A Novel CNN With Sliding Window Technique for Enhanced Classification of MI-EEG Sensor Data

The major challenge in fully using the motor imagery (MI)-based brain-computer interface (MI-BCI) capabilities is accurately classifying the MI electroencephalography (MI-EEG) signals. Despite numerous advancements in signal processing and deep learning (DL) techniques, there is significant scope fo...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 25; no. 3; pp. 4777 - 4786
Main Authors Singh, Kamal, Singha, Nitin, Jaswal, Gaurav, Bhalaik, Swati
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2024.3515252

Cover

Loading…
Abstract The major challenge in fully using the motor imagery (MI)-based brain-computer interface (MI-BCI) capabilities is accurately classifying the MI electroencephalography (MI-EEG) signals. Despite numerous advancements in signal processing and deep learning (DL) techniques, there is significant scope for improvement in the accuracy currently available in the state-of-the-art. This can be achieved by leveraging spatial and temporal features of MI-EEG signal. We propose SWCNet, a convolutional neural network (CNN)-based model, and integrate it with the sliding window technique to increase the accuracy. In this work, a new CNN architecture has been proposed to extract more features from data, whereas the sliding window technique enhances temporal features by augmenting the input sensor data along the temporal dimension. We have thoroughly evaluated the performance of SWCNet using subject-dependent and subject-independent approaches for four different datasets. Our analysis includes general accuracy metrics, an ablation study, a parametric sensitivity study, and a detailed classwise performance evaluation for the tongue, foot, left-hand, and right-hand movements. The proposed model achieves accuracies of 97.42%, 94.46%, 92.27%, and 90.82% for the BCI Competition IV-2a (BCIC-IV-2a), BCI Competition IV-2b (BCIC-IV-2b), High Gamma, and OpenBMI datasets, respectively. SWCNet outperforms the state-of-the-art methods with higher accuracy for all the datasets, demonstrating its superior generalizability. SWCNet holds promise in enhancing the effectiveness of BCI applications, especially in medical rehabilitation.
AbstractList The major challenge in fully using the motor imagery (MI)-based brain-computer interface (MI-BCI) capabilities is accurately classifying the MI electroencephalography (MI-EEG) signals. Despite numerous advancements in signal processing and deep learning (DL) techniques, there is significant scope for improvement in the accuracy currently available in the state-of-the-art. This can be achieved by leveraging spatial and temporal features of MI-EEG signal. We propose SWCNet, a convolutional neural network (CNN)-based model, and integrate it with the sliding window technique to increase the accuracy. In this work, a new CNN architecture has been proposed to extract more features from data, whereas the sliding window technique enhances temporal features by augmenting the input sensor data along the temporal dimension. We have thoroughly evaluated the performance of SWCNet using subject-dependent and subject-independent approaches for four different datasets. Our analysis includes general accuracy metrics, an ablation study, a parametric sensitivity study, and a detailed classwise performance evaluation for the tongue, foot, left-hand, and right-hand movements. The proposed model achieves accuracies of 97.42%, 94.46%, 92.27%, and 90.82% for the BCI Competition IV-2a (BCIC-IV-2a), BCI Competition IV-2b (BCIC-IV-2b), High Gamma, and OpenBMI datasets, respectively. SWCNet outperforms the state-of-the-art methods with higher accuracy for all the datasets, demonstrating its superior generalizability. SWCNet holds promise in enhancing the effectiveness of BCI applications, especially in medical rehabilitation.
Author Singha, Nitin
Bhalaik, Swati
Singh, Kamal
Jaswal, Gaurav
Author_xml – sequence: 1
  givenname: Kamal
  orcidid: 0000-0001-6831-758X
  surname: Singh
  fullname: Singh, Kamal
  organization: ECE Department, National Institute of Technology (NIT) at Delhi, New Delhi, India
– sequence: 2
  givenname: Nitin
  orcidid: 0000-0003-1600-4121
  surname: Singha
  fullname: Singha, Nitin
  email: nitinsingha@nitdelhi.ac.in
  organization: ECE Department, National Institute of Technology (NIT) at Delhi, New Delhi, India
– sequence: 3
  givenname: Gaurav
  surname: Jaswal
  fullname: Jaswal, Gaurav
  organization: Indian Institute of Technology at Mandi, Mandi, Himachal Pradesh, India
– sequence: 4
  givenname: Swati
  orcidid: 0009-0006-7969-4595
  surname: Bhalaik
  fullname: Bhalaik, Swati
  organization: Jindal Global Business School, Sonipat, Haryana, India
BookMark eNpNkMtKAzEUhoMo2FYfQHARcD0190mWZRxrpdZFKwouhjST2JSa1MlU8e2d0i5cnf_Ady58fXAaYrAAXGE0xBip28d5ORsSRNiQcswJJyeghzmXGc6ZPN1nijJG87dz0E9pjRBWOc974H0EZ_HbbmAxm8FX367gfONrHz66JtTxBy6sWQX_tbPQxQaWYaWDsTUsNjol77zRrY8BRgefJllZjuHchtSBd7rVF-DM6U2yl8c6AC_35aJ4yKbP40kxmmaGMNFmjuYyJ0bWmi-XDFkpOHEaU5lTy5FCRiO1pHaJFCPSISc4MkoIQ7ugOBJ0AG4Oe7dN7B5NbbWOuyZ0JyuKBeWCMak6Ch8o08SUGuuqbeM_dfNbYVTtHVZ7h9XeYXV02M1cH2a8tfYfL5FguaJ_BwBseA
CODEN ISJEAZ
Cites_doi 10.1109/TNSRE.2023.3242280
10.3390/bioengineering9120768
10.1109/JSEN.2023.3296199
10.1109/TNSRE.2022.3183023
10.1016/j.bspc.2020.102144
10.1109/TBME.2022.3193277
10.1109/MC.2012.107
10.1016/j.irbm.2019.11.002
10.3390/s19061423
10.1109/TII.2022.3197419
10.1109/MSP.2008.4408441
10.1016/j.bspc.2021.103342
10.1088/1741-2552/aace8c
10.1109/TNNLS.2018.2789927
10.1109/TNSRE.2020.3023417
10.1002/hbm.23730
10.1109/TNSRE.2018.2876129
10.1109/JSEN.2023.3270281
10.1093/gigascience/giz002
10.1109/TII.2021.3132340
10.3390/s120201211
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3515252
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 4786
ExternalDocumentID 10_1109_JSEN_2024_3515252
10806479
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c246t-f37872c8da5bb40e8652fa13873e5090ca09b3eb09428f0f650c966c365095063
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Thu Aug 14 02:12:25 EDT 2025
Tue Jul 01 03:03:05 EDT 2025
Wed Aug 27 01:53:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-f37872c8da5bb40e8652fa13873e5090ca09b3eb09428f0f650c966c365095063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0006-7969-4595
0000-0001-6831-758X
0000-0003-1600-4121
PQID 3163564489
PQPubID 75733
PageCount 10
ParticipantIDs proquest_journals_3163564489
ieee_primary_10806479
crossref_primary_10_1109_JSEN_2024_3515252
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref11
ref10
ref2
ref1
Hinton (ref25) 2012
Leeb (ref14) 2008
ref17
ref16
ref19
ref18
Ioffe (ref24) 2015
Brunner (ref13) 2008; 16
ref23
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref21
  doi: 10.1109/TNSRE.2023.3242280
– ident: ref3
  doi: 10.3390/bioengineering9120768
– ident: ref7
  doi: 10.1109/JSEN.2023.3296199
– year: 2015
  ident: ref24
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: arXiv:1502.03167
– ident: ref5
  doi: 10.1109/TNSRE.2022.3183023
– ident: ref18
  doi: 10.1016/j.bspc.2020.102144
– ident: ref22
  doi: 10.1109/TBME.2022.3193277
– ident: ref1
  doi: 10.1109/MC.2012.107
– ident: ref8
  doi: 10.1016/j.irbm.2019.11.002
– ident: ref4
  doi: 10.3390/s19061423
– year: 2012
  ident: ref25
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
  publication-title: arXiv:1207.0580
– ident: ref6
  doi: 10.1109/TII.2022.3197419
– ident: ref17
  doi: 10.1109/MSP.2008.4408441
– ident: ref20
  doi: 10.1016/j.bspc.2021.103342
– ident: ref9
  doi: 10.1088/1741-2552/aace8c
– ident: ref10
  doi: 10.1109/TNNLS.2018.2789927
– ident: ref11
  doi: 10.1109/TNSRE.2020.3023417
– start-page: 1
  year: 2008
  ident: ref14
  article-title: BCI competition 2008—Graz data set B
– ident: ref15
  doi: 10.1002/hbm.23730
– ident: ref12
  doi: 10.1109/TNSRE.2018.2876129
– ident: ref23
  doi: 10.1109/JSEN.2023.3270281
– ident: ref16
  doi: 10.1093/gigascience/giz002
– ident: ref19
  doi: 10.1109/TII.2021.3132340
– ident: ref2
  doi: 10.3390/s120201211
– volume: 16
  start-page: 1
  year: 2008
  ident: ref13
  article-title: BCI competition 2008—Graz data set A
  publication-title: Inst. Knowl. Discovery, Graz Univ. Technol., Austria
SSID ssj0019757
Score 2.4247732
Snippet The major challenge in fully using the motor imagery (MI)-based brain-computer interface (MI-BCI) capabilities is accurately classifying the MI...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 4777
SubjectTerms Ablation
Accuracy
Artificial neural networks
Brain modeling
Brain-computer interface (BCI)
Classification
convolutional neural network (CNN)
Convolutional neural networks
Data models
Datasets
deep learning (DL)
Electrodes
Electroencephalography
electroencephalography (EEG)
Feature extraction
Filtering
Hand (anatomy)
Human-computer interface
Machine learning
machine learning (ML)
motor imagery (MI)
Motors
Parameter sensitivity
Performance evaluation
sensor
Sensors
Signal processing
Sliding
Title A Novel CNN With Sliding Window Technique for Enhanced Classification of MI-EEG Sensor Data
URI https://ieeexplore.ieee.org/document/10806479
https://www.proquest.com/docview/3163564489
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BF9pDy6tieVQ-cKrkxWs7ryOioRSJXBbUlXqIbMfWrlglqM0Wwa9n7CQVLarUWyI5keXxxN-XmfkG4EQbXhnDBWVOp0hQWEYVjytqjFAIX2NkRb5Q-LqIL2_l1Sya9cXqoRbGWhuSz-zYX4ZYftWYlf9Vdurz4WKZZOuwjsytK9b6HTLIkiDriR7MqBTJrA9hTlh2ejXNC6SCXI5F5Pv98D8OodBV5dWnOJwvF--hGGbWpZXcjVetHpunv0Qb_3vqW_CuR5rkrNsa27Bm6x14-0J_cAc2-xbo88dd-H5GiuaXXZLzoiDfFu2cTJcLf7DhTV01D-RmUHsliHNJXs9D7gAJXTV9vlEwMWkcuf5K8_wLmSJBxoGfVav24PYivzm_pH3nBWq4jFvqBPoxN2mlIq0ls2kccacmIk2ERYTBjGKZFlYjN-SpYw5hnkHeZITX44sQ9XyAjbqp7T4QJ6rMVU5qLivJnVGIB5jBtwuVJtrJEXwaTFHedwIbZSAmLCu93Upvt7K32wj2_NK-GNit6giOBuuVvQ_-LMXEa-8h_cwO_vHYIbzhvp1vSMI-go32x8oeI8Zo9cewt54BA7jK6A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB219EA5tIWCui1tfeCElMVrO1_H1TZ0-dhcdlFX4hDZjq1dFSUIsqD213fsZBEUVeotkZzI8nji9zIzbwAOlGal1owH1KoECQpNA8miMtCaS4SvEbIiVyg8yaPxhTidh_OuWN3XwhhjfPKZ6btLH8sva71yv8qOXD5cJOL0JbwKXTVuW671EDRIYy_siT5MA8HjeRfEHND06HSa5UgGmejz0HX8YU-OId9X5dnH2J8wx28hX8-tTSz52V81qq9__yXb-N-TfwdvOqxJhu3m2IYXptqBrUcKhDuw2TVBX_x6D5dDktd35oqM8pz8WDYLMr1auqMNb6qyvieztd4rQaRLsmrhsweI76vpMo68kUltyeQkyLLvZIoUGQd-k43chYvjbDYaB13vhUAzETWB5ejJTCelDJUS1CRRyKwc8CTmBjEG1ZKmihuF7JAllloEehqZk-ZOkS9E3LMHG1VdmQ9ALC9TW1qhmCgFs1oiIqAa385lEisrenC4NkVx3UpsFJ6a0LRwdiuc3YrObj3YdUv7aGC7qj3YX1uv6LzwtuADp76HBDT9-I_HvsLmeDY5L85P8rNP8Jq55r4-JXsfNpqblfmMiKNRX_w--wPHCc4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+CNN+With+Sliding+Window+Technique+for+Enhanced+Classification+of+MI-EEG+Sensor+Data&rft.jtitle=IEEE+sensors+journal&rft.au=Singh%2C+Kamal&rft.au=Singha%2C+Nitin&rft.au=Jaswal%2C+Gaurav&rft.au=Bhalaik%2C+Swati&rft.date=2025-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=3&rft.spage=4777&rft_id=info:doi/10.1109%2FJSEN.2024.3515252&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon