CFBC: A Network for EEG Emotion Recognition by Selecting the Information of Crucial Frequency Bands
In this work, inspired by the frequency band division theory of electroencephalogram (EEG) signals, we propose the crucial frequency band convolution (CFBC) network method to explore the crucial frequency range of frequency domain features. CFBC includes two parts: spatial feature extractor and cruc...
Saved in:
Published in | IEEE sensors journal Vol. 24; no. 19; pp. 30451 - 30461 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, inspired by the frequency band division theory of electroencephalogram (EEG) signals, we propose the crucial frequency band convolution (CFBC) network method to explore the crucial frequency range of frequency domain features. CFBC includes two parts: spatial feature extractor and crucial frequency band selector. First, we extracted differential entropy (DE) and power spectral density (PSD) features from the frequency domain of each EEG channel by different frequency bands. To avoid the loss of effective spatial information in processing, we interpolate the EEG feature maps by the relative location of electrodes. The spatial feature extractor captures spatial information using channel-by-channel convolution with the 2-D EEG feature maps containing electrode position information. The crucial frequency band selector performs causal dilated convolution for the selected frequency band sequence so that the features contained in different frequency bands are stacked into a feature vector. Finally, CFBC realizes the purpose of combining multiple selected frequency bands to extract the cross-frequency band feature vector. To evaluate the proposed method, we conducted a subject-dependent EEG emotion recognition experiment in the SEED dataset. The experimental result shows that the selection of a frequency band has an impact on the emotion classification effect of frequency domain features. |
---|---|
AbstractList | In this work, inspired by the frequency band division theory of electroencephalogram (EEG) signals, we propose the crucial frequency band convolution (CFBC) network method to explore the crucial frequency range of frequency domain features. CFBC includes two parts: spatial feature extractor and crucial frequency band selector. First, we extracted differential entropy (DE) and power spectral density (PSD) features from the frequency domain of each EEG channel by different frequency bands. To avoid the loss of effective spatial information in processing, we interpolate the EEG feature maps by the relative location of electrodes. The spatial feature extractor captures spatial information using channel-by-channel convolution with the 2-D EEG feature maps containing electrode position information. The crucial frequency band selector performs causal dilated convolution for the selected frequency band sequence so that the features contained in different frequency bands are stacked into a feature vector. Finally, CFBC realizes the purpose of combining multiple selected frequency bands to extract the cross-frequency band feature vector. To evaluate the proposed method, we conducted a subject-dependent EEG emotion recognition experiment in the SEED dataset. The experimental result shows that the selection of a frequency band has an impact on the emotion classification effect of frequency domain features. |
Author | Xu, Wenhui Gao, Qiang Bai, Zhongli Wang, Junchi Zhu, Mu Wu, Qingzhou Song, Yu |
Author_xml | – sequence: 1 givenname: Mu orcidid: 0000-0003-3224-5654 surname: Zhu fullname: Zhu, Mu email: zm78792021@163.com organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin, China – sequence: 2 givenname: Zhongli orcidid: 0000-0002-8036-3770 surname: Bai fullname: Bai, Zhongli email: ZL.Bai@hotmail.com organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin, China – sequence: 3 givenname: Qingzhou orcidid: 0000-0003-4997-7966 surname: Wu fullname: Wu, Qingzhou email: wqz9879@163.com organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin, China – sequence: 4 givenname: Junchi orcidid: 0000-0001-9081-702X surname: Wang fullname: Wang, Junchi email: 13801157623@163.com organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin, China – sequence: 5 givenname: Wenhui orcidid: 0009-0009-6622-211X surname: Xu fullname: Xu, Wenhui email: x17864217325@163.com organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin, China – sequence: 6 givenname: Yu orcidid: 0000-0002-9295-7795 surname: Song fullname: Song, Yu email: jasonsongrain@hotmail.com organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin, China – sequence: 7 givenname: Qiang orcidid: 0000-0001-9357-4967 surname: Gao fullname: Gao, Qiang email: gaoqiang@tjut.edu.cn organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, TUT Maritime College, Tianjin University of Technology, Tianjin, China |
BookMark | eNpNkE1PwkAQhjcGExH9ASYeNvFcnP3qhzdoCmIIJqKJt812u8Ui7OK2xPDvbYGDp3mTed6Z5LlGPeusQeiOwJAQSB5fltliSIHyIeMcGIcL1CdCxAGJeNzrMoOAs-jzCl3X9RqAJJGI-kink3H6hEd4YZpf579x6TzOsinOtq6pnMVvRruVrY45P-Cl2RjdVHaFmy-DZ7bFt-q4dCVO_V5XaoMn3vzsjdUHPFa2qG_QZak2tbk9zwH6mGTv6XMwf53O0tE80JSHTVBSlXAAWuiShEQxLbjIQwJEU10IxVhMBRMQl1oZDZTl3IABDVrkBSE0ZgP0cLq78679Xzdy7fbeti8lawFK44SwliInSntX196UcuerrfIHSUB2LmXnUnYu5dll27k_dSpjzD8-ZAkTlP0Bua9wdQ |
CODEN | ISJEAZ |
Cites_doi | 10.1109/TAFFC.2017.2712143 10.1007/978-3-319-70096-0_78 10.1016/j.asoc.2022.108740 10.1016/j.bspc.2022.104157 10.1007/s12193-009-0025-5 10.1109/JBHI.2017.2688239 10.1016/j.bspc.2019.101642 10.1109/ICME.2017.8019533 10.14569/IJACSA.2017.081046 10.1007/s12652-018-1065-z 10.1109/JSEN.2019.2959697 10.1016/j.bspc.2019.101569 10.1109/TNSRE.2022.3166224 10.1109/APSIPA.2017.8282315 10.1109/JSEN.2021.3120787 10.3389/fnins.2018.00162 10.1109/TAMD.2015.2431497 10.1109/TCDS.2022.3175538 10.1109/BIBM52615.2021.9669465 10.1016/j.patcog.2020.107626 10.3390/brainsci11111392 10.1109/TIM.2013.2287803 10.1016/j.bbe.2020.04.005 10.1109/TIM.2021.3121473 10.1016/j.measurement.2022.111724 10.1109/JSEN.2020.3027181 10.1016/j.measurement.2019.107369 10.23919/JCC.2022.02.007 10.1109/JSEN.2021.3078087 10.1016/j.bspc.2020.102124 10.1109/JSEN.2021.3108471 10.1016/j.bspc.2021.103361 10.1007/s11042-020-09354-y 10.1109/T-AFFC.2011.15 10.1016/j.compbiomed.2022.105519 10.1109/TAFFC.2019.2937768 10.21437/SSW.2016 10.1109/TAFFC.2018.2817622 10.1109/ICCCNT45670.2019.8944903 10.1016/j.asoc.2020.106954 10.1109/LSP.2022.3179946 10.3390/e24091187 10.1109/NER.2013.6695876 10.1109/EMBC48229.2022.9871720 10.1109/CVPR.2016.90 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2024.3440340 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) - NZ CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 30461 |
ExternalDocumentID | 10_1109_JSEN_2024_3440340 10639352 |
Genre | orig-research |
GrantInformation_xml | – fundername: Tianjin University of Technology Education Foundation grantid: TJ22-01 funderid: 10.13039/501100002519 – fundername: National Natural Science Foundation of China grantid: 62103299 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c246t-f2a94002dcf161a3c545b6101c2cd5a338253508fcaec023b4e0e0c0c5bd11283 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:09:58 EDT 2025 Tue Jul 01 03:02:58 EDT 2025 Wed Aug 27 01:52:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-f2a94002dcf161a3c545b6101c2cd5a338253508fcaec023b4e0e0c0c5bd11283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0009-6622-211X 0000-0001-9081-702X 0000-0003-4997-7966 0000-0003-3224-5654 0000-0002-8036-3770 0000-0002-9295-7795 0000-0001-9357-4967 |
PQID | 3112228913 |
PQPubID | 75733 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_JSEN_2024_3440340 ieee_primary_10639352 proquest_journals_3112228913 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Padhmashree (ref45) 2022; 238 ref24 ref46 ref23 ref26 ref48 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 Bashivan (ref25) 2015 ref28 ref27 Bai (ref32) 2018 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref12 doi: 10.1109/TAFFC.2017.2712143 – ident: ref26 doi: 10.1007/978-3-319-70096-0_78 – ident: ref20 doi: 10.1016/j.asoc.2022.108740 – ident: ref22 doi: 10.1016/j.bspc.2022.104157 – ident: ref9 doi: 10.1007/s12193-009-0025-5 – ident: ref14 doi: 10.1109/JBHI.2017.2688239 – ident: ref24 doi: 10.1016/j.bspc.2019.101642 – ident: ref5 doi: 10.1109/ICME.2017.8019533 – ident: ref39 doi: 10.14569/IJACSA.2017.081046 – ident: ref11 doi: 10.1007/s12652-018-1065-z – ident: ref17 doi: 10.1109/JSEN.2019.2959697 – ident: ref19 doi: 10.1016/j.bspc.2019.101569 – ident: ref21 doi: 10.1109/TNSRE.2022.3166224 – ident: ref10 doi: 10.1109/APSIPA.2017.8282315 – ident: ref46 doi: 10.1109/JSEN.2021.3120787 – ident: ref3 doi: 10.3389/fnins.2018.00162 – ident: ref33 doi: 10.1109/TAMD.2015.2431497 – ident: ref35 doi: 10.1109/TCDS.2022.3175538 – ident: ref40 doi: 10.1109/BIBM52615.2021.9669465 – ident: ref43 doi: 10.1016/j.patcog.2020.107626 – ident: ref42 doi: 10.3390/brainsci11111392 – ident: ref6 doi: 10.1109/TIM.2013.2287803 – ident: ref23 doi: 10.1016/j.bbe.2020.04.005 – ident: ref7 doi: 10.1109/TIM.2021.3121473 – ident: ref28 doi: 10.1016/j.measurement.2022.111724 – year: 2015 ident: ref25 article-title: Learning representations from EEG with deep recurrent-convolutional neural networks publication-title: arXiv:1511.06448 – ident: ref48 doi: 10.1109/JSEN.2020.3027181 – ident: ref8 doi: 10.1016/j.measurement.2019.107369 – ident: ref41 doi: 10.23919/JCC.2022.02.007 – ident: ref2 doi: 10.1109/JSEN.2021.3078087 – ident: ref18 doi: 10.1016/j.bspc.2020.102124 – ident: ref29 doi: 10.1109/JSEN.2021.3108471 – ident: ref44 doi: 10.1016/j.bspc.2021.103361 – ident: ref16 doi: 10.1007/s11042-020-09354-y – ident: ref13 doi: 10.1109/T-AFFC.2011.15 – ident: ref1 doi: 10.1016/j.compbiomed.2022.105519 – ident: ref36 doi: 10.1109/TAFFC.2019.2937768 – ident: ref31 doi: 10.21437/SSW.2016 – ident: ref37 doi: 10.1109/TAFFC.2018.2817622 – year: 2018 ident: ref32 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling publication-title: arXiv:1803.01271 – ident: ref47 doi: 10.1109/ICCCNT45670.2019.8944903 – ident: ref4 doi: 10.1016/j.asoc.2020.106954 – ident: ref34 doi: 10.1109/LSP.2022.3179946 – ident: ref38 doi: 10.3390/e24091187 – volume: 238 year: 2022 ident: ref45 article-title: Human emotion recognition based on time–frequency analysis of multivariate EEG signal publication-title: Knowl.-Based Syst. – ident: ref15 doi: 10.1109/NER.2013.6695876 – ident: ref27 doi: 10.1109/EMBC48229.2022.9871720 – ident: ref30 doi: 10.1109/CVPR.2016.90 |
SSID | ssj0019757 |
Score | 2.4089983 |
Snippet | In this work, inspired by the frequency band division theory of electroencephalogram (EEG) signals, we propose the crucial frequency band convolution (CFBC)... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 30451 |
SubjectTerms | Band theory Brain modeling Convolution Convolutional neural networks Crucial frequency band selector Electrodes Electroencephalography electroencephalography (EEG) Emotion recognition Emotions Feature extraction Feature maps Feature recognition Frequencies Frequency conversion Frequency domain analysis Frequency ranges Position (location) Power spectral density Spatial data spatial feature extractor spatial-frequency feature |
Title | CFBC: A Network for EEG Emotion Recognition by Selecting the Information of Crucial Frequency Bands |
URI | https://ieeexplore.ieee.org/document/10639352 https://www.proquest.com/docview/3112228913 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6i3rwY06cTsnBk9CaJumXt220jh16cA52K02aIgibzO4w_3pfklaGIngrtA0h773k9_J-7z2E7golQhWDIXnUUw6vWOnEhHOHVX5QiYBoooJmW2TBZM6nC3_RJKubXBillCGfKVc_mlh-uZIbfVUGFh7oTFLYcffBc7PJWt8hgzg0ZT3BgonDWbhoQpgeiR-msyQDV5Byl3FOmL7o2DmETFeVX1uxOV_SE5S1M7O0kjd3UwtXfv4o2vjvqZ-i4wZp4qFVjTO0p5ZddLRTf7CLDpoW6K_bcyTH6Wj8iIc4s8RwDGgWJ8kTTmyjH_zcUo3gWWzxzDTQgWEwQEjcZDWZl6sKj0FjQLFxurZM7S0e6ZTiHpqnyct44jQdGBxJeVA7FS1043RaygqQYcEk4C0BgMuTVJZ-Ae4t9RlAvEoWSsLpL7giikgifVECkIvYBeosV0t1ibBPAxlzj5cqBJeUF1EkaMFJEQoJ40ZlH923IsnfbaGN3DgoJM61_HItv7yRXx_19BLvfGhXt48GrRTzxhY_cgYzoVSHY6_--O0aHerRLUdvgDr1eqNuAGvU4tbo2BdxTc6x |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYQHAYH3ojBgBw4IXWkSdqu3LapYwzogYG0W9WkqZCQNjS2w_j1OEmHJhASt0ht0yi2Yzv-bANc5lpGOkZB8pmvPVHywoupEB4vg7CUITVABYO2SMP-ixiMglGVrG5zYbTWFnymm2ZoY_nFRM3NVRlKeGgySfHE3UDFHzCXrvUdNIgjW9gTZZh6gkejKojp0_h6MExSdAaZaHIhKDdXHStqyPZV-XUYWw3T24F0uTYHLHlrzmeyqT5_lG389-J3YbuyNUnbMccerOnxPmytVCDch1rVBP11cQCq2-t0b0ibpA4aTtCeJUlySxLX6oc8LcFGOJYLMrQtdHAagkYkqfKa7MNJSbrIM8japDd1WO0F6Zik4kN46SXP3b5X9WDwFBPhzCtZblqns0KVaBvmXOHGSzS5fMVUEeTo4LKAo5FXqlwr1P9SaKqpoiqQBZpyLX4E6-PJWB8DCVioYuGLQkfolIq81ZIsFzSPpMJ5W0UdrpYkyd5dqY3Muig0zgz9MkO_rKJfHQ7NFq-86Ha3Do0lFbNKGj8yjithzARkT_747AJq_efHh-zhLr0_hU3zJ4fYa8D6bDrXZ2h5zOS55bcvaofR-w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFBC%3A+A+Network+for+EEG+Emotion+Recognition+by+Selecting+the+Information+of+Crucial+Frequency+Bands&rft.jtitle=IEEE+sensors+journal&rft.au=Zhu%2C+Mu&rft.au=Bai%2C+Zhongli&rft.au=Wu%2C+Qingzhou&rft.au=Wang%2C+Junchi&rft.date=2024-10-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=19&rft.spage=30451&rft.epage=30461&rft_id=info:doi/10.1109%2FJSEN.2024.3440340&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2024_3440340 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |