EICD: Causal Structure Recovery of Bearing Failure Data Containing Latent Confounding

Deep learning is widely used in the field of intelligent fault diagnosis. However, data-driven deep learning models are with unsatisfying interpretability and their performance cannot be maintained when a sample distribution shift occurs. Causal discovery can enhance the interpretability of deep lea...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 24; no. 19; pp. 30560 - 30574
Main Authors Ding, Xu, Chen, Jun, Chen, Guanhua, Xu, Juan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning is widely used in the field of intelligent fault diagnosis. However, data-driven deep learning models are with unsatisfying interpretability and their performance cannot be maintained when a sample distribution shift occurs. Causal discovery can enhance the interpretability of deep learning models by establishing causal graphs to uncover causal invariance in the data. Nevertheless, causal discovery suffers from the curse of dimensionality due to the large conditional sets used in conditional independence (CI) tests, and the Markov equivalence class (MEC) obtained contains many undirected edges due to some causal structures having the same CI. In response, we incorporate the causal direction criterion (CDC) into iterative causal discovery (ICD) to construct the extended ICD (EICD) algorithm. EICD can obtain a detailed causal graph with lower complexity, enhancing the interpretability of the diagnostic framework. First, EICD reduces the number of required CI tests by limiting the size of the conditioning set and its distance from the target node. Second, based on CDC, EICD uses causal asymmetry to infer the direction of causal edges between pairs of nodes, thus accelerating ICD and adding more directional causal edges compared to MEC. In the experimental section, we compare the number of CI tests and the improvement in directional accuracy with other algorithms and use the EICD algorithm to reconstruct the causal graph of the faulty system. The experiments demonstrate that the EICD algorithm can reduce the required number of CI tests and recover the underlying causal structure more accurately.
AbstractList Deep learning is widely used in the field of intelligent fault diagnosis. However, data-driven deep learning models are with unsatisfying interpretability and their performance cannot be maintained when a sample distribution shift occurs. Causal discovery can enhance the interpretability of deep learning models by establishing causal graphs to uncover causal invariance in the data. Nevertheless, causal discovery suffers from the curse of dimensionality due to the large conditional sets used in conditional independence (CI) tests, and the Markov equivalence class (MEC) obtained contains many undirected edges due to some causal structures having the same CI. In response, we incorporate the causal direction criterion (CDC) into iterative causal discovery (ICD) to construct the extended ICD (EICD) algorithm. EICD can obtain a detailed causal graph with lower complexity, enhancing the interpretability of the diagnostic framework. First, EICD reduces the number of required CI tests by limiting the size of the conditioning set and its distance from the target node. Second, based on CDC, EICD uses causal asymmetry to infer the direction of causal edges between pairs of nodes, thus accelerating ICD and adding more directional causal edges compared to MEC. In the experimental section, we compare the number of CI tests and the improvement in directional accuracy with other algorithms and use the EICD algorithm to reconstruct the causal graph of the faulty system. The experiments demonstrate that the EICD algorithm can reduce the required number of CI tests and recover the underlying causal structure more accurately.
Author Chen, Jun
Chen, Guanhua
Ding, Xu
Xu, Juan
Author_xml – sequence: 1
  givenname: Xu
  orcidid: 0000-0002-7669-4139
  surname: Ding
  fullname: Ding, Xu
  email: dingxu@hfut.edu.cn
  organization: Anhui Province Key Laboratory of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, China
– sequence: 2
  givenname: Jun
  orcidid: 0009-0001-6446-4782
  surname: Chen
  fullname: Chen, Jun
  email: 2022171253@mail.hfut.edu.cn
  organization: Anhui Province Key Laboratory of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, China
– sequence: 3
  givenname: Guanhua
  orcidid: 0009-0009-1764-8384
  surname: Chen
  fullname: Chen, Guanhua
  email: chenguanhua127@163.com
  organization: Anhui Province Key Laboratory of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, China
– sequence: 4
  givenname: Juan
  orcidid: 0000-0002-6626-1700
  surname: Xu
  fullname: Xu, Juan
  email: xujuan@hfut.edu.nc
  organization: School of Computer and Information, Hefei University of Technology, Hefei, China
BookMark eNpNkE9LAzEQxYNUsK1-AMHDguet-TO7yXrTbauVomAteAvpbiJbalKzWaHf3g3twdMMb96bGX4jNLDOaoSuCZ4Qgou7l9XsdUIxhQkDoCIvztCQZJlICQcxiD3DKTD-eYFGbbvFmBQ840O0ni3K6X1Sqq5Vu2QVfFeFzuvkXVfuV_tD4kzyqJVv7FcyV80uzqYqqKR0NqjGRn2pgrYhKsZ1tu6lS3Ru1K7VV6c6Ruv57KN8TpdvT4vyYZlWFPKQGmZyI4zCNedFTWkGFQBmGwoVy0wuhAFuCGgDihVa6ZwIzjYKTC0IA8XZGN0e9-69--l0G-TWdd72JyUjhFJaEKC9ixxdlXdt67WRe998K3-QBMtIT0Z6MtKTJ3p95uaYabTW__x5xnj_4h_MSWx-
CODEN ISJEAZ
Cites_doi 10.1109/TSMC.2020.3048950
10.1109/JSEN.2023.3332755
10.1109/JSEN.2022.3174396
10.1109/TIM.2020.2992829
10.3390/pr10112269
10.1214/11-AOS940
10.1609/aaai.v34i06.6595
10.1109/JIOT.2024.3403711
10.1016/j.artint.2008.08.001
10.1109/TIM.2023.3259031
10.1016/j.eswa.2023.121338
10.1109/JSEN.2017.2726011
10.1111/exsy.13197
10.7551/mitpress/1754.001.0001
10.1016/j.eng.2019.08.016
10.1109/JSEN.2020.2975286
10.1109/JSEN.2019.2898634
10.1109/JSEN.2015.2497545
10.1109/TIE.2017.2774777
10.1016/j.ijar.2018.08.002
10.1109/JIOT.2024.3360432
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3442869
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 30574
ExternalDocumentID 10_1109_JSEN_2024_3442869
10653740
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities; Fundamental Research Funds for the Central Universities of China
  grantid: PA2023GDSK0055
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 52375089; 61906195
  funderid: 10.13039/501100001809
– fundername: Dreams Foundation of Jianghuai Advance Technology Center
  grantid: 2023-ZM01J003
  funderid: 10.13039/501100008972
– fundername: Key Research and Development Plan of Anhui Province
  grantid: 202304a05020059
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c246t-f3f6f8fa0d779d2254c4403b24c35f688f47f14ef4a39eae61873ba4fd8134a73
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:18:00 EDT 2025
Tue Jul 01 03:02:59 EDT 2025
Wed Aug 27 01:52:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-f3f6f8fa0d779d2254c4403b24c35f688f47f14ef4a39eae61873ba4fd8134a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0009-1764-8384
0000-0002-6626-1700
0000-0002-7669-4139
0009-0001-6446-4782
PQID 3112229142
PQPubID 75733
PageCount 15
ParticipantIDs ieee_primary_10653740
crossref_primary_10_1109_JSEN_2024_3442869
proquest_journals_3112229142
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref34
ref15
ref31
ref30
ref33
ref10
Montagna (ref18); 213
ref32
Rohekar (ref13); 34
ref2
ref1
Gretton (ref23); 22
Brouillard (ref12); 177
ref17
ref19
Neal (ref7) 2020
Shimizu (ref20) 2006; 7
ref25
Zhang (ref26)
Huang (ref24) 2020; 21
Akbari (ref11); 34
ref28
ref27
Ogarrio (ref16); 52
ref29
ref8
ref9
ref4
Huang (ref21); 35
ref3
Van Diepen (ref14); 231
ref6
Hoyer (ref22); 21
ref5
References_xml – ident: ref30
  doi: 10.1109/TSMC.2020.3048950
– volume: 22
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref23
  article-title: Nonlinear directed acyclic structure learning with weakly additive noise models
– ident: ref28
  doi: 10.1109/JSEN.2023.3332755
– ident: ref4
  doi: 10.1109/JSEN.2022.3174396
– start-page: 804
  volume-title: Proc. 27th Conf. Uncertainty Artif. Intell.
  ident: ref26
  article-title: Kernel-based conditional independence test and application in causal discovery
– ident: ref1
  doi: 10.1109/TIM.2020.2992829
– ident: ref9
  doi: 10.3390/pr10112269
– ident: ref15
  doi: 10.1214/11-AOS940
– volume: 34
  start-page: 10119
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref11
  article-title: Recursive causal structure learning in the presence of latent variables and selection bias
– ident: ref19
  doi: 10.1609/aaai.v34i06.6595
– volume: 35
  start-page: 5549
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref21
  article-title: Latent hierarchical causal structure discovery with rank constraints
– volume: 7
  start-page: 2003
  year: 2006
  ident: ref20
  article-title: A linear non-Gaussian acyclic model for causal discovery
  publication-title: J. Mach. Learn. Res.
– ident: ref32
  doi: 10.1109/JIOT.2024.3403711
– volume: 213
  start-page: 752
  volume-title: Proc. Conf. Causal Learn. Reasoning
  ident: ref18
  article-title: Scalable causal discovery with score matching
– ident: ref27
  doi: 10.1016/j.artint.2008.08.001
– ident: ref31
  doi: 10.1109/TIM.2023.3259031
– volume: 177
  start-page: 162
  volume-title: Proc. Conf. Causal Learn. Reasoning
  ident: ref12
  article-title: Typing assumptions improve identification in causal discovery
– volume: 34
  start-page: 2454
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref13
  article-title: Iterative causal discovery in the possible presence of latent confounders and selection bias
– ident: ref34
  doi: 10.1016/j.eswa.2023.121338
– start-page: 22
  year: 2020
  ident: ref7
  article-title: Introduction to causal inference: From a machine learning perspective
  publication-title: Course Lecture Notes
– ident: ref5
  doi: 10.1109/JSEN.2017.2726011
– ident: ref10
  doi: 10.1111/exsy.13197
– volume: 52
  start-page: 368
  volume-title: Proc. Conf. Probabilistic Graph. Models
  ident: ref16
  article-title: A hybrid causal search algorithm for latent variable models
– ident: ref25
  doi: 10.7551/mitpress/1754.001.0001
– ident: ref8
  doi: 10.1016/j.eng.2019.08.016
– ident: ref2
  doi: 10.1109/JSEN.2020.2975286
– volume: 231
  start-page: 707
  volume-title: Proc. Conf. Causal Learn. Reasoning
  ident: ref14
  article-title: Beyond the Markov equivalence class: Extending causal discovery under latent confounding
– ident: ref29
  doi: 10.1109/JSEN.2019.2898634
– volume: 21
  start-page: 689
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref22
  article-title: Nonlinear causal discovery with additive noise models
– ident: ref3
  doi: 10.1109/JSEN.2015.2497545
– volume: 21
  start-page: 1
  issue: 89
  year: 2020
  ident: ref24
  article-title: Causal discovery from heterogeneous/nonstationary data
  publication-title: J. Mach. Learn. Res.
– ident: ref6
  doi: 10.1109/TIE.2017.2774777
– ident: ref17
  doi: 10.1016/j.ijar.2018.08.002
– ident: ref33
  doi: 10.1109/JIOT.2024.3360432
SSID ssj0019757
Score 2.4147303
Snippet Deep learning is widely used in the field of intelligent fault diagnosis. However, data-driven deep learning models are with unsatisfying interpretability and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 30560
SubjectTerms Algorithms
casual effect inference
Causal discovery
Convolutional neural networks
Data models
Data recovery
Deep learning
Fault diagnosis
Feature extraction
Graph theory
Inference algorithms
latent confounding
Signal processing algorithms
Title EICD: Causal Structure Recovery of Bearing Failure Data Containing Latent Confounding
URI https://ieeexplore.ieee.org/document/10653740
https://www.proquest.com/docview/3112229142
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7qRT34rFitkoMnYWt2M012vWkfqGgvtdDbkmQTFKEV3R701zvJbqUogrcl7CwhM5P5ZudFyBkrFAqC1BErQKGDgqqYCgOR1goNglYdG1L-H4biZgx3k86kLlYPtTDW2pB8Ztv-McTyi5mZ-19lqOGiwyWgh76KnltVrPUdMshkaOuJGswi4HJShzBjll3cjfpDdAUTaHNAuO2Tm5eMUJiq8usqDvZlsE2Gi51VaSUv7Xmp2-bzR9PGf299h2zVSJNeVaKxS1bsdI9sLvUf3CPr9Qj0p499Mu7fdnuXtKvm70g1Cm1l52-Wev8Uxf2Dzhy9RrVAQjpQzz6bnfZUqajvb1WNmaD3CFynpV9xfloTLjXIeNB_7N5E9cyFyCQgyshxJ1zqFCukzApUdjAAjOsEDO84kaYOpIvBOlA8s8qKOJVcK3BFGnNQkh-Qtelsag8JNbxgmYmFRQgGgnGlRaqFzpwxiEJj0yTnCybkr1VrjTy4JCzLPcdyz7G85liTNPyhLr1YnWeTtBZ8y2vte885gsgkyWJIjv4gOyYb_utVVl6LrOGh2hNEF6U-DVL1BQEayjA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCaG7tD20HV9YOlj02GnAc5ki5bs3ro0QdqlubQBcjMkWUKHAcnQOof215eSnSHYMGA3QzBhQSTFj-YL4DOvNQmCMgmvUZODQqpYSIuJMZoMgtG5iyn_t1M5nuHNPJ93xeqxFsY5F5PPXD88xlh-vbSr8KuMNFzmQiF56G_J8OdpW671O2hQqtjYk3SYJyjUvAtiprz8enM3nJIzmGFfIAHukN68YYbiXJW_LuNoYUbvYLreW5tY8rO_akzfvvzRtvG_N78Pex3WZJetcLyHN25xALsbHQgPYLsbgv7wfAiz4fXg6oIN9OqJqO5iY9nVo2PBQyWBf2ZLz76RYhAhG-kfIZ-dXelGs9Dhqh00wSYEXRdNWPFhXhMtHcFsNLwfjJNu6kJiM5RN4oWXvvCa10qVNak7WkQuTIZW5F4WhUflU3QetSiddjItlDAafV2kArUSx7C1WC7cB2BW1Ly0qXQEwlByoY0sjDSlt5ZwaGp78GXNhOpX21yjik4JL6vAsSpwrOo41oOjcKgbL7bn2YOzNd-qTv-eKkEwMsvKFLOTf5B9gu3x_e2kmlxPv5_CTvhSm6N3Blt0wO6csEZjPkYJewW7ns15
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EICD%3A+Causal+Structure+Recovery+of+Bearing+Failure+Data+Containing+Latent+Confounding&rft.jtitle=IEEE+sensors+journal&rft.au=Ding%2C+Xu&rft.au=Chen%2C+Jun&rft.au=Chen%2C+Guanhua&rft.au=Xu%2C+Juan&rft.date=2024-10-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=19&rft.spage=30560&rft.epage=30574&rft_id=info:doi/10.1109%2FJSEN.2024.3442869&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2024_3442869
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon