/j.mineng.2019.01.011 – reference: N. Kuriakose, A. Mohan T, and P. Ghosh, Coverage dependent CO2 activation on Ti2C(111) surface: Effect of intrinsic subsurface Carbon vacancies, Surf. Sci., 706(2021), art. No. 121798. – reference: Z. Cheng, B.J. Sherman, and C.S. Lo, Carbon dioxide activation and dissociation on ceria (110): A density functional theory study, J. Chem. Phys., 138(2013), No. 1, art. No. 014702. – reference: KresseGHafnerJAb initio molecular dynamics for liquid metalsPhys. Rev. B19934715581:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558 – reference: MascaraqueAGarzaLMMichelEGElectronic structure and reactivity of the Co/MoS2(0001) interfaceSurf. Sci.2001482–48566410.1016/S0039-6028(01)00922-0 – reference: TjungSJZhangQRepickyJJYukSFNieXWSantagataNMAsthagiriAGuptaJASTM and DFT studies of CO2 adsorption on O-Cu(100) surfaceSurf. Sci.2019679501:CAS:528:DC%2BC1cXhslSntrzJ10.1016/j.susc.2018.08.013 – reference: ZhangYLuXYHeZSongDSMolecular and dissociative adsorption of a single water molecule on a β-dicalcium silicate (100) surface explored by a DFT approachJ. Am. Ceram. Soc.2018101624281:CAS:528:DC%2BC2sXitVamsLvN10.1111/jace.15381 – reference: JostKHZiemerBSeydelRRedetermination of the structure of β-dicalcium silicateActa Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem.1977336169610.1107/S0567740877006918 – reference: NogueraCPolar oxide surfacesJ. Phys.: Condens. Matter20001231R3671:CAS:528:DC%2BD3cXmt1Ogt70%3D – reference: Y. Briki, M. Zajac, M.B. Haha, and K. Scrivener, Impact of limestone fineness on cement hydration at early age, Cem. Concr. Res., 147(2021), art. No. 106515. – reference: de NoirfontaineMNDunstetterFCourtialMGaseckiGSignes-FrehelMPolymorphism of tricalcium silicate, the major compound of Portland cement clinker: 2. Modelling alite for Rietveld analysis, an industrial challengeCem. Concr. Res.2006361541:CAS:528:DC%2BD2MXht12isbbK10.1016/j.cemconres.2004.12.004 – reference: CrowJMThe concrete conundrumChem. World2008562 – reference: S. Tontapha, N. Shinsuphan, W. Sang-Aroon, L. Temprom, S. Krongsuk, W. Jarernboon, P. Chindaprasirt, and V. Amornkitbamrung, A DFT study on electrocatalytic performance of 12CaO·7Al2O3 (C12A7) with electrolytic LiI applied in DSSCs, Surf. Sci., 711(2021), art. No. 121864. – reference: LloydACornilDvan DuinACTvan DuinDSmithRKennySDCornilJBeljonneDDevelopment of a ReaxFF potential for Ag/Zn/O and application to Ag deposition on ZnOSurf. Sci.2016645671:CAS:528:DC%2BC2MXhvFWqtrrI10.1016/j.susc.2015.11.009 – reference: PengCLMinFFLiuLYChenJA periodic DFT study of adsorption of water on sodium-montmorillonite (001) basal and (010) edge surfaceAppl. Surf. Sci.20163873081:CAS:528:DC%2BC28XhtVSgsrnM10.1016/j.apsusc.2016.06.079 – reference: C.C. Qi, D. Spagnoli, and A. Fourie, DFT-D study of single water adsorption on low-index surfaces of calcium silicate phases in cement, Appl. Surf. Sci., 518(2020), art. No. 146255. – reference: I.H. Svenum, I.G. Ringdalen, F.L. Bleken, J. Friis, D. Höche, and O. Swang, Structure, hydration, and chloride ingress in C—S—H: Insight from DFT calculations, Cem. Concr. Res., 129(2020), art. No. 105965. – reference: ChenQSSunSYLiuYKQiCCZhouHBZhangQLImmobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfillInt. J. Miner. Metall. Mater.202128914401:CAS:528:DC%2BB3MXislWlu7bE10.1007/s12613-021-2274-6 – reference: X.Y. Pang, W. Cuello Jimenez, and J. Singh, Measuring and modeling cement hydration kinetics at variable temperature conditions, Constr. Build. Mater., 262(2020), art. No. 120788. – reference: N.L. Mai, N.H. Hoang, H.T. Do, M. Pilz, and T.T. Trinh, Elastic and thermodynamic properties of the major clinker phases of Portland cement: Insights from first principles calculations, Constr. Build. Mater., 287(2021), art. No. 122873. – reference: TereshchukPda SilvaJLFEthanol and water adsorption on close-packed 3d, 4d, and 5d transition-metal surfaces: A density functional theory investigation with van der Waals correctionJ. Phys. Chem. C201211646246951:CAS:528:DC%2BC38Xhs1WlsLrN10.1021/jp308870d – reference: DurgunEManzanoHKumarPVGrossmanJCThe characterization, stability, and reactivity of synthetic calcium silicate surfaces from first principlesJ. Phys. Chem. C201411828152141:CAS:528:DC%2BC2cXhtFSmsLfK10.1021/jp408325f – reference: R. Li, L. Lei, T.B. Sui, and J. Plank, Effectiveness of PCE superplasticizers in calcined clay blended cements, Cem. Concr. Res., 141(2021), art. No. 106334. – reference: LalanPDauzèresADe WindtLBartierDSammaljärviJBarnichonJDTecherIDetilleuxVImpact of a 70°C temperature on an ordinary Portland cement paste/claystone interface: An in situ experimentCem. Concr. Res.2016831641:CAS:528:DC%2BC28Xis1aqsro%3D10.1016/j.cemconres.2016.02.001 – reference: TaskerPWThe stability of ionic crystal surfacesJ. Phys. C: Solid State Phys.1979122249771:CAS:528:DyaL3cXhtlGrt7s%3D10.1088/0022-3719/12/22/036 – reference: LiGJHuWGSunYNXuJYCaiXChengXLZhangYYTangACLiuXChenMYDingWPZhuYReactivity and lability modulated by a valence electron moving in and out of 25-atom gold nanoclustersAngew. Chem.2020132472132110.1002/ange.202009278 – reference: TaylorHFCement Chemistry1997LondonThomas Telford110.1680/cc.25929 – reference: J.Y. Huo, Z.J. Wang, T.H. Zhang, R. He, and H.X. Chen, Influences of interaction between cement and ionic paraffin emulsion on cement hydration, Constr. Build. Mater., 299(2021), art. No. 123951. – reference: Z.D. Zhang and G.W. Scherer, Physical and chemical effects of isopropanol exchange in cement-based materials, Cem. Concr. Res., 145(2021), art. No. 106461. – reference: YinSHWangLMChenXWuAXAgglomeration and leaching behaviors of copper oxides with different chemical bindersInt. J. Miner. Metall. Mater.202128711271:CAS:528:DC%2BB3MXislWlu77F10.1007/s12613-020-2081-5 – reference: W. Tang, E. Sanville, and G. Henkelman, A grid-based Bader analysis algorithm without lattice bias, J. Phys.: Condens. Matter, 21(2009), No. 8, art. No. 084204. – reference: J.P. Zhu, K. Yang, Y. Chen, G.X. Fan, L. Zhang, B.K. Guo, X.M. Guan, and R.Q. Zhao, Revealing the substitution preference of zinc in ordinary Portland cement clinker phases: A study from experiments and DFT calculations, J. Hazard. Mater., 409(2021), art. No. 124504. – reference: C.C. Qi, Q.S. Chen, and A. Fourie, Role of Mg impurity in the water adsorption over low-index surfaces of calcium silicates: A DFT-D study, Minerals, 10(2020), No. 8, art. No. 665. – reference: XinYHouSCXiangLYuYXAdsorption and sub-stitution effects of Mg on the growth of calcium sulfate hemihydrate: An ab initio DFT studyAppl. Surf. Sci.201535715521:CAS:528:DC%2BC2MXhs1aksLvM10.1016/j.apsusc.2015.09.223 – reference: C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. – reference: O. Linderoth, L. Wadsö, and D. Jansen, Long-term cement hydration studies with isothermal calorimetry, Cem. Concr. Res., 141(2021), art. No. 106344. – reference: ErcikdiBYılmazTKülekciGStrength and ultrasonic properties of cemented paste backfillUltrasonics20145411951:CAS:528:DC%2BC3sXosFenurw%3D10.1016/j.ultras.2013.04.013 – reference: JiangZQinPFangTInvestigation on adsorption and decomposition of H2S on Pd (100) surface: A DFT studySurf. Sci.20156321951:CAS:528:DC%2BC2cXht1Kksr%2FE10.1016/j.susc.2014.07.020 – reference: CavusogluIYilmazEYilmazAOSodium silicate effect on setting properties, strength behavior and microstructure of cemented coal fly ash backfillPowder Technol.2021384171:CAS:528:DC%2BB3MXkvVSnsbo%3D10.1016/j.powtec.2021.02.013 – reference: SchersonYDAboudSJWilcoxJCantwellBJSurface structure and reactivity of rhodium oxideJ. Phys. Chem. C201111522110361:CAS:528:DC%2BC3MXmtFSnsLw%3D10.1021/jp110998e – reference: WyrzykowskiMScrivenerKLuraPBasic creep of cement paste at early age—The role of cement hydrationCem. Concr. Res.20191161911:CAS:528:DC%2BC1cXisVarsLvJ10.1016/j.cemconres.2018.11.013 – reference: Y.G. Zhang, C. Bouillon, N. Vlasopoulos, and J.J. Chen, Measuring and modeling hydration kinetics of well cements under elevated temperature and pressure using chemical shrinkage test method, Cem. Concr. Res., 123(2019), art. No. 105768. – reference: C.X. Cai, S.S. Wei, Z.P. Yin, J. Bai, W.W. Xie, Y. Li, F.W. Qin, Y. Su, and D.J. Wang, Oxygen vacancy formation and uniformity of conductive filaments in Si-doped Ta2O5 RRAM, Appl. Surf. Sci., 560(2021), art. No. 149960. – reference: DurgunEManzanoHPellenqRJMGrossmanJCUnderstanding and controlling the reactivity of the calcium silicate phases from first principlesChem. Mater.201224712621:CAS:528:DC%2BC38Xkslalurw%3D10.1021/cm203127m – reference: SarugakuSArakawaMKawanoTTerasakiAElectronic and geometric effects on chemical reactivity of 3d-transition-metal-doped silver cluster cations toward oxygen moleculesJ. Phys. Chem. C201912342258901:CAS:528:DC%2BC1MXhvVylsrbL10.1021/acs.jpcc.9b05117 – reference: BaderRFWA quantum theory of molecular structure and its applicationsChem. Rev.19919158931:CAS:528:DyaK3MXkvFWgt7s%3D10.1021/cr00005a013 – reference: HenkelmanGArnaldssonAJónssonHA fast and robust algorithm for Bader decomposition of charge densityComput. Mater. Sci.200636335410.1016/j.commatsci.2005.04.010 – reference: HuangJWangBYuYTValenzanoLBauchyMSantGElectronic origin of doping-induced enhancements of reactivity: Case study of tricalcium silicateJ. Phys. Chem. C201511946259911:CAS:528:DC%2BC2MXhslSqu7fK10.1021/acs.jpcc.5b08286 – reference: PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys. Rev. Lett.1996771838651:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.3865 – reference: ShepardRShepardSSmeuMAb initio investigation into the physisorption of noble gases on grapheneSurf. Sci.2019682381:CAS:528:DC%2BC1MXls1Smug%3D%3D10.1016/j.susc.2018.10.018 – reference: C.C. Qi, L. Liu, J.Y. He, Q.S. Chen, L.J. Yu, and P.F. Liu, Understanding cement hydration of cemented paste backfill: DFT study of water adsorption on tricalcium silicate (111) surface, Minerals, 9(2019), No. 4, art. No. 202. – reference: LiuJWenSMDengJSChenXMFengQCDFT study of ethyl xanthate interaction with sphalerite (110) surface in the absence and presence of copperAppl. Surf. Sci.20143112581:CAS:528:DC%2BC2cXos1eltrk%3D10.1016/j.apsusc.2014.05.052 – volume: 5 start-page: 62 year: 2008 ident: 2364_CR6 publication-title: Chem. World – volume: 645 start-page: 67 year: 2016 ident: 2364_CR40 publication-title: Surf. Sci. doi: 10.1016/j.susc.2015.11.009 – ident: 2364_CR13 doi: 10.1016/j.conbuildmat.2021.123659 – ident: 2364_CR10 doi: 10.1016/j.mineng.2019.106025 – ident: 2364_CR2 doi: 10.1016/j.cemconres.2020.106334 – start-page: 1 volume-title: Cement Chemistry year: 1997 ident: 2364_CR5 doi: 10.1680/cc.25929 – ident: 2364_CR32 doi: 10.1088/0953-8984/21/39/395502 – ident: 2364_CR15 doi: 10.1016/j.cemconres.2019.05.013 – volume: 133 start-page: 47 year: 2019 ident: 2364_CR26 publication-title: Miner. Eng. doi: 10.1016/j.mineng.2019.01.011 – ident: 2364_CR54 doi: 10.1016/j.cemconres.2019.105916 – volume: 471 start-page: 658 year: 2019 ident: 2364_CR23 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.12.063 – volume: 54 start-page: 195 issue: 1 year: 2014 ident: 2364_CR8 publication-title: Ultrasonics doi: 10.1016/j.ultras.2013.04.013 – volume: 36 start-page: 54 issue: 1 year: 2006 ident: 2364_CR35 publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2004.12.004 – volume: 47 start-page: 558 issue: 1 year: 1993 ident: 2364_CR30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 118 start-page: 15214 issue: 28 year: 2014 ident: 2364_CR20 publication-title: J. Phys. Chem. C doi: 10.1021/jp408325f – ident: 2364_CR21 doi: 10.3390/min9040202 – volume: 33 start-page: 1696 issue: 6 year: 1977 ident: 2364_CR34 publication-title: Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. doi: 10.1107/S0567740877006918 – ident: 2364_CR12 doi: 10.1016/j.conbuildmat.2020.120788 – volume: 91 start-page: 893 issue: 5 year: 1991 ident: 2364_CR47 publication-title: Chem. Rev. doi: 10.1021/cr00005a013 – ident: 2364_CR28 doi: 10.3390/min10080665 – ident: 2364_CR27 doi: 10.1016/j.conbuildmat.2021.122873 – volume: 119 start-page: 25991 issue: 46 year: 2015 ident: 2364_CR29 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b08286 – volume: 28 start-page: 1440 issue: 9 year: 2021 ident: 2364_CR4 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-021-2274-6 – volume: 682 start-page: 38 year: 2019 ident: 2364_CR42 publication-title: Surf. Sci. doi: 10.1016/j.susc.2018.10.018 – volume: 116 start-page: 191 year: 2019 ident: 2364_CR16 publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2018.11.013 – volume: 123 start-page: 25890 issue: 42 year: 2019 ident: 2364_CR56 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b05117 – volume: 28 start-page: 1127 issue: 7 year: 2021 ident: 2364_CR3 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-020-2081-5 – volume: 12 start-page: 4977 issue: 22 year: 1979 ident: 2364_CR36 publication-title: J. Phys. C: Solid State Phys. doi: 10.1088/0022-3719/12/22/036 – volume: 83 start-page: 164 year: 2016 ident: 2364_CR17 publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2016.02.001 – ident: 2364_CR1 doi: 10.1016/j.conbuildmat.2021.123951 – ident: 2364_CR46 doi: 10.1016/j.apsusc.2021.149960 – volume: 36 start-page: 354 issue: 3 year: 2006 ident: 2364_CR50 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2005.04.010 – ident: 2364_CR14 doi: 10.1016/j.cemconres.2020.106344 – ident: 2364_CR48 doi: 10.1088/0953-8984/21/8/084204 – ident: 2364_CR19 doi: 10.1016/j.susc.2021.121864 – ident: 2364_CR7 doi: 10.1016/j.jhazmat.2020.124504 – ident: 2364_CR11 doi: 10.1016/j.cemconres.2021.106515 – ident: 2364_CR52 doi: 10.1016/j.susc.2021.121798 – volume: 12 start-page: R367 issue: 31 year: 2000 ident: 2364_CR37 publication-title: J. Phys.: Condens. Matter – volume: 357 start-page: 1552 year: 2015 ident: 2364_CR44 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.09.223 – volume: 115 start-page: 11036 issue: 22 year: 2011 ident: 2364_CR49 publication-title: J. Phys. Chem. C doi: 10.1021/jp110998e – ident: 2364_CR22 doi: 10.1016/j.apsusc.2020.146255 – volume: 482–485 start-page: 664 year: 2001 ident: 2364_CR57 publication-title: Surf. Sci. doi: 10.1016/S0039-6028(01)00922-0 – volume: 116 start-page: 24695 issue: 46 year: 2012 ident: 2364_CR41 publication-title: J. Phys. Chem. C doi: 10.1021/jp308870d – volume: 24 start-page: 1262 issue: 7 year: 2012 ident: 2364_CR53 publication-title: Chem. Mater. doi: 10.1021/cm203127m – ident: 2364_CR51 doi: 10.1063/1.4773248 – ident: 2364_CR18 doi: 10.1016/j.cemconres.2021.106461 – volume: 679 start-page: 50 year: 2019 ident: 2364_CR38 publication-title: Surf. Sci. doi: 10.1016/j.susc.2018.08.013 – volume: 132 start-page: 21321 issue: 47 year: 2020 ident: 2364_CR55 publication-title: Angew. Chem. doi: 10.1002/ange.202009278 – volume: 632 start-page: 195 year: 2015 ident: 2364_CR39 publication-title: Surf. Sci. doi: 10.1016/j.susc.2014.07.020 – volume: 387 start-page: 308 year: 2016 ident: 2364_CR43 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.06.079 – volume: 311 start-page: 258 year: 2014 ident: 2364_CR45 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.05.052 – volume: 101 start-page: 2428 issue: 6 year: 2018 ident: 2364_CR24 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.15381 – volume: 77 start-page: 3865 issue: 18 year: 1996 ident: 2364_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – ident: 2364_CR25 doi: 10.1016/j.cemconres.2019.105965 – volume: 6 start-page: 15 issue: 1 year: 1996 ident: 2364_CR31 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 384 start-page: 17 year: 2021 ident: 2364_CR9 publication-title: Powder Technol. doi: 10.1016/j.powtec.2021.02.013 |
SSID | ssj0067707 |
Score | 2.4130936 |
Snippet | Cement hydration is the underlying mechanism for the strength development in cement-based materials. The structural and electronic properties of calcium... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 335 |
SubjectTerms | Adsorbed water Adsorption Calcium Cement hydration Cements Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Composites Corrosion and Coatings Density functional theory Dicalcium silicate Electron distribution Electronic properties Electrons Glass Hydration Materials Science Metallic Materials Natural Materials Reactivity Silica Silicates Silicon Surface chemistry Surfaces and Interfaces Thin Films Tribology Tricalcium silicate Unit cell Water chemistry |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vehBfGK1yh48KYvJ5rV7EistRbCIWOgt7COBgqbV1oM_wP_tTLIxPrCnQLI7h3y7M7M7M98QcuZb7uskDJmCJwu5FzCNyVTSN1aBPUlEjPXOd6N4OA5vJ9HEXbgtXFplrRNLRW1nBu_IL7mE43YiIimv5i8Mu0ZhdNW10FgnbVDBQrRIu9cf3T_UujhOkrJgGlPt8Q5J1nHNsngODg8Yw_QZkqiz6KdlatzNXxHS0vAMtsmW8xjpdQXxDlnLil2y-Y1HcI98DN9thSQFH9BUDSFo3fvEZNRlY9EyKGOmb890Ma2q36gqLF2-_n2P1E5gPCzFAhRa0cwiRUc5oYf5z7RkWUIJFa_JPhkP-o83Q-b6KzDDw3jJ8oR7QsMOh2OFwu5jnNtcmBw8vDwRnspAUQZ5KHOrtZCa61jYKIERmfIivD89IK1iVmSHhGKwUMnYyizKQ5CnNA8CCTKUURHM6RCv_repceTj2APjKW1okxGOFOBIEY406pDzrynzinlj1eBuDVjqNuEibZZMh1zUIDaf_xV2tFrYMdngWANRpm53SQsAyE7AM1nqU7f8PgFWIuD7 priority: 102 providerName: ProQuest |
Title | Hydration reactivity difference between dicalcium silicate and tricalcium silicate revealed from structural and Bader charge analysis |
URI | https://link.springer.com/article/10.1007/s12613-021-2364-5 https://www.proquest.com/docview/2919478599 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8AB8RSDMeXACVSpTZu2OW5oD4GYEGLSOFVJ00qToCA2DvwA_jd22jLeEqdIaeJDvyR2YvszwLFnuKejIHAUtk7AXd_RFEwlvdQo1CdRHFK-8-U4HE2C86mYVnnc8zravXZJ2pN6meyGxj75HD2HSM8dsQpNgVd3iuOa8G59_IZRZHOkKbqeno1k7cr8ScRnZbS0ML84Ra2uGWzCRmUksm6J6hasZMU2rH-gDtyB19GLKcFjaPalZQ0IVpc7STNWBWAx64dJZ8_3bD4rE96YKgxbPH3vJzYn1BeGUc4JK5lliZXDTuhRyDOzxEokoaQy2YXJoH9zNnKqkgpOyoNw4eQRd2ONmxpvEooKjnFu8jjN0ajLo9hVGZ6Nfh7I3GgdS811GBsR4YhMuYKeTPegUTwU2T4w8g8qGRqZiTxAeUpz35coQ6VK4JwWuPW_TdKKb5zKXtwlS6ZkgiNBOBKCIxEtOHmf8liSbfw1uF0DllT7bp5w6UlcX0LKFpzWIC4__yrs4F-jD2GNUxaEDd5uQwPxyI7QNlnoDqzGg2EHmt3h7UUf215_fHXdsSv0Datg3_Y |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsQwDLVYDsABsYphzQEuoIhOplsOCLENw3oCiVvJ0kojwbDMIMQH8Dt8I3baMCyCG6dKbeJDnhs7sf0MsFq3oq6TMOQKnzwUQYNrSqaSdWMV2pMkjane-ew8bl2Gx1fR1QC8-VoYSqv0e6LbqO2doTvyTSHxuJ2kkZTb9w-cukZRdNW30CjV4iR_ecYjW3fraB_xXROieXCx1-JVVwFuRBj3eJGIINWo1-hMK-q5JYQtUlOgX1MkaaBy3B4aRSgLq3UqtdBxaqMER-QqiOjWEOUOwnDYQEtOlenNQ7_zx0niyrMpsZ9urKSPorpSPTyqUMS0zomynUdf7WDfuf0Wj3VmrjkB45V_ynZKhZqEgbwzBWOfWAun4bX1Yku9YehxmrL9BPOdVkzOqtwv5kJApv10y7rtstaOqY5lvcef74lICk2VZVTuwkpSWyIEcRN2KduaOU4nklCyqMzA5b-s-ywMde46-RwwCk0qGVuZR0WI8pQWiAbKUEZFOKcGgV_bzFRU59Rx4ybrkzQTHBnCkREcWVSD9Y8p9yXPx1-DFz1gWfXLd7O-gtZgw4PY__yrsPm_ha3ASOvi7DQ7PTo_WYBRQdUXLml8EYYQjHwJfaKeXnaKyOD6vzX_HeD6HAg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB58gOhBfGJ97kEvSjDZ5rUHD75Ka7V4sNBb3M0mUNBYbET8Af4e_6IzSdb6Bg-eAsnuEHZmM5Od-b4B2HY0d1TgupbEq-Vyu24pKqYSTqwl-pMg9AnvfNHxm133rOf1xuDFYGGKaneTkiwxDcTSlOX7A53uj4BvGPhT_tGxiADdMlWV7eTpEf_ZhgetE1TwDueN06vjplW1FbBi7vq5lQbcDhUaNkbTkppuca7TME4xsEmD0JYJfh_qqStSrVQoFFd-qL0ARyTS9ujYEOWOw6RL4GPcQF1-aD79fhAU-Gyq7KcjK2HSqN-98kdHOIpuPyVkCz_XmIPZKkBlh6VFzcNYki3AzDvawkV4bj7p0nAYhpxx2X-CmVYrccKq4i9W5IDi_sMtG_ZLsB2TmWb5_df7xCSFvkozwruwktWWGEGKCUdUbs0KUieSUNKoLEH3X9Z9GSayuyxZAUa5SSl8LRIvdVGeVLxeFyhDxtLDOTWwzdpGccV1Ti03bqIRSzOpI0J1RKSOyKvB7tuUQUn08dvgdaOwqNrzw4gLR6Bte0LUYM8ocfT4R2Grfxq9BVOXJ43ovNVpr8E0JzBGUUO-DhOommQDQ6RcbRZmyeD6v_fBK43oHKc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydration+reactivity+difference+between+dicalcium+silicate+and+tricalcium+silicate+revealed+from+structural+and+Bader+charge+analysis&rft.jtitle=International+journal+of+minerals%2C+metallurgy+and+materials&rft.au=Qi%2C+Chongchong&rft.au=Xu%2C+Xinhang&rft.au=Chen%2C+Qiusong&rft.date=2022-02-01&rft.pub=University+of+Science+and+Technology+Beijing&rft.issn=1674-4799&rft.eissn=1869-103X&rft.volume=29&rft.issue=2&rft.spage=335&rft.epage=344&rft_id=info:doi/10.1007%2Fs12613-021-2364-5&rft.externalDocID=10_1007_s12613_021_2364_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-4799&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-4799&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-4799&client=summon |