Hydration reactivity difference between dicalcium silicate and tricalcium silicate revealed from structural and Bader charge analysis

Cement hydration is the underlying mechanism for the strength development in cement-based materials. The structural and electronic properties of calcium silicates should be elucidated to reveal their difference in hydration reactivity. Here, we comprehensively compared β-C 2 S and M3-C 3 S and inves...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of minerals, metallurgy and materials Vol. 29; no. 2; pp. 335 - 344
Main Authors Qi, Chongchong, Xu, Xinhang, Chen, Qiusong
Format Journal Article
LanguageEnglish
Published Beijing University of Science and Technology Beijing 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cement hydration is the underlying mechanism for the strength development in cement-based materials. The structural and electronic properties of calcium silicates should be elucidated to reveal their difference in hydration reactivity. Here, we comprehensively compared β-C 2 S and M3-C 3 S and investigated their structural properties and Bader charge in the unit cell, during surface reconstruction and after single water adsorption via density functional theory. We identified different types of atoms in β-C 2 S and M3-C 3 S by considering the bonding characteristics and Bader charge. We then divided the atoms into the following groups: for β-C 2 S, Ca and O atoms divided into two and four groups, respectively; for M3-C 3 S, Ca, O, and Si atoms divided into four, four, and three groups, respectively. Results revealed that the valence electron distribution on the surface was more uniform than that on the unit cell, indicating that some atoms became more reactive after surface relaxation. During water adsorption, the electrons of β-C 2 S and M3-C 3 S were transferred from the surface to the adsorbed water molecules through position redistribution and bond formation/breaking. On this basis, we explained why β-C 2 S and M3-C 3 S had activity differences. A type of O atom with special bond characteristics (no O-Si bonds) and high reactivity existed in the unit cell of M3-C 3 S. Bader charge analysis showed that the reactivity of Ca and O atoms was generally higher in M3-C 3 S than in β-C 2 S. Ca/O atoms had average valence electron numbers of 6.437/7.550 in β-C 2 S and 6.481/7.537 in M3-C 3 S. Moreover, the number of electrons gained by water molecules in M3-C 3 S at the surface was higher than that in β-C 2 S. The average variations in the valence electrons of H 2 O on β-C 2 S and M3-C 3 S were 0.041 and 0.226, respectively. This study further explains the differences in the hydration reactivity of calcium silicates and would be also useful for the design of highly reactive and environmentally friendly cements.
AbstractList Cement hydration is the underlying mechanism for the strength development in cement-based materials. The structural and electronic properties of calcium silicates should be elucidated to reveal their difference in hydration reactivity. Here, we comprehensively compared β-C 2 S and M3-C 3 S and investigated their structural properties and Bader charge in the unit cell, during surface reconstruction and after single water adsorption via density functional theory. We identified different types of atoms in β-C 2 S and M3-C 3 S by considering the bonding characteristics and Bader charge. We then divided the atoms into the following groups: for β-C 2 S, Ca and O atoms divided into two and four groups, respectively; for M3-C 3 S, Ca, O, and Si atoms divided into four, four, and three groups, respectively. Results revealed that the valence electron distribution on the surface was more uniform than that on the unit cell, indicating that some atoms became more reactive after surface relaxation. During water adsorption, the electrons of β-C 2 S and M3-C 3 S were transferred from the surface to the adsorbed water molecules through position redistribution and bond formation/breaking. On this basis, we explained why β-C 2 S and M3-C 3 S had activity differences. A type of O atom with special bond characteristics (no O-Si bonds) and high reactivity existed in the unit cell of M3-C 3 S. Bader charge analysis showed that the reactivity of Ca and O atoms was generally higher in M3-C 3 S than in β-C 2 S. Ca/O atoms had average valence electron numbers of 6.437/7.550 in β-C 2 S and 6.481/7.537 in M3-C 3 S. Moreover, the number of electrons gained by water molecules in M3-C 3 S at the surface was higher than that in β-C 2 S. The average variations in the valence electrons of H 2 O on β-C 2 S and M3-C 3 S were 0.041 and 0.226, respectively. This study further explains the differences in the hydration reactivity of calcium silicates and would be also useful for the design of highly reactive and environmentally friendly cements.
Cement hydration is the underlying mechanism for the strength development in cement-based materials. The structural and electronic properties of calcium silicates should be elucidated to reveal their difference in hydration reactivity. Here, we comprehensively compared β-C2S and M3-C3S and investigated their structural properties and Bader charge in the unit cell, during surface reconstruction and after single water adsorption via density functional theory. We identified different types of atoms in β-C2S and M3-C3S by considering the bonding characteristics and Bader charge. We then divided the atoms into the following groups: for β-C2S, Ca and O atoms divided into two and four groups, respectively; for M3-C3S, Ca, O, and Si atoms divided into four, four, and three groups, respectively. Results revealed that the valence electron distribution on the surface was more uniform than that on the unit cell, indicating that some atoms became more reactive after surface relaxation. During water adsorption, the electrons of β-C2S and M3-C3S were transferred from the surface to the adsorbed water molecules through position redistribution and bond formation/breaking. On this basis, we explained why β-C2S and M3-C3S had activity differences. A type of O atom with special bond characteristics (no O-Si bonds) and high reactivity existed in the unit cell of M3-C3S. Bader charge analysis showed that the reactivity of Ca and O atoms was generally higher in M3-C3S than in β-C2S. Ca/O atoms had average valence electron numbers of 6.437/7.550 in β-C2S and 6.481/7.537 in M3-C3S. Moreover, the number of electrons gained by water molecules in M3-C3S at the surface was higher than that in β-C2S. The average variations in the valence electrons of H2O on β-C2S and M3-C3S were 0.041 and 0.226, respectively. This study further explains the differences in the hydration reactivity of calcium silicates and would be also useful for the design of highly reactive and environmentally friendly cements.
Author Xu, Xinhang
Qi, Chongchong
Chen, Qiusong
Author_xml – sequence: 1
  givenname: Chongchong
  surname: Qi
  fullname: Qi, Chongchong
  email: chongchong.qi@csu.edu.cn
  organization: School of Resources and Safety Engineering, Central South University, School of Molecular Science, University of Western Australia
– sequence: 2
  givenname: Xinhang
  surname: Xu
  fullname: Xu, Xinhang
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 3
  givenname: Qiusong
  surname: Chen
  fullname: Chen, Qiusong
  organization: School of Resources and Safety Engineering, Central South University
BookMark eNp9kMFKxDAQhoMouK4-gLeC52qStklzVFFXELwoeAtpOlmz1HadpMo-gO9tdlcQFD3N8PN_w_AdkN1-6IGQY0ZPGaXyLDAuWJFTznJeiDKvdsiE1ULljBZPu2kXssxLqdQ-OQhhQamQksoJ-ZitWjTRD32GYGz0bz6ustY7Bwi9hayB-A7Qp8iazvrxJQu-S3uEzPRtFvF3jvAGpoM2czikOOJo44im2wAXpgXM7LPB-fqC6VbBh0Oy50wX4OhrTsnj9dXD5Sy_u7-5vTy_yy0vRcyd5LRuCsp4VRklecF562rrKiGcrKkBKXjhSuXapqlVwxtRt5VMDTC0aigrpuRke3eJw-sIIerFMGJ6ImiumCplXSmVWnLbsjiEgOC09XHjKKLxnWZUr53rrXOdnOu1c10lkv0gl-hfDK7-ZfiWCanbzwG_f_ob-gR9r5i5
CitedBy_id crossref_primary_10_1002_ange_202400627
crossref_primary_10_3390_cryst12040556
crossref_primary_10_1016_j_conbuildmat_2022_128777
crossref_primary_10_1016_j_envpol_2022_120072
crossref_primary_10_3390_min12040447
crossref_primary_10_1016_j_envres_2022_114412
crossref_primary_10_1016_j_ijhydene_2024_07_422
crossref_primary_10_1007_s11665_024_09494_4
crossref_primary_10_1016_j_jpowsour_2024_234783
crossref_primary_10_1016_j_conbuildmat_2022_127880
crossref_primary_10_3390_min12020271
crossref_primary_10_1016_j_fuel_2022_125685
crossref_primary_10_1016_j_mtcomm_2023_106878
crossref_primary_10_1007_s11356_022_19238_3
crossref_primary_10_1016_j_cej_2024_156788
crossref_primary_10_1016_j_ceramint_2024_12_043
crossref_primary_10_1007_s12613_023_2609_6
crossref_primary_10_3390_ma15103491
crossref_primary_10_3390_ma15093339
crossref_primary_10_1038_s41467_024_46962_w
crossref_primary_10_1016_j_jobe_2024_108500
crossref_primary_10_1016_j_cplett_2023_140677
crossref_primary_10_1016_j_jwpe_2024_106668
crossref_primary_10_1016_j_jnucmat_2022_154084
crossref_primary_10_1016_j_conbuildmat_2024_137916
crossref_primary_10_1111_jace_18358
crossref_primary_10_1007_s12613_023_2640_7
crossref_primary_10_1016_j_jobe_2024_110648
crossref_primary_10_1016_j_cscm_2023_e02817
crossref_primary_10_1155_2022_3807013
crossref_primary_10_1039_D5TA00849B
crossref_primary_10_1016_j_chemosphere_2022_135772
crossref_primary_10_1016_j_ijmst_2022_10_002
crossref_primary_10_1002_anie_202400627
Cites_doi 10.1016/j.susc.2015.11.009
10.1016/j.conbuildmat.2021.123659
10.1016/j.mineng.2019.106025
10.1016/j.cemconres.2020.106334
10.1680/cc.25929
10.1088/0953-8984/21/39/395502
10.1016/j.cemconres.2019.05.013
10.1016/j.mineng.2019.01.011
10.1016/j.cemconres.2019.105916
10.1016/j.apsusc.2018.12.063
10.1016/j.ultras.2013.04.013
10.1016/j.cemconres.2004.12.004
10.1103/PhysRevB.47.558
10.1021/jp408325f
10.3390/min9040202
10.1107/S0567740877006918
10.1016/j.conbuildmat.2020.120788
10.1021/cr00005a013
10.3390/min10080665
10.1016/j.conbuildmat.2021.122873
10.1021/acs.jpcc.5b08286
10.1007/s12613-021-2274-6
10.1016/j.susc.2018.10.018
10.1016/j.cemconres.2018.11.013
10.1021/acs.jpcc.9b05117
10.1007/s12613-020-2081-5
10.1088/0022-3719/12/22/036
10.1016/j.cemconres.2016.02.001
10.1016/j.conbuildmat.2021.123951
10.1016/j.apsusc.2021.149960
10.1016/j.commatsci.2005.04.010
10.1016/j.cemconres.2020.106344
10.1088/0953-8984/21/8/084204
10.1016/j.susc.2021.121864
10.1016/j.jhazmat.2020.124504
10.1016/j.cemconres.2021.106515
10.1016/j.susc.2021.121798
10.1016/j.apsusc.2015.09.223
10.1021/jp110998e
10.1016/j.apsusc.2020.146255
10.1016/S0039-6028(01)00922-0
10.1021/jp308870d
10.1021/cm203127m
10.1063/1.4773248
10.1016/j.cemconres.2021.106461
10.1016/j.susc.2018.08.013
10.1002/ange.202009278
10.1016/j.susc.2014.07.020
10.1016/j.apsusc.2016.06.079
10.1016/j.apsusc.2014.05.052
10.1111/jace.15381
10.1103/PhysRevLett.77.3865
10.1016/j.cemconres.2019.105965
10.1016/0927-0256(96)00008-0
10.1016/j.powtec.2021.02.013
ContentType Journal Article
Copyright University of Science and Technology Beijing 2022
University of Science and Technology Beijing 2022.
Copyright_xml – notice: University of Science and Technology Beijing 2022
– notice: University of Science and Technology Beijing 2022.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
HCIFZ
KB.
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s12613-021-2364-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Materials Science Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1869-103X
EndPage 344
ExternalDocumentID 10_1007_s12613_021_2364_5
GroupedDBID --K
-EM
-SB
-S~
06D
0R~
0VY
188
1B1
1N0
1~5
2B.
2C0
2KG
2LR
2VQ
30V
4.4
406
408
40D
4G.
67Z
7-5
71M
8RM
92H
92I
96X
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CAG
CAJEB
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FDB
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
OZT
P2P
P9N
PCBAR
PDBOC
PT4
Q--
R9I
RIG
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U1G
U2A
U5L
UG4
UGNYK
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z85
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
D1I
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c246t-f7208b301255a972322df8cf566f780ae7623f49fdbb89b2b68d57f8cea05b013
IEDL.DBID U2A
ISSN 1674-4799
IngestDate Fri Jul 25 11:04:03 EDT 2025
Thu Apr 24 23:05:47 EDT 2025
Tue Jul 01 01:18:46 EDT 2025
Fri Feb 21 02:46:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords hydration reactivity
first-principle calculations
calcium silicates
Portland cement
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-f7208b301255a972322df8cf566f780ae7623f49fdbb89b2b68d57f8cea05b013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2919478599
PQPubID 2043631
PageCount 10
ParticipantIDs proquest_journals_2919478599
crossref_citationtrail_10_1007_s12613_021_2364_5
crossref_primary_10_1007_s12613_021_2364_5
springer_journals_10_1007_s12613_021_2364_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle International journal of minerals, metallurgy and materials
PublicationTitleAbbrev Int J Miner Metall Mater
PublicationYear 2022
Publisher University of Science and Technology Beijing
Springer Nature B.V
Publisher_xml – name: University of Science and Technology Beijing
– name: Springer Nature B.V
References ChenQSSunSYLiuYKQiCCZhouHBZhangQLImmobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfillInt. J. Miner. Metall. Mater.202128914401:CAS:528:DC%2BB3MXislWlu7bE10.1007/s12613-021-2274-6
X.Y. Pang, W. Cuello Jimenez, and J. Singh, Measuring and modeling cement hydration kinetics at variable temperature conditions, Constr. Build. Mater., 262(2020), art. No. 120788.
S. Tontapha, N. Shinsuphan, W. Sang-Aroon, L. Temprom, S. Krongsuk, W. Jarernboon, P. Chindaprasirt, and V. Amornkitbamrung, A DFT study on electrocatalytic performance of 12CaO·7Al2O3 (C12A7) with electrolytic LiI applied in DSSCs, Surf. Sci., 711(2021), art. No. 121864.
SarugakuSArakawaMKawanoTTerasakiAElectronic and geometric effects on chemical reactivity of 3d-transition-metal-doped silver cluster cations toward oxygen moleculesJ. Phys. Chem. C201912342258901:CAS:528:DC%2BC1MXhvVylsrbL10.1021/acs.jpcc.9b05117
de NoirfontaineMNDunstetterFCourtialMGaseckiGSignes-FrehelMPolymorphism of tricalcium silicate, the major compound of Portland cement clinker: 2. Modelling alite for Rietveld analysis, an industrial challengeCem. Concr. Res.2006361541:CAS:528:DC%2BD2MXht12isbbK10.1016/j.cemconres.2004.12.004
DurgunEManzanoHKumarPVGrossmanJCThe characterization, stability, and reactivity of synthetic calcium silicate surfaces from first principlesJ. Phys. Chem. C201411828152141:CAS:528:DC%2BC2cXhtFSmsLfK10.1021/jp408325f
NogueraCPolar oxide surfacesJ. Phys.: Condens. Matter20001231R3671:CAS:528:DC%2BD3cXmt1Ogt70%3D
MascaraqueAGarzaLMMichelEGElectronic structure and reactivity of the Co/MoS2(0001) interfaceSurf. Sci.2001482–48566410.1016/S0039-6028(01)00922-0
TaylorHFCement Chemistry1997LondonThomas Telford110.1680/cc.25929
YinSHWangLMChenXWuAXAgglomeration and leaching behaviors of copper oxides with different chemical bindersInt. J. Miner. Metall. Mater.202128711271:CAS:528:DC%2BB3MXislWlu77F10.1007/s12613-020-2081-5
W. Tang, E. Sanville, and G. Henkelman, A grid-based Bader analysis algorithm without lattice bias, J. Phys.: Condens. Matter, 21(2009), No. 8, art. No. 084204.
O. Linderoth, L. Wadsö, and D. Jansen, Long-term cement hydration studies with isothermal calorimetry, Cem. Concr. Res., 141(2021), art. No. 106344.
Y.G. Zhang, C. Bouillon, N. Vlasopoulos, and J.J. Chen, Measuring and modeling hydration kinetics of well cements under elevated temperature and pressure using chemical shrinkage test method, Cem. Concr. Res., 123(2019), art. No. 105768.
PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys. Rev. Lett.1996771838651:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.3865
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter, 21(2009), No. 39, art. No. 395502.
C.X. Cai, S.S. Wei, Z.P. Yin, J. Bai, W.W. Xie, Y. Li, F.W. Qin, Y. Su, and D.J. Wang, Oxygen vacancy formation and uniformity of conductive filaments in Si-doped Ta2O5 RRAM, Appl. Surf. Sci., 560(2021), art. No. 149960.
PengCLMinFFLiuLYChenJA periodic DFT study of adsorption of water on sodium-montmorillonite (001) basal and (010) edge surfaceAppl. Surf. Sci.20163873081:CAS:528:DC%2BC28XhtVSgsrnM10.1016/j.apsusc.2016.06.079
LiuJWenSMDengJSChenXMFengQCDFT study of ethyl xanthate interaction with sphalerite (110) surface in the absence and presence of copperAppl. Surf. Sci.20143112581:CAS:528:DC%2BC2cXos1eltrk%3D10.1016/j.apsusc.2014.05.052
JostKHZiemerBSeydelRRedetermination of the structure of β-dicalcium silicateActa Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem.1977336169610.1107/S0567740877006918
WyrzykowskiMScrivenerKLuraPBasic creep of cement paste at early age—The role of cement hydrationCem. Concr. Res.20191161911:CAS:528:DC%2BC1cXisVarsLvJ10.1016/j.cemconres.2018.11.013
LalanPDauzèresADe WindtLBartierDSammaljärviJBarnichonJDTecherIDetilleuxVImpact of a 70°C temperature on an ordinary Portland cement paste/claystone interface: An in situ experimentCem. Concr. Res.2016831641:CAS:528:DC%2BC28Xis1aqsro%3D10.1016/j.cemconres.2016.02.001
Y. Briki, M. Zajac, M.B. Haha, and K. Scrivener, Impact of limestone fineness on cement hydration at early age, Cem. Concr. Res., 147(2021), art. No. 106515.
ShepardRShepardSSmeuMAb initio investigation into the physisorption of noble gases on grapheneSurf. Sci.2019682381:CAS:528:DC%2BC1MXls1Smug%3D%3D10.1016/j.susc.2018.10.018
TereshchukPda SilvaJLFEthanol and water adsorption on close-packed 3d, 4d, and 5d transition-metal surfaces: A density functional theory investigation with van der Waals correctionJ. Phys. Chem. C201211646246951:CAS:528:DC%2BC38Xhs1WlsLrN10.1021/jp308870d
R. Li, L. Lei, T.B. Sui, and J. Plank, Effectiveness of PCE superplasticizers in calcined clay blended cements, Cem. Concr. Res., 141(2021), art. No. 106334.
N.L. Mai, N.H. Hoang, H.T. Do, M. Pilz, and T.T. Trinh, Elastic and thermodynamic properties of the major clinker phases of Portland cement: Insights from first principles calculations, Constr. Build. Mater., 287(2021), art. No. 122873.
SchersonYDAboudSJWilcoxJCantwellBJSurface structure and reactivity of rhodium oxideJ. Phys. Chem. C201111522110361:CAS:528:DC%2BC3MXmtFSnsLw%3D10.1021/jp110998e
C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025.
HenkelmanGArnaldssonAJónssonHA fast and robust algorithm for Bader decomposition of charge densityComput. Mater. Sci.200636335410.1016/j.commatsci.2005.04.010
J.Y. Huo, Z.J. Wang, T.H. Zhang, R. He, and H.X. Chen, Influences of interaction between cement and ionic paraffin emulsion on cement hydration, Constr. Build. Mater., 299(2021), art. No. 123951.
R.H. Yang and T.S. He, Influence of liquid accelerators combined with mineral admixtures on early hydration of cement pastes, Constr. Build. Mater., 295(2021), art. No. 123659.
M. Laanaiya, A. Bouibes, and A. Zaoui, Understanding why Alite is responsible of the main mechanical characteristics in Portland cement, Cem. Concr. Res., 126(2019), art. No. 105916.
XinYHouSCXiangLYuYXAdsorption and sub-stitution effects of Mg on the growth of calcium sulfate hemihydrate: An ab initio DFT studyAppl. Surf. Sci.201535715521:CAS:528:DC%2BC2MXhs1aksLvM10.1016/j.apsusc.2015.09.223
N. Kuriakose, A. Mohan T, and P. Ghosh, Coverage dependent CO2 activation on Ti2C(111) surface: Effect of intrinsic subsurface Carbon vacancies, Surf. Sci., 706(2021), art. No. 121798.
JiangZQinPFangTInvestigation on adsorption and decomposition of H2S on Pd (100) surface: A DFT studySurf. Sci.20156321951:CAS:528:DC%2BC2cXht1Kksr%2FE10.1016/j.susc.2014.07.020
TaskerPWThe stability of ionic crystal surfacesJ. Phys. C: Solid State Phys.1979122249771:CAS:528:DyaL3cXhtlGrt7s%3D10.1088/0022-3719/12/22/036
HuangJWangBYuYTValenzanoLBauchyMSantGElectronic origin of doping-induced enhancements of reactivity: Case study of tricalcium silicateJ. Phys. Chem. C201511946259911:CAS:528:DC%2BC2MXhslSqu7fK10.1021/acs.jpcc.5b08286
KresseGHafnerJAb initio molecular dynamics for liquid metalsPhys. Rev. B19934715581:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558
QiCCFourieAChenQSLiuPFApplication of first-principles theory in ferrite phases of cemented paste backfillMiner. Eng.2019133471:CAS:528:DC%2BC1MXpsVGrtQ%3D%3D10.1016/j.mineng.2019.01.011
ZhangYLuXYHeZSongDSMolecular and dissociative adsorption of a single water molecule on a β-dicalcium silicate (100) surface explored by a DFT approachJ. Am. Ceram. Soc.2018101624281:CAS:528:DC%2BC2sXitVamsLvN10.1111/jace.15381
ZhangYLuXYSongDSLiuSBThe adsorption of a single water molecule on low-index C3S surfaces: A DFT approachAppl. Surf. Sci.20194716581:CAS:528:DC%2BC1cXisVOhurbP10.1016/j.apsusc.2018.12.063
LiGJHuWGSunYNXuJYCaiXChengXLZhangYYTangACLiuXChenMYDingWPZhuYReactivity and lability modulated by a valence electron moving in and out of 25-atom gold nanoclustersAngew. Chem.2020132472132110.1002/ange.202009278
DurgunEManzanoHPellenqRJMGrossmanJCUnderstanding and controlling the reactivity of the calcium silicate phases from first principlesChem. Mater.201224712621:CAS:528:DC%2BC38Xkslalurw%3D10.1021/cm203127m
J.P. Zhu, K. Yang, Y. Chen, G.X. Fan, L. Zhang, B.K. Guo, X.M. Guan, and R.Q. Zhao, Revealing the substitution preference of zinc in ordinary Portland cement clinker phases: A study from experiments and DFT calculations, J. Hazard. Mater., 409(2021), art. No. 124504.
Z.D. Zhang and G.W. Scherer, Physical and chemical effects of isopropanol exchange in cement-based materials, Cem. Concr. Res., 145(2021), art. No. 106461.
I.H. Svenum, I.G. Ringdalen, F.L. Bleken, J. Friis, D. Höche, and O. Swang, Structure, hydration, and chloride ingress in C—S—H: Insight from DFT calculations, Cem. Concr. Res., 129(2020), art. No. 105965.
TjungSJZhangQRepickyJJYukSFNieXWSantagataNMAsthagiriAGuptaJASTM and DFT studies of CO2 adsorption on O-Cu(100) surfaceSurf. Sci.2019679501:CAS:528:DC%2BC1cXhslSntrzJ10.1016/j.susc.2018.08.013
ErcikdiBYılmazTKülekciGStrength and ultrasonic properties of cemented paste backfillUltrasonics20145411951:CAS:528:DC%2BC3sXosFenurw%3D10.1016/j.ultras.2013.04.013
C.C. Qi, D. Spagnoli, and A. Fourie, DFT-D study of single water adsorption on low-index surfaces of calcium silicate phases in cement, Appl. Surf. Sci., 518(2020), art. No. 146255.
CrowJMThe concrete conundrumChem. World2008562
C.C. Qi, L. Liu, J.Y. He, Q.S. Chen, L.J. Yu, and P.F. Liu, Understanding cement hydration of cemented paste backfill: DFT study of water adsorption on tricalcium silicate (111) surface, Minerals, 9(2019), No. 4, art. No.
G Kresse (2364_CR30) 1993; 47
C Noguera (2364_CR37) 2000; 12
2364_CR21
2364_CR22
J Huang (2364_CR29) 2015; 119
SJ Tjung (2364_CR38) 2019; 679
P Tereshchuk (2364_CR41) 2012; 116
2364_CR25
I Cavusoglu (2364_CR9) 2021; 384
2364_CR27
2364_CR28
MN de Noirfontaine (2364_CR35) 2006; 36
S Sarugaku (2364_CR56) 2019; 123
J Liu (2364_CR45) 2014; 311
GJ Li (2364_CR55) 2020; 132
Z Jiang (2364_CR39) 2015; 632
KH Jost (2364_CR34) 1977; 33
2364_CR2
Y Zhang (2364_CR24) 2018; 101
2364_CR1
CC Qi (2364_CR26) 2019; 133
G Henkelman (2364_CR50) 2006; 36
2364_CR51
2364_CR52
2364_CR10
2364_CR54
2364_CR7
2364_CR11
JM Crow (2364_CR6) 2008; 5
2364_CR12
2364_CR13
YD Scherson (2364_CR49) 2011; 115
2364_CR14
2364_CR15
CL Peng (2364_CR43) 2016; 387
2364_CR18
2364_CR19
QS Chen (2364_CR4) 2021; 28
G Kresse (2364_CR31) 1996; 6
E Durgun (2364_CR53) 2012; 24
SH Yin (2364_CR3) 2021; 28
HF Taylor (2364_CR5) 1997
Y Zhang (2364_CR23) 2019; 471
R Shepard (2364_CR42) 2019; 682
A Lloyd (2364_CR40) 2016; 645
2364_CR46
P Lalan (2364_CR17) 2016; 83
PW Tasker (2364_CR36) 1979; 12
2364_CR48
RFW Bader (2364_CR47) 1991; 91
JP Perdew (2364_CR33) 1996; 77
M Wyrzykowski (2364_CR16) 2019; 116
Y Xin (2364_CR44) 2015; 357
2364_CR32
B Ercikdi (2364_CR8) 2014; 54
A Mascaraque (2364_CR57) 2001; 482–485
E Durgun (2364_CR20) 2014; 118
References_xml – reference: M. Laanaiya, A. Bouibes, and A. Zaoui, Understanding why Alite is responsible of the main mechanical characteristics in Portland cement, Cem. Concr. Res., 126(2019), art. No. 105916.
– reference: ZhangYLuXYSongDSLiuSBThe adsorption of a single water molecule on low-index C3S surfaces: A DFT approachAppl. Surf. Sci.20194716581:CAS:528:DC%2BC1cXisVOhurbP10.1016/j.apsusc.2018.12.063
– reference: KresseGFurthmüllerJEfficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis setComput. Mater. Sci.199661151:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0
– reference: P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter, 21(2009), No. 39, art. No. 395502.
– reference: R.H. Yang and T.S. He, Influence of liquid accelerators combined with mineral admixtures on early hydration of cement pastes, Constr. Build. Mater., 295(2021), art. No. 123659.
– reference: QiCCFourieAChenQSLiuPFApplication of first-principles theory in ferrite phases of cemented paste backfillMiner. Eng.2019133471:CAS:528:DC%2BC1MXpsVGrtQ%3D%3D10.1016/j.mineng.2019.01.011
– reference: N. Kuriakose, A. Mohan T, and P. Ghosh, Coverage dependent CO2 activation on Ti2C(111) surface: Effect of intrinsic subsurface Carbon vacancies, Surf. Sci., 706(2021), art. No. 121798.
– reference: Z. Cheng, B.J. Sherman, and C.S. Lo, Carbon dioxide activation and dissociation on ceria (110): A density functional theory study, J. Chem. Phys., 138(2013), No. 1, art. No. 014702.
– reference: KresseGHafnerJAb initio molecular dynamics for liquid metalsPhys. Rev. B19934715581:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558
– reference: MascaraqueAGarzaLMMichelEGElectronic structure and reactivity of the Co/MoS2(0001) interfaceSurf. Sci.2001482–48566410.1016/S0039-6028(01)00922-0
– reference: TjungSJZhangQRepickyJJYukSFNieXWSantagataNMAsthagiriAGuptaJASTM and DFT studies of CO2 adsorption on O-Cu(100) surfaceSurf. Sci.2019679501:CAS:528:DC%2BC1cXhslSntrzJ10.1016/j.susc.2018.08.013
– reference: ZhangYLuXYHeZSongDSMolecular and dissociative adsorption of a single water molecule on a β-dicalcium silicate (100) surface explored by a DFT approachJ. Am. Ceram. Soc.2018101624281:CAS:528:DC%2BC2sXitVamsLvN10.1111/jace.15381
– reference: JostKHZiemerBSeydelRRedetermination of the structure of β-dicalcium silicateActa Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem.1977336169610.1107/S0567740877006918
– reference: NogueraCPolar oxide surfacesJ. Phys.: Condens. Matter20001231R3671:CAS:528:DC%2BD3cXmt1Ogt70%3D
– reference: Y. Briki, M. Zajac, M.B. Haha, and K. Scrivener, Impact of limestone fineness on cement hydration at early age, Cem. Concr. Res., 147(2021), art. No. 106515.
– reference: de NoirfontaineMNDunstetterFCourtialMGaseckiGSignes-FrehelMPolymorphism of tricalcium silicate, the major compound of Portland cement clinker: 2. Modelling alite for Rietveld analysis, an industrial challengeCem. Concr. Res.2006361541:CAS:528:DC%2BD2MXht12isbbK10.1016/j.cemconres.2004.12.004
– reference: CrowJMThe concrete conundrumChem. World2008562
– reference: S. Tontapha, N. Shinsuphan, W. Sang-Aroon, L. Temprom, S. Krongsuk, W. Jarernboon, P. Chindaprasirt, and V. Amornkitbamrung, A DFT study on electrocatalytic performance of 12CaO·7Al2O3 (C12A7) with electrolytic LiI applied in DSSCs, Surf. Sci., 711(2021), art. No. 121864.
– reference: LloydACornilDvan DuinACTvan DuinDSmithRKennySDCornilJBeljonneDDevelopment of a ReaxFF potential for Ag/Zn/O and application to Ag deposition on ZnOSurf. Sci.2016645671:CAS:528:DC%2BC2MXhvFWqtrrI10.1016/j.susc.2015.11.009
– reference: PengCLMinFFLiuLYChenJA periodic DFT study of adsorption of water on sodium-montmorillonite (001) basal and (010) edge surfaceAppl. Surf. Sci.20163873081:CAS:528:DC%2BC28XhtVSgsrnM10.1016/j.apsusc.2016.06.079
– reference: C.C. Qi, D. Spagnoli, and A. Fourie, DFT-D study of single water adsorption on low-index surfaces of calcium silicate phases in cement, Appl. Surf. Sci., 518(2020), art. No. 146255.
– reference: I.H. Svenum, I.G. Ringdalen, F.L. Bleken, J. Friis, D. Höche, and O. Swang, Structure, hydration, and chloride ingress in C—S—H: Insight from DFT calculations, Cem. Concr. Res., 129(2020), art. No. 105965.
– reference: ChenQSSunSYLiuYKQiCCZhouHBZhangQLImmobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfillInt. J. Miner. Metall. Mater.202128914401:CAS:528:DC%2BB3MXislWlu7bE10.1007/s12613-021-2274-6
– reference: X.Y. Pang, W. Cuello Jimenez, and J. Singh, Measuring and modeling cement hydration kinetics at variable temperature conditions, Constr. Build. Mater., 262(2020), art. No. 120788.
– reference: N.L. Mai, N.H. Hoang, H.T. Do, M. Pilz, and T.T. Trinh, Elastic and thermodynamic properties of the major clinker phases of Portland cement: Insights from first principles calculations, Constr. Build. Mater., 287(2021), art. No. 122873.
– reference: TereshchukPda SilvaJLFEthanol and water adsorption on close-packed 3d, 4d, and 5d transition-metal surfaces: A density functional theory investigation with van der Waals correctionJ. Phys. Chem. C201211646246951:CAS:528:DC%2BC38Xhs1WlsLrN10.1021/jp308870d
– reference: DurgunEManzanoHKumarPVGrossmanJCThe characterization, stability, and reactivity of synthetic calcium silicate surfaces from first principlesJ. Phys. Chem. C201411828152141:CAS:528:DC%2BC2cXhtFSmsLfK10.1021/jp408325f
– reference: R. Li, L. Lei, T.B. Sui, and J. Plank, Effectiveness of PCE superplasticizers in calcined clay blended cements, Cem. Concr. Res., 141(2021), art. No. 106334.
– reference: LalanPDauzèresADe WindtLBartierDSammaljärviJBarnichonJDTecherIDetilleuxVImpact of a 70°C temperature on an ordinary Portland cement paste/claystone interface: An in situ experimentCem. Concr. Res.2016831641:CAS:528:DC%2BC28Xis1aqsro%3D10.1016/j.cemconres.2016.02.001
– reference: TaskerPWThe stability of ionic crystal surfacesJ. Phys. C: Solid State Phys.1979122249771:CAS:528:DyaL3cXhtlGrt7s%3D10.1088/0022-3719/12/22/036
– reference: LiGJHuWGSunYNXuJYCaiXChengXLZhangYYTangACLiuXChenMYDingWPZhuYReactivity and lability modulated by a valence electron moving in and out of 25-atom gold nanoclustersAngew. Chem.2020132472132110.1002/ange.202009278
– reference: TaylorHFCement Chemistry1997LondonThomas Telford110.1680/cc.25929
– reference: J.Y. Huo, Z.J. Wang, T.H. Zhang, R. He, and H.X. Chen, Influences of interaction between cement and ionic paraffin emulsion on cement hydration, Constr. Build. Mater., 299(2021), art. No. 123951.
– reference: Z.D. Zhang and G.W. Scherer, Physical and chemical effects of isopropanol exchange in cement-based materials, Cem. Concr. Res., 145(2021), art. No. 106461.
– reference: YinSHWangLMChenXWuAXAgglomeration and leaching behaviors of copper oxides with different chemical bindersInt. J. Miner. Metall. Mater.202128711271:CAS:528:DC%2BB3MXislWlu77F10.1007/s12613-020-2081-5
– reference: W. Tang, E. Sanville, and G. Henkelman, A grid-based Bader analysis algorithm without lattice bias, J. Phys.: Condens. Matter, 21(2009), No. 8, art. No. 084204.
– reference: J.P. Zhu, K. Yang, Y. Chen, G.X. Fan, L. Zhang, B.K. Guo, X.M. Guan, and R.Q. Zhao, Revealing the substitution preference of zinc in ordinary Portland cement clinker phases: A study from experiments and DFT calculations, J. Hazard. Mater., 409(2021), art. No. 124504.
– reference: C.C. Qi, Q.S. Chen, and A. Fourie, Role of Mg impurity in the water adsorption over low-index surfaces of calcium silicates: A DFT-D study, Minerals, 10(2020), No. 8, art. No. 665.
– reference: XinYHouSCXiangLYuYXAdsorption and sub-stitution effects of Mg on the growth of calcium sulfate hemihydrate: An ab initio DFT studyAppl. Surf. Sci.201535715521:CAS:528:DC%2BC2MXhs1aksLvM10.1016/j.apsusc.2015.09.223
– reference: C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025.
– reference: O. Linderoth, L. Wadsö, and D. Jansen, Long-term cement hydration studies with isothermal calorimetry, Cem. Concr. Res., 141(2021), art. No. 106344.
– reference: ErcikdiBYılmazTKülekciGStrength and ultrasonic properties of cemented paste backfillUltrasonics20145411951:CAS:528:DC%2BC3sXosFenurw%3D10.1016/j.ultras.2013.04.013
– reference: JiangZQinPFangTInvestigation on adsorption and decomposition of H2S on Pd (100) surface: A DFT studySurf. Sci.20156321951:CAS:528:DC%2BC2cXht1Kksr%2FE10.1016/j.susc.2014.07.020
– reference: CavusogluIYilmazEYilmazAOSodium silicate effect on setting properties, strength behavior and microstructure of cemented coal fly ash backfillPowder Technol.2021384171:CAS:528:DC%2BB3MXkvVSnsbo%3D10.1016/j.powtec.2021.02.013
– reference: SchersonYDAboudSJWilcoxJCantwellBJSurface structure and reactivity of rhodium oxideJ. Phys. Chem. C201111522110361:CAS:528:DC%2BC3MXmtFSnsLw%3D10.1021/jp110998e
– reference: WyrzykowskiMScrivenerKLuraPBasic creep of cement paste at early age—The role of cement hydrationCem. Concr. Res.20191161911:CAS:528:DC%2BC1cXisVarsLvJ10.1016/j.cemconres.2018.11.013
– reference: Y.G. Zhang, C. Bouillon, N. Vlasopoulos, and J.J. Chen, Measuring and modeling hydration kinetics of well cements under elevated temperature and pressure using chemical shrinkage test method, Cem. Concr. Res., 123(2019), art. No. 105768.
– reference: C.X. Cai, S.S. Wei, Z.P. Yin, J. Bai, W.W. Xie, Y. Li, F.W. Qin, Y. Su, and D.J. Wang, Oxygen vacancy formation and uniformity of conductive filaments in Si-doped Ta2O5 RRAM, Appl. Surf. Sci., 560(2021), art. No. 149960.
– reference: DurgunEManzanoHPellenqRJMGrossmanJCUnderstanding and controlling the reactivity of the calcium silicate phases from first principlesChem. Mater.201224712621:CAS:528:DC%2BC38Xkslalurw%3D10.1021/cm203127m
– reference: SarugakuSArakawaMKawanoTTerasakiAElectronic and geometric effects on chemical reactivity of 3d-transition-metal-doped silver cluster cations toward oxygen moleculesJ. Phys. Chem. C201912342258901:CAS:528:DC%2BC1MXhvVylsrbL10.1021/acs.jpcc.9b05117
– reference: BaderRFWA quantum theory of molecular structure and its applicationsChem. Rev.19919158931:CAS:528:DyaK3MXkvFWgt7s%3D10.1021/cr00005a013
– reference: HenkelmanGArnaldssonAJónssonHA fast and robust algorithm for Bader decomposition of charge densityComput. Mater. Sci.200636335410.1016/j.commatsci.2005.04.010
– reference: HuangJWangBYuYTValenzanoLBauchyMSantGElectronic origin of doping-induced enhancements of reactivity: Case study of tricalcium silicateJ. Phys. Chem. C201511946259911:CAS:528:DC%2BC2MXhslSqu7fK10.1021/acs.jpcc.5b08286
– reference: PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys. Rev. Lett.1996771838651:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.3865
– reference: ShepardRShepardSSmeuMAb initio investigation into the physisorption of noble gases on grapheneSurf. Sci.2019682381:CAS:528:DC%2BC1MXls1Smug%3D%3D10.1016/j.susc.2018.10.018
– reference: C.C. Qi, L. Liu, J.Y. He, Q.S. Chen, L.J. Yu, and P.F. Liu, Understanding cement hydration of cemented paste backfill: DFT study of water adsorption on tricalcium silicate (111) surface, Minerals, 9(2019), No. 4, art. No. 202.
– reference: LiuJWenSMDengJSChenXMFengQCDFT study of ethyl xanthate interaction with sphalerite (110) surface in the absence and presence of copperAppl. Surf. Sci.20143112581:CAS:528:DC%2BC2cXos1eltrk%3D10.1016/j.apsusc.2014.05.052
– volume: 5
  start-page: 62
  year: 2008
  ident: 2364_CR6
  publication-title: Chem. World
– volume: 645
  start-page: 67
  year: 2016
  ident: 2364_CR40
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2015.11.009
– ident: 2364_CR13
  doi: 10.1016/j.conbuildmat.2021.123659
– ident: 2364_CR10
  doi: 10.1016/j.mineng.2019.106025
– ident: 2364_CR2
  doi: 10.1016/j.cemconres.2020.106334
– start-page: 1
  volume-title: Cement Chemistry
  year: 1997
  ident: 2364_CR5
  doi: 10.1680/cc.25929
– ident: 2364_CR32
  doi: 10.1088/0953-8984/21/39/395502
– ident: 2364_CR15
  doi: 10.1016/j.cemconres.2019.05.013
– volume: 133
  start-page: 47
  year: 2019
  ident: 2364_CR26
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2019.01.011
– ident: 2364_CR54
  doi: 10.1016/j.cemconres.2019.105916
– volume: 471
  start-page: 658
  year: 2019
  ident: 2364_CR23
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.12.063
– volume: 54
  start-page: 195
  issue: 1
  year: 2014
  ident: 2364_CR8
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2013.04.013
– volume: 36
  start-page: 54
  issue: 1
  year: 2006
  ident: 2364_CR35
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2004.12.004
– volume: 47
  start-page: 558
  issue: 1
  year: 1993
  ident: 2364_CR30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 118
  start-page: 15214
  issue: 28
  year: 2014
  ident: 2364_CR20
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp408325f
– ident: 2364_CR21
  doi: 10.3390/min9040202
– volume: 33
  start-page: 1696
  issue: 6
  year: 1977
  ident: 2364_CR34
  publication-title: Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem.
  doi: 10.1107/S0567740877006918
– ident: 2364_CR12
  doi: 10.1016/j.conbuildmat.2020.120788
– volume: 91
  start-page: 893
  issue: 5
  year: 1991
  ident: 2364_CR47
  publication-title: Chem. Rev.
  doi: 10.1021/cr00005a013
– ident: 2364_CR28
  doi: 10.3390/min10080665
– ident: 2364_CR27
  doi: 10.1016/j.conbuildmat.2021.122873
– volume: 119
  start-page: 25991
  issue: 46
  year: 2015
  ident: 2364_CR29
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b08286
– volume: 28
  start-page: 1440
  issue: 9
  year: 2021
  ident: 2364_CR4
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-021-2274-6
– volume: 682
  start-page: 38
  year: 2019
  ident: 2364_CR42
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2018.10.018
– volume: 116
  start-page: 191
  year: 2019
  ident: 2364_CR16
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2018.11.013
– volume: 123
  start-page: 25890
  issue: 42
  year: 2019
  ident: 2364_CR56
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b05117
– volume: 28
  start-page: 1127
  issue: 7
  year: 2021
  ident: 2364_CR3
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-020-2081-5
– volume: 12
  start-page: 4977
  issue: 22
  year: 1979
  ident: 2364_CR36
  publication-title: J. Phys. C: Solid State Phys.
  doi: 10.1088/0022-3719/12/22/036
– volume: 83
  start-page: 164
  year: 2016
  ident: 2364_CR17
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2016.02.001
– ident: 2364_CR1
  doi: 10.1016/j.conbuildmat.2021.123951
– ident: 2364_CR46
  doi: 10.1016/j.apsusc.2021.149960
– volume: 36
  start-page: 354
  issue: 3
  year: 2006
  ident: 2364_CR50
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2005.04.010
– ident: 2364_CR14
  doi: 10.1016/j.cemconres.2020.106344
– ident: 2364_CR48
  doi: 10.1088/0953-8984/21/8/084204
– ident: 2364_CR19
  doi: 10.1016/j.susc.2021.121864
– ident: 2364_CR7
  doi: 10.1016/j.jhazmat.2020.124504
– ident: 2364_CR11
  doi: 10.1016/j.cemconres.2021.106515
– ident: 2364_CR52
  doi: 10.1016/j.susc.2021.121798
– volume: 12
  start-page: R367
  issue: 31
  year: 2000
  ident: 2364_CR37
  publication-title: J. Phys.: Condens. Matter
– volume: 357
  start-page: 1552
  year: 2015
  ident: 2364_CR44
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.09.223
– volume: 115
  start-page: 11036
  issue: 22
  year: 2011
  ident: 2364_CR49
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp110998e
– ident: 2364_CR22
  doi: 10.1016/j.apsusc.2020.146255
– volume: 482–485
  start-page: 664
  year: 2001
  ident: 2364_CR57
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(01)00922-0
– volume: 116
  start-page: 24695
  issue: 46
  year: 2012
  ident: 2364_CR41
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp308870d
– volume: 24
  start-page: 1262
  issue: 7
  year: 2012
  ident: 2364_CR53
  publication-title: Chem. Mater.
  doi: 10.1021/cm203127m
– ident: 2364_CR51
  doi: 10.1063/1.4773248
– ident: 2364_CR18
  doi: 10.1016/j.cemconres.2021.106461
– volume: 679
  start-page: 50
  year: 2019
  ident: 2364_CR38
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2018.08.013
– volume: 132
  start-page: 21321
  issue: 47
  year: 2020
  ident: 2364_CR55
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202009278
– volume: 632
  start-page: 195
  year: 2015
  ident: 2364_CR39
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2014.07.020
– volume: 387
  start-page: 308
  year: 2016
  ident: 2364_CR43
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.06.079
– volume: 311
  start-page: 258
  year: 2014
  ident: 2364_CR45
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.05.052
– volume: 101
  start-page: 2428
  issue: 6
  year: 2018
  ident: 2364_CR24
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.15381
– volume: 77
  start-page: 3865
  issue: 18
  year: 1996
  ident: 2364_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– ident: 2364_CR25
  doi: 10.1016/j.cemconres.2019.105965
– volume: 6
  start-page: 15
  issue: 1
  year: 1996
  ident: 2364_CR31
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 384
  start-page: 17
  year: 2021
  ident: 2364_CR9
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2021.02.013
SSID ssj0067707
Score 2.4130936
Snippet Cement hydration is the underlying mechanism for the strength development in cement-based materials. The structural and electronic properties of calcium...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 335
SubjectTerms Adsorbed water
Adsorption
Calcium
Cement hydration
Cements
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composites
Corrosion and Coatings
Density functional theory
Dicalcium silicate
Electron distribution
Electronic properties
Electrons
Glass
Hydration
Materials Science
Metallic Materials
Natural Materials
Reactivity
Silica
Silicates
Silicon
Surface chemistry
Surfaces and Interfaces
Thin Films
Tribology
Tricalcium silicate
Unit cell
Water chemistry
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vehBfGK1yh48KYvJ5rV7EistRbCIWOgt7COBgqbV1oM_wP_tTLIxPrCnQLI7h3y7M7M7M98QcuZb7uskDJmCJwu5FzCNyVTSN1aBPUlEjPXOd6N4OA5vJ9HEXbgtXFplrRNLRW1nBu_IL7mE43YiIimv5i8Mu0ZhdNW10FgnbVDBQrRIu9cf3T_UujhOkrJgGlPt8Q5J1nHNsngODg8Yw_QZkqiz6KdlatzNXxHS0vAMtsmW8xjpdQXxDlnLil2y-Y1HcI98DN9thSQFH9BUDSFo3fvEZNRlY9EyKGOmb890Ma2q36gqLF2-_n2P1E5gPCzFAhRa0cwiRUc5oYf5z7RkWUIJFa_JPhkP-o83Q-b6KzDDw3jJ8oR7QsMOh2OFwu5jnNtcmBw8vDwRnspAUQZ5KHOrtZCa61jYKIERmfIivD89IK1iVmSHhGKwUMnYyizKQ5CnNA8CCTKUURHM6RCv_repceTj2APjKW1okxGOFOBIEY406pDzrynzinlj1eBuDVjqNuEibZZMh1zUIDaf_xV2tFrYMdngWANRpm53SQsAyE7AM1nqU7f8PgFWIuD7
  priority: 102
  providerName: ProQuest
Title Hydration reactivity difference between dicalcium silicate and tricalcium silicate revealed from structural and Bader charge analysis
URI https://link.springer.com/article/10.1007/s12613-021-2364-5
https://www.proquest.com/docview/2919478599
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8AB8RSDMeXACVSpTZu2OW5oD4GYEGLSOFVJ00qToCA2DvwA_jd22jLeEqdIaeJDvyR2YvszwLFnuKejIHAUtk7AXd_RFEwlvdQo1CdRHFK-8-U4HE2C86mYVnnc8zravXZJ2pN6meyGxj75HD2HSM8dsQpNgVd3iuOa8G59_IZRZHOkKbqeno1k7cr8ScRnZbS0ML84Ra2uGWzCRmUksm6J6hasZMU2rH-gDtyB19GLKcFjaPalZQ0IVpc7STNWBWAx64dJZ8_3bD4rE96YKgxbPH3vJzYn1BeGUc4JK5lliZXDTuhRyDOzxEokoaQy2YXJoH9zNnKqkgpOyoNw4eQRd2ONmxpvEooKjnFu8jjN0ajLo9hVGZ6Nfh7I3GgdS811GBsR4YhMuYKeTPegUTwU2T4w8g8qGRqZiTxAeUpz35coQ6VK4JwWuPW_TdKKb5zKXtwlS6ZkgiNBOBKCIxEtOHmf8liSbfw1uF0DllT7bp5w6UlcX0LKFpzWIC4__yrs4F-jD2GNUxaEDd5uQwPxyI7QNlnoDqzGg2EHmt3h7UUf215_fHXdsSv0Datg3_Y
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsQwDLVYDsABsYphzQEuoIhOplsOCLENw3oCiVvJ0kojwbDMIMQH8Dt8I3baMCyCG6dKbeJDnhs7sf0MsFq3oq6TMOQKnzwUQYNrSqaSdWMV2pMkjane-ew8bl2Gx1fR1QC8-VoYSqv0e6LbqO2doTvyTSHxuJ2kkZTb9w-cukZRdNW30CjV4iR_ecYjW3fraB_xXROieXCx1-JVVwFuRBj3eJGIINWo1-hMK-q5JYQtUlOgX1MkaaBy3B4aRSgLq3UqtdBxaqMER-QqiOjWEOUOwnDYQEtOlenNQ7_zx0niyrMpsZ9urKSPorpSPTyqUMS0zomynUdf7WDfuf0Wj3VmrjkB45V_ynZKhZqEgbwzBWOfWAun4bX1Yku9YehxmrL9BPOdVkzOqtwv5kJApv10y7rtstaOqY5lvcef74lICk2VZVTuwkpSWyIEcRN2KduaOU4nklCyqMzA5b-s-ywMde46-RwwCk0qGVuZR0WI8pQWiAbKUEZFOKcGgV_bzFRU59Rx4ybrkzQTHBnCkREcWVSD9Y8p9yXPx1-DFz1gWfXLd7O-gtZgw4PY__yrsPm_ha3ASOvi7DQ7PTo_WYBRQdUXLml8EYYQjHwJfaKeXnaKyOD6vzX_HeD6HAg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB58gOhBfGJ97kEvSjDZ5rUHD75Ka7V4sNBb3M0mUNBYbET8Af4e_6IzSdb6Bg-eAsnuEHZmM5Od-b4B2HY0d1TgupbEq-Vyu24pKqYSTqwl-pMg9AnvfNHxm133rOf1xuDFYGGKaneTkiwxDcTSlOX7A53uj4BvGPhT_tGxiADdMlWV7eTpEf_ZhgetE1TwDueN06vjplW1FbBi7vq5lQbcDhUaNkbTkppuca7TME4xsEmD0JYJfh_qqStSrVQoFFd-qL0ARyTS9ujYEOWOw6RL4GPcQF1-aD79fhAU-Gyq7KcjK2HSqN-98kdHOIpuPyVkCz_XmIPZKkBlh6VFzcNYki3AzDvawkV4bj7p0nAYhpxx2X-CmVYrccKq4i9W5IDi_sMtG_ZLsB2TmWb5_df7xCSFvkozwruwktWWGEGKCUdUbs0KUieSUNKoLEH3X9Z9GSayuyxZAUa5SSl8LRIvdVGeVLxeFyhDxtLDOTWwzdpGccV1Ti03bqIRSzOpI0J1RKSOyKvB7tuUQUn08dvgdaOwqNrzw4gLR6Bte0LUYM8ocfT4R2Grfxq9BVOXJ43ovNVpr8E0JzBGUUO-DhOommQDQ6RcbRZmyeD6v_fBK43oHKc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydration+reactivity+difference+between+dicalcium+silicate+and+tricalcium+silicate+revealed+from+structural+and+Bader+charge+analysis&rft.jtitle=International+journal+of+minerals%2C+metallurgy+and+materials&rft.au=Qi%2C+Chongchong&rft.au=Xu%2C+Xinhang&rft.au=Chen%2C+Qiusong&rft.date=2022-02-01&rft.pub=University+of+Science+and+Technology+Beijing&rft.issn=1674-4799&rft.eissn=1869-103X&rft.volume=29&rft.issue=2&rft.spage=335&rft.epage=344&rft_id=info:doi/10.1007%2Fs12613-021-2364-5&rft.externalDocID=10_1007_s12613_021_2364_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-4799&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-4799&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-4799&client=summon