A Novel CNN With Sliding Window Technique for Enhanced Classification of MI-EEG Sensor Data
The major challenge in fully using the motor imagery (MI)-based brain-computer interface (MI-BCI) capabilities is accurately classifying the MI electroencephalography (MI-EEG) signals. Despite numerous advancements in signal processing and deep learning (DL) techniques, there is significant scope fo...
Saved in:
Published in | IEEE sensors journal Vol. 25; no. 3; pp. 4777 - 4786 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1530-437X 1558-1748 |
DOI | 10.1109/JSEN.2024.3515252 |
Cover
Loading…
Abstract | The major challenge in fully using the motor imagery (MI)-based brain-computer interface (MI-BCI) capabilities is accurately classifying the MI electroencephalography (MI-EEG) signals. Despite numerous advancements in signal processing and deep learning (DL) techniques, there is significant scope for improvement in the accuracy currently available in the state-of-the-art. This can be achieved by leveraging spatial and temporal features of MI-EEG signal. We propose SWCNet, a convolutional neural network (CNN)-based model, and integrate it with the sliding window technique to increase the accuracy. In this work, a new CNN architecture has been proposed to extract more features from data, whereas the sliding window technique enhances temporal features by augmenting the input sensor data along the temporal dimension. We have thoroughly evaluated the performance of SWCNet using subject-dependent and subject-independent approaches for four different datasets. Our analysis includes general accuracy metrics, an ablation study, a parametric sensitivity study, and a detailed classwise performance evaluation for the tongue, foot, left-hand, and right-hand movements. The proposed model achieves accuracies of 97.42%, 94.46%, 92.27%, and 90.82% for the BCI Competition IV-2a (BCIC-IV-2a), BCI Competition IV-2b (BCIC-IV-2b), High Gamma, and OpenBMI datasets, respectively. SWCNet outperforms the state-of-the-art methods with higher accuracy for all the datasets, demonstrating its superior generalizability. SWCNet holds promise in enhancing the effectiveness of BCI applications, especially in medical rehabilitation. |
---|---|
AbstractList | The major challenge in fully using the motor imagery (MI)-based brain-computer interface (MI-BCI) capabilities is accurately classifying the MI electroencephalography (MI-EEG) signals. Despite numerous advancements in signal processing and deep learning (DL) techniques, there is significant scope for improvement in the accuracy currently available in the state-of-the-art. This can be achieved by leveraging spatial and temporal features of MI-EEG signal. We propose SWCNet, a convolutional neural network (CNN)-based model, and integrate it with the sliding window technique to increase the accuracy. In this work, a new CNN architecture has been proposed to extract more features from data, whereas the sliding window technique enhances temporal features by augmenting the input sensor data along the temporal dimension. We have thoroughly evaluated the performance of SWCNet using subject-dependent and subject-independent approaches for four different datasets. Our analysis includes general accuracy metrics, an ablation study, a parametric sensitivity study, and a detailed classwise performance evaluation for the tongue, foot, left-hand, and right-hand movements. The proposed model achieves accuracies of 97.42%, 94.46%, 92.27%, and 90.82% for the BCI Competition IV-2a (BCIC-IV-2a), BCI Competition IV-2b (BCIC-IV-2b), High Gamma, and OpenBMI datasets, respectively. SWCNet outperforms the state-of-the-art methods with higher accuracy for all the datasets, demonstrating its superior generalizability. SWCNet holds promise in enhancing the effectiveness of BCI applications, especially in medical rehabilitation. |
Author | Singha, Nitin Bhalaik, Swati Singh, Kamal Jaswal, Gaurav |
Author_xml | – sequence: 1 givenname: Kamal orcidid: 0000-0001-6831-758X surname: Singh fullname: Singh, Kamal organization: ECE Department, National Institute of Technology (NIT) at Delhi, New Delhi, India – sequence: 2 givenname: Nitin orcidid: 0000-0003-1600-4121 surname: Singha fullname: Singha, Nitin email: nitinsingha@nitdelhi.ac.in organization: ECE Department, National Institute of Technology (NIT) at Delhi, New Delhi, India – sequence: 3 givenname: Gaurav surname: Jaswal fullname: Jaswal, Gaurav organization: Indian Institute of Technology at Mandi, Mandi, Himachal Pradesh, India – sequence: 4 givenname: Swati orcidid: 0009-0006-7969-4595 surname: Bhalaik fullname: Bhalaik, Swati organization: Jindal Global Business School, Sonipat, Haryana, India |
BookMark | eNpNkMtKAzEUhoMo2FYfQHARcD0190mWZRxrpdZFKwouhjST2JSa1MlU8e2d0i5cnf_Ady58fXAaYrAAXGE0xBip28d5ORsSRNiQcswJJyeghzmXGc6ZPN1nijJG87dz0E9pjRBWOc974H0EZ_HbbmAxm8FX367gfONrHz66JtTxBy6sWQX_tbPQxQaWYaWDsTUsNjol77zRrY8BRgefJllZjuHchtSBd7rVF-DM6U2yl8c6AC_35aJ4yKbP40kxmmaGMNFmjuYyJ0bWmi-XDFkpOHEaU5lTy5FCRiO1pHaJFCPSISc4MkoIQ7ugOBJ0AG4Oe7dN7B5NbbWOuyZ0JyuKBeWCMak6Ch8o08SUGuuqbeM_dfNbYVTtHVZ7h9XeYXV02M1cH2a8tfYfL5FguaJ_BwBseA |
CODEN | ISJEAZ |
Cites_doi | 10.1109/TNSRE.2023.3242280 10.3390/bioengineering9120768 10.1109/JSEN.2023.3296199 10.1109/TNSRE.2022.3183023 10.1016/j.bspc.2020.102144 10.1109/TBME.2022.3193277 10.1109/MC.2012.107 10.1016/j.irbm.2019.11.002 10.3390/s19061423 10.1109/TII.2022.3197419 10.1109/MSP.2008.4408441 10.1016/j.bspc.2021.103342 10.1088/1741-2552/aace8c 10.1109/TNNLS.2018.2789927 10.1109/TNSRE.2020.3023417 10.1002/hbm.23730 10.1109/TNSRE.2018.2876129 10.1109/JSEN.2023.3270281 10.1093/gigascience/giz002 10.1109/TII.2021.3132340 10.3390/s120201211 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2024.3515252 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 4786 |
ExternalDocumentID | 10_1109_JSEN_2024_3515252 10806479 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c246t-f37872c8da5bb40e8652fa13873e5090ca09b3eb09428f0f650c966c365095063 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Thu Aug 14 02:12:25 EDT 2025 Tue Jul 01 03:03:05 EDT 2025 Wed Aug 27 01:53:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-f37872c8da5bb40e8652fa13873e5090ca09b3eb09428f0f650c966c365095063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0006-7969-4595 0000-0001-6831-758X 0000-0003-1600-4121 |
PQID | 3163564489 |
PQPubID | 75733 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3163564489 ieee_primary_10806479 crossref_primary_10_1109_JSEN_2024_3515252 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 ref11 ref10 ref2 ref1 Hinton (ref25) 2012 Leeb (ref14) 2008 ref17 ref16 ref19 ref18 Ioffe (ref24) 2015 Brunner (ref13) 2008; 16 ref23 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref21 doi: 10.1109/TNSRE.2023.3242280 – ident: ref3 doi: 10.3390/bioengineering9120768 – ident: ref7 doi: 10.1109/JSEN.2023.3296199 – year: 2015 ident: ref24 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: arXiv:1502.03167 – ident: ref5 doi: 10.1109/TNSRE.2022.3183023 – ident: ref18 doi: 10.1016/j.bspc.2020.102144 – ident: ref22 doi: 10.1109/TBME.2022.3193277 – ident: ref1 doi: 10.1109/MC.2012.107 – ident: ref8 doi: 10.1016/j.irbm.2019.11.002 – ident: ref4 doi: 10.3390/s19061423 – year: 2012 ident: ref25 article-title: Improving neural networks by preventing co-adaptation of feature detectors publication-title: arXiv:1207.0580 – ident: ref6 doi: 10.1109/TII.2022.3197419 – ident: ref17 doi: 10.1109/MSP.2008.4408441 – ident: ref20 doi: 10.1016/j.bspc.2021.103342 – ident: ref9 doi: 10.1088/1741-2552/aace8c – ident: ref10 doi: 10.1109/TNNLS.2018.2789927 – ident: ref11 doi: 10.1109/TNSRE.2020.3023417 – start-page: 1 year: 2008 ident: ref14 article-title: BCI competition 2008—Graz data set B – ident: ref15 doi: 10.1002/hbm.23730 – ident: ref12 doi: 10.1109/TNSRE.2018.2876129 – ident: ref23 doi: 10.1109/JSEN.2023.3270281 – ident: ref16 doi: 10.1093/gigascience/giz002 – ident: ref19 doi: 10.1109/TII.2021.3132340 – ident: ref2 doi: 10.3390/s120201211 – volume: 16 start-page: 1 year: 2008 ident: ref13 article-title: BCI competition 2008—Graz data set A publication-title: Inst. Knowl. Discovery, Graz Univ. Technol., Austria |
SSID | ssj0019757 |
Score | 2.4247732 |
Snippet | The major challenge in fully using the motor imagery (MI)-based brain-computer interface (MI-BCI) capabilities is accurately classifying the MI... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4777 |
SubjectTerms | Ablation Accuracy Artificial neural networks Brain modeling Brain-computer interface (BCI) Classification convolutional neural network (CNN) Convolutional neural networks Data models Datasets deep learning (DL) Electrodes Electroencephalography electroencephalography (EEG) Feature extraction Filtering Hand (anatomy) Human-computer interface Machine learning machine learning (ML) motor imagery (MI) Motors Parameter sensitivity Performance evaluation sensor Sensors Signal processing Sliding |
Title | A Novel CNN With Sliding Window Technique for Enhanced Classification of MI-EEG Sensor Data |
URI | https://ieeexplore.ieee.org/document/10806479 https://www.proquest.com/docview/3163564489 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BF9pDy6tieVQ-cKrkxWs7ryOioRSJXBbUlXqIbMfWrlglqM0Wwa9n7CQVLarUWyI5keXxxN-XmfkG4EQbXhnDBWVOp0hQWEYVjytqjFAIX2NkRb5Q-LqIL2_l1Sya9cXqoRbGWhuSz-zYX4ZYftWYlf9Vdurz4WKZZOuwjsytK9b6HTLIkiDriR7MqBTJrA9hTlh2ejXNC6SCXI5F5Pv98D8OodBV5dWnOJwvF--hGGbWpZXcjVetHpunv0Qb_3vqW_CuR5rkrNsa27Bm6x14-0J_cAc2-xbo88dd-H5GiuaXXZLzoiDfFu2cTJcLf7DhTV01D-RmUHsliHNJXs9D7gAJXTV9vlEwMWkcuf5K8_wLmSJBxoGfVav24PYivzm_pH3nBWq4jFvqBPoxN2mlIq0ls2kccacmIk2ERYTBjGKZFlYjN-SpYw5hnkHeZITX44sQ9XyAjbqp7T4QJ6rMVU5qLivJnVGIB5jBtwuVJtrJEXwaTFHedwIbZSAmLCu93Upvt7K32wj2_NK-GNit6giOBuuVvQ_-LMXEa-8h_cwO_vHYIbzhvp1vSMI-go32x8oeI8Zo9cewt54BA7jK6A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB219EA5tIWCui1tfeCElMVrO1_H1TZ0-dhcdlFX4hDZjq1dFSUIsqD213fsZBEUVeotkZzI8nji9zIzbwAOlGal1owH1KoECQpNA8miMtCaS4SvEbIiVyg8yaPxhTidh_OuWN3XwhhjfPKZ6btLH8sva71yv8qOXD5cJOL0JbwKXTVuW671EDRIYy_siT5MA8HjeRfEHND06HSa5UgGmejz0HX8YU-OId9X5dnH2J8wx28hX8-tTSz52V81qq9__yXb-N-TfwdvOqxJhu3m2IYXptqBrUcKhDuw2TVBX_x6D5dDktd35oqM8pz8WDYLMr1auqMNb6qyvieztd4rQaRLsmrhsweI76vpMo68kUltyeQkyLLvZIoUGQd-k43chYvjbDYaB13vhUAzETWB5ejJTCelDJUS1CRRyKwc8CTmBjEG1ZKmihuF7JAllloEehqZk-ZOkS9E3LMHG1VdmQ9ALC9TW1qhmCgFs1oiIqAa385lEisrenC4NkVx3UpsFJ6a0LRwdiuc3YrObj3YdUv7aGC7qj3YX1uv6LzwtuADp76HBDT9-I_HvsLmeDY5L85P8rNP8Jq55r4-JXsfNpqblfmMiKNRX_w--wPHCc4w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+CNN+With+Sliding+Window+Technique+for+Enhanced+Classification+of+MI-EEG+Sensor+Data&rft.jtitle=IEEE+sensors+journal&rft.au=Singh%2C+Kamal&rft.au=Singha%2C+Nitin&rft.au=Jaswal%2C+Gaurav&rft.au=Bhalaik%2C+Swati&rft.date=2025-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=3&rft.spage=4777&rft_id=info:doi/10.1109%2FJSEN.2024.3515252&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |