EICD: Causal Structure Recovery of Bearing Failure Data Containing Latent Confounding
Deep learning is widely used in the field of intelligent fault diagnosis. However, data-driven deep learning models are with unsatisfying interpretability and their performance cannot be maintained when a sample distribution shift occurs. Causal discovery can enhance the interpretability of deep lea...
Saved in:
Published in | IEEE sensors journal Vol. 24; no. 19; pp. 30560 - 30574 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep learning is widely used in the field of intelligent fault diagnosis. However, data-driven deep learning models are with unsatisfying interpretability and their performance cannot be maintained when a sample distribution shift occurs. Causal discovery can enhance the interpretability of deep learning models by establishing causal graphs to uncover causal invariance in the data. Nevertheless, causal discovery suffers from the curse of dimensionality due to the large conditional sets used in conditional independence (CI) tests, and the Markov equivalence class (MEC) obtained contains many undirected edges due to some causal structures having the same CI. In response, we incorporate the causal direction criterion (CDC) into iterative causal discovery (ICD) to construct the extended ICD (EICD) algorithm. EICD can obtain a detailed causal graph with lower complexity, enhancing the interpretability of the diagnostic framework. First, EICD reduces the number of required CI tests by limiting the size of the conditioning set and its distance from the target node. Second, based on CDC, EICD uses causal asymmetry to infer the direction of causal edges between pairs of nodes, thus accelerating ICD and adding more directional causal edges compared to MEC. In the experimental section, we compare the number of CI tests and the improvement in directional accuracy with other algorithms and use the EICD algorithm to reconstruct the causal graph of the faulty system. The experiments demonstrate that the EICD algorithm can reduce the required number of CI tests and recover the underlying causal structure more accurately. |
---|---|
AbstractList | Deep learning is widely used in the field of intelligent fault diagnosis. However, data-driven deep learning models are with unsatisfying interpretability and their performance cannot be maintained when a sample distribution shift occurs. Causal discovery can enhance the interpretability of deep learning models by establishing causal graphs to uncover causal invariance in the data. Nevertheless, causal discovery suffers from the curse of dimensionality due to the large conditional sets used in conditional independence (CI) tests, and the Markov equivalence class (MEC) obtained contains many undirected edges due to some causal structures having the same CI. In response, we incorporate the causal direction criterion (CDC) into iterative causal discovery (ICD) to construct the extended ICD (EICD) algorithm. EICD can obtain a detailed causal graph with lower complexity, enhancing the interpretability of the diagnostic framework. First, EICD reduces the number of required CI tests by limiting the size of the conditioning set and its distance from the target node. Second, based on CDC, EICD uses causal asymmetry to infer the direction of causal edges between pairs of nodes, thus accelerating ICD and adding more directional causal edges compared to MEC. In the experimental section, we compare the number of CI tests and the improvement in directional accuracy with other algorithms and use the EICD algorithm to reconstruct the causal graph of the faulty system. The experiments demonstrate that the EICD algorithm can reduce the required number of CI tests and recover the underlying causal structure more accurately. |
Author | Chen, Jun Chen, Guanhua Ding, Xu Xu, Juan |
Author_xml | – sequence: 1 givenname: Xu orcidid: 0000-0002-7669-4139 surname: Ding fullname: Ding, Xu email: dingxu@hfut.edu.cn organization: Anhui Province Key Laboratory of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, China – sequence: 2 givenname: Jun orcidid: 0009-0001-6446-4782 surname: Chen fullname: Chen, Jun email: 2022171253@mail.hfut.edu.cn organization: Anhui Province Key Laboratory of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, China – sequence: 3 givenname: Guanhua orcidid: 0009-0009-1764-8384 surname: Chen fullname: Chen, Guanhua email: chenguanhua127@163.com organization: Anhui Province Key Laboratory of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, China – sequence: 4 givenname: Juan orcidid: 0000-0002-6626-1700 surname: Xu fullname: Xu, Juan email: xujuan@hfut.edu.nc organization: School of Computer and Information, Hefei University of Technology, Hefei, China |
BookMark | eNpNkE9LAzEQxYNUsK1-AMHDguet-TO7yXrTbauVomAteAvpbiJbalKzWaHf3g3twdMMb96bGX4jNLDOaoSuCZ4Qgou7l9XsdUIxhQkDoCIvztCQZJlICQcxiD3DKTD-eYFGbbvFmBQ840O0ni3K6X1Sqq5Vu2QVfFeFzuvkXVfuV_tD4kzyqJVv7FcyV80uzqYqqKR0NqjGRn2pgrYhKsZ1tu6lS3Ru1K7VV6c6Ruv57KN8TpdvT4vyYZlWFPKQGmZyI4zCNedFTWkGFQBmGwoVy0wuhAFuCGgDihVa6ZwIzjYKTC0IA8XZGN0e9-69--l0G-TWdd72JyUjhFJaEKC9ixxdlXdt67WRe998K3-QBMtIT0Z6MtKTJ3p95uaYabTW__x5xnj_4h_MSWx- |
CODEN | ISJEAZ |
Cites_doi | 10.1109/TSMC.2020.3048950 10.1109/JSEN.2023.3332755 10.1109/JSEN.2022.3174396 10.1109/TIM.2020.2992829 10.3390/pr10112269 10.1214/11-AOS940 10.1609/aaai.v34i06.6595 10.1109/JIOT.2024.3403711 10.1016/j.artint.2008.08.001 10.1109/TIM.2023.3259031 10.1016/j.eswa.2023.121338 10.1109/JSEN.2017.2726011 10.1111/exsy.13197 10.7551/mitpress/1754.001.0001 10.1016/j.eng.2019.08.016 10.1109/JSEN.2020.2975286 10.1109/JSEN.2019.2898634 10.1109/JSEN.2015.2497545 10.1109/TIE.2017.2774777 10.1016/j.ijar.2018.08.002 10.1109/JIOT.2024.3360432 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2024.3442869 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 30574 |
ExternalDocumentID | 10_1109_JSEN_2024_3442869 10653740 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities; Fundamental Research Funds for the Central Universities of China grantid: PA2023GDSK0055 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 52375089; 61906195 funderid: 10.13039/501100001809 – fundername: Dreams Foundation of Jianghuai Advance Technology Center grantid: 2023-ZM01J003 funderid: 10.13039/501100008972 – fundername: Key Research and Development Plan of Anhui Province grantid: 202304a05020059 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c246t-f3f6f8fa0d779d2254c4403b24c35f688f47f14ef4a39eae61873ba4fd8134a73 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:18:00 EDT 2025 Tue Jul 01 03:02:59 EDT 2025 Wed Aug 27 01:52:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-f3f6f8fa0d779d2254c4403b24c35f688f47f14ef4a39eae61873ba4fd8134a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0009-1764-8384 0000-0002-6626-1700 0000-0002-7669-4139 0009-0001-6446-4782 |
PQID | 3112229142 |
PQPubID | 75733 |
PageCount | 15 |
ParticipantIDs | ieee_primary_10653740 crossref_primary_10_1109_JSEN_2024_3442869 proquest_journals_3112229142 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref34 ref15 ref31 ref30 ref33 ref10 Montagna (ref18); 213 ref32 Rohekar (ref13); 34 ref2 ref1 Gretton (ref23); 22 Brouillard (ref12); 177 ref17 ref19 Neal (ref7) 2020 Shimizu (ref20) 2006; 7 ref25 Zhang (ref26) Huang (ref24) 2020; 21 Akbari (ref11); 34 ref28 ref27 Ogarrio (ref16); 52 ref29 ref8 ref9 ref4 Huang (ref21); 35 ref3 Van Diepen (ref14); 231 ref6 Hoyer (ref22); 21 ref5 |
References_xml | – ident: ref30 doi: 10.1109/TSMC.2020.3048950 – volume: 22 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref23 article-title: Nonlinear directed acyclic structure learning with weakly additive noise models – ident: ref28 doi: 10.1109/JSEN.2023.3332755 – ident: ref4 doi: 10.1109/JSEN.2022.3174396 – start-page: 804 volume-title: Proc. 27th Conf. Uncertainty Artif. Intell. ident: ref26 article-title: Kernel-based conditional independence test and application in causal discovery – ident: ref1 doi: 10.1109/TIM.2020.2992829 – ident: ref9 doi: 10.3390/pr10112269 – ident: ref15 doi: 10.1214/11-AOS940 – volume: 34 start-page: 10119 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref11 article-title: Recursive causal structure learning in the presence of latent variables and selection bias – ident: ref19 doi: 10.1609/aaai.v34i06.6595 – volume: 35 start-page: 5549 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref21 article-title: Latent hierarchical causal structure discovery with rank constraints – volume: 7 start-page: 2003 year: 2006 ident: ref20 article-title: A linear non-Gaussian acyclic model for causal discovery publication-title: J. Mach. Learn. Res. – ident: ref32 doi: 10.1109/JIOT.2024.3403711 – volume: 213 start-page: 752 volume-title: Proc. Conf. Causal Learn. Reasoning ident: ref18 article-title: Scalable causal discovery with score matching – ident: ref27 doi: 10.1016/j.artint.2008.08.001 – ident: ref31 doi: 10.1109/TIM.2023.3259031 – volume: 177 start-page: 162 volume-title: Proc. Conf. Causal Learn. Reasoning ident: ref12 article-title: Typing assumptions improve identification in causal discovery – volume: 34 start-page: 2454 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref13 article-title: Iterative causal discovery in the possible presence of latent confounders and selection bias – ident: ref34 doi: 10.1016/j.eswa.2023.121338 – start-page: 22 year: 2020 ident: ref7 article-title: Introduction to causal inference: From a machine learning perspective publication-title: Course Lecture Notes – ident: ref5 doi: 10.1109/JSEN.2017.2726011 – ident: ref10 doi: 10.1111/exsy.13197 – volume: 52 start-page: 368 volume-title: Proc. Conf. Probabilistic Graph. Models ident: ref16 article-title: A hybrid causal search algorithm for latent variable models – ident: ref25 doi: 10.7551/mitpress/1754.001.0001 – ident: ref8 doi: 10.1016/j.eng.2019.08.016 – ident: ref2 doi: 10.1109/JSEN.2020.2975286 – volume: 231 start-page: 707 volume-title: Proc. Conf. Causal Learn. Reasoning ident: ref14 article-title: Beyond the Markov equivalence class: Extending causal discovery under latent confounding – ident: ref29 doi: 10.1109/JSEN.2019.2898634 – volume: 21 start-page: 689 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref22 article-title: Nonlinear causal discovery with additive noise models – ident: ref3 doi: 10.1109/JSEN.2015.2497545 – volume: 21 start-page: 1 issue: 89 year: 2020 ident: ref24 article-title: Causal discovery from heterogeneous/nonstationary data publication-title: J. Mach. Learn. Res. – ident: ref6 doi: 10.1109/TIE.2017.2774777 – ident: ref17 doi: 10.1016/j.ijar.2018.08.002 – ident: ref33 doi: 10.1109/JIOT.2024.3360432 |
SSID | ssj0019757 |
Score | 2.4147303 |
Snippet | Deep learning is widely used in the field of intelligent fault diagnosis. However, data-driven deep learning models are with unsatisfying interpretability and... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 30560 |
SubjectTerms | Algorithms casual effect inference Causal discovery Convolutional neural networks Data models Data recovery Deep learning Fault diagnosis Feature extraction Graph theory Inference algorithms latent confounding Signal processing algorithms |
Title | EICD: Causal Structure Recovery of Bearing Failure Data Containing Latent Confounding |
URI | https://ieeexplore.ieee.org/document/10653740 https://www.proquest.com/docview/3112229142 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7qRT34rFitkoMnYWt2M012vWkfqGgvtdDbkmQTFKEV3R701zvJbqUogrcl7CwhM5P5ZudFyBkrFAqC1BErQKGDgqqYCgOR1goNglYdG1L-H4biZgx3k86kLlYPtTDW2pB8Ztv-McTyi5mZ-19lqOGiwyWgh76KnltVrPUdMshkaOuJGswi4HJShzBjll3cjfpDdAUTaHNAuO2Tm5eMUJiq8usqDvZlsE2Gi51VaSUv7Xmp2-bzR9PGf299h2zVSJNeVaKxS1bsdI9sLvUf3CPr9Qj0p499Mu7fdnuXtKvm70g1Cm1l52-Wev8Uxf2Dzhy9RrVAQjpQzz6bnfZUqajvb1WNmaD3CFynpV9xfloTLjXIeNB_7N5E9cyFyCQgyshxJ1zqFCukzApUdjAAjOsEDO84kaYOpIvBOlA8s8qKOJVcK3BFGnNQkh-Qtelsag8JNbxgmYmFRQgGgnGlRaqFzpwxiEJj0yTnCybkr1VrjTy4JCzLPcdyz7G85liTNPyhLr1YnWeTtBZ8y2vte885gsgkyWJIjv4gOyYb_utVVl6LrOGh2hNEF6U-DVL1BQEayjA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCaG7tD20HV9YOlj02GnAc5ki5bs3ro0QdqlubQBcjMkWUKHAcnQOof215eSnSHYMGA3QzBhQSTFj-YL4DOvNQmCMgmvUZODQqpYSIuJMZoMgtG5iyn_t1M5nuHNPJ93xeqxFsY5F5PPXD88xlh-vbSr8KuMNFzmQiF56G_J8OdpW671O2hQqtjYk3SYJyjUvAtiprz8enM3nJIzmGFfIAHukN68YYbiXJW_LuNoYUbvYLreW5tY8rO_akzfvvzRtvG_N78Pex3WZJetcLyHN25xALsbHQgPYLsbgv7wfAiz4fXg6oIN9OqJqO5iY9nVo2PBQyWBf2ZLz76RYhAhG-kfIZ-dXelGs9Dhqh00wSYEXRdNWPFhXhMtHcFsNLwfjJNu6kJiM5RN4oWXvvCa10qVNak7WkQuTIZW5F4WhUflU3QetSiddjItlDAafV2kArUSx7C1WC7cB2BW1Ly0qXQEwlByoY0sjDSlt5ZwaGp78GXNhOpX21yjik4JL6vAsSpwrOo41oOjcKgbL7bn2YOzNd-qTv-eKkEwMsvKFLOTf5B9gu3x_e2kmlxPv5_CTvhSm6N3Blt0wO6csEZjPkYJewW7ns15 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EICD%3A+Causal+Structure+Recovery+of+Bearing+Failure+Data+Containing+Latent+Confounding&rft.jtitle=IEEE+sensors+journal&rft.au=Ding%2C+Xu&rft.au=Chen%2C+Jun&rft.au=Chen%2C+Guanhua&rft.au=Xu%2C+Juan&rft.date=2024-10-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=19&rft.spage=30560&rft.epage=30574&rft_id=info:doi/10.1109%2FJSEN.2024.3442869&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2024_3442869 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |