CFBC: A Network for EEG Emotion Recognition by Selecting the Information of Crucial Frequency Bands

In this work, inspired by the frequency band division theory of electroencephalogram (EEG) signals, we propose the crucial frequency band convolution (CFBC) network method to explore the crucial frequency range of frequency domain features. CFBC includes two parts: spatial feature extractor and cruc...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 24; no. 19; pp. 30451 - 30461
Main Authors Zhu, Mu, Bai, Zhongli, Wu, Qingzhou, Wang, Junchi, Xu, Wenhui, Song, Yu, Gao, Qiang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, inspired by the frequency band division theory of electroencephalogram (EEG) signals, we propose the crucial frequency band convolution (CFBC) network method to explore the crucial frequency range of frequency domain features. CFBC includes two parts: spatial feature extractor and crucial frequency band selector. First, we extracted differential entropy (DE) and power spectral density (PSD) features from the frequency domain of each EEG channel by different frequency bands. To avoid the loss of effective spatial information in processing, we interpolate the EEG feature maps by the relative location of electrodes. The spatial feature extractor captures spatial information using channel-by-channel convolution with the 2-D EEG feature maps containing electrode position information. The crucial frequency band selector performs causal dilated convolution for the selected frequency band sequence so that the features contained in different frequency bands are stacked into a feature vector. Finally, CFBC realizes the purpose of combining multiple selected frequency bands to extract the cross-frequency band feature vector. To evaluate the proposed method, we conducted a subject-dependent EEG emotion recognition experiment in the SEED dataset. The experimental result shows that the selection of a frequency band has an impact on the emotion classification effect of frequency domain features.
AbstractList In this work, inspired by the frequency band division theory of electroencephalogram (EEG) signals, we propose the crucial frequency band convolution (CFBC) network method to explore the crucial frequency range of frequency domain features. CFBC includes two parts: spatial feature extractor and crucial frequency band selector. First, we extracted differential entropy (DE) and power spectral density (PSD) features from the frequency domain of each EEG channel by different frequency bands. To avoid the loss of effective spatial information in processing, we interpolate the EEG feature maps by the relative location of electrodes. The spatial feature extractor captures spatial information using channel-by-channel convolution with the 2-D EEG feature maps containing electrode position information. The crucial frequency band selector performs causal dilated convolution for the selected frequency band sequence so that the features contained in different frequency bands are stacked into a feature vector. Finally, CFBC realizes the purpose of combining multiple selected frequency bands to extract the cross-frequency band feature vector. To evaluate the proposed method, we conducted a subject-dependent EEG emotion recognition experiment in the SEED dataset. The experimental result shows that the selection of a frequency band has an impact on the emotion classification effect of frequency domain features.
Author Xu, Wenhui
Gao, Qiang
Bai, Zhongli
Wang, Junchi
Zhu, Mu
Wu, Qingzhou
Song, Yu
Author_xml – sequence: 1
  givenname: Mu
  orcidid: 0000-0003-3224-5654
  surname: Zhu
  fullname: Zhu, Mu
  email: zm78792021@163.com
  organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin, China
– sequence: 2
  givenname: Zhongli
  orcidid: 0000-0002-8036-3770
  surname: Bai
  fullname: Bai, Zhongli
  email: ZL.Bai@hotmail.com
  organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin, China
– sequence: 3
  givenname: Qingzhou
  orcidid: 0000-0003-4997-7966
  surname: Wu
  fullname: Wu, Qingzhou
  email: wqz9879@163.com
  organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin, China
– sequence: 4
  givenname: Junchi
  orcidid: 0000-0001-9081-702X
  surname: Wang
  fullname: Wang, Junchi
  email: 13801157623@163.com
  organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin, China
– sequence: 5
  givenname: Wenhui
  orcidid: 0009-0009-6622-211X
  surname: Xu
  fullname: Xu, Wenhui
  email: x17864217325@163.com
  organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin, China
– sequence: 6
  givenname: Yu
  orcidid: 0000-0002-9295-7795
  surname: Song
  fullname: Song, Yu
  email: jasonsongrain@hotmail.com
  organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin, China
– sequence: 7
  givenname: Qiang
  orcidid: 0000-0001-9357-4967
  surname: Gao
  fullname: Gao, Qiang
  email: gaoqiang@tjut.edu.cn
  organization: Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems, TUT Maritime College, Tianjin University of Technology, Tianjin, China
BookMark eNpNkE1PwkAQhjcGExH9ASYeNvFcnP3qhzdoCmIIJqKJt812u8Ui7OK2xPDvbYGDp3mTed6Z5LlGPeusQeiOwJAQSB5fltliSIHyIeMcGIcL1CdCxAGJeNzrMoOAs-jzCl3X9RqAJJGI-kink3H6hEd4YZpf579x6TzOsinOtq6pnMVvRruVrY45P-Cl2RjdVHaFmy-DZ7bFt-q4dCVO_V5XaoMn3vzsjdUHPFa2qG_QZak2tbk9zwH6mGTv6XMwf53O0tE80JSHTVBSlXAAWuiShEQxLbjIQwJEU10IxVhMBRMQl1oZDZTl3IABDVrkBSE0ZgP0cLq78679Xzdy7fbeti8lawFK44SwliInSntX196UcuerrfIHSUB2LmXnUnYu5dll27k_dSpjzD8-ZAkTlP0Bua9wdQ
CODEN ISJEAZ
Cites_doi 10.1109/TAFFC.2017.2712143
10.1007/978-3-319-70096-0_78
10.1016/j.asoc.2022.108740
10.1016/j.bspc.2022.104157
10.1007/s12193-009-0025-5
10.1109/JBHI.2017.2688239
10.1016/j.bspc.2019.101642
10.1109/ICME.2017.8019533
10.14569/IJACSA.2017.081046
10.1007/s12652-018-1065-z
10.1109/JSEN.2019.2959697
10.1016/j.bspc.2019.101569
10.1109/TNSRE.2022.3166224
10.1109/APSIPA.2017.8282315
10.1109/JSEN.2021.3120787
10.3389/fnins.2018.00162
10.1109/TAMD.2015.2431497
10.1109/TCDS.2022.3175538
10.1109/BIBM52615.2021.9669465
10.1016/j.patcog.2020.107626
10.3390/brainsci11111392
10.1109/TIM.2013.2287803
10.1016/j.bbe.2020.04.005
10.1109/TIM.2021.3121473
10.1016/j.measurement.2022.111724
10.1109/JSEN.2020.3027181
10.1016/j.measurement.2019.107369
10.23919/JCC.2022.02.007
10.1109/JSEN.2021.3078087
10.1016/j.bspc.2020.102124
10.1109/JSEN.2021.3108471
10.1016/j.bspc.2021.103361
10.1007/s11042-020-09354-y
10.1109/T-AFFC.2011.15
10.1016/j.compbiomed.2022.105519
10.1109/TAFFC.2019.2937768
10.21437/SSW.2016
10.1109/TAFFC.2018.2817622
10.1109/ICCCNT45670.2019.8944903
10.1016/j.asoc.2020.106954
10.1109/LSP.2022.3179946
10.3390/e24091187
10.1109/NER.2013.6695876
10.1109/EMBC48229.2022.9871720
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3440340
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 30461
ExternalDocumentID 10_1109_JSEN_2024_3440340
10639352
Genre orig-research
GrantInformation_xml – fundername: Tianjin University of Technology Education Foundation
  grantid: TJ22-01
  funderid: 10.13039/501100002519
– fundername: National Natural Science Foundation of China
  grantid: 62103299
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c246t-f2a94002dcf161a3c545b6101c2cd5a338253508fcaec023b4e0e0c0c5bd11283
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:09:58 EDT 2025
Tue Jul 01 03:02:58 EDT 2025
Wed Aug 27 01:52:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-f2a94002dcf161a3c545b6101c2cd5a338253508fcaec023b4e0e0c0c5bd11283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0009-6622-211X
0000-0001-9081-702X
0000-0003-4997-7966
0000-0003-3224-5654
0000-0002-8036-3770
0000-0002-9295-7795
0000-0001-9357-4967
PQID 3112228913
PQPubID 75733
PageCount 11
ParticipantIDs crossref_primary_10_1109_JSEN_2024_3440340
ieee_primary_10639352
proquest_journals_3112228913
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Padhmashree (ref45) 2022; 238
ref24
ref46
ref23
ref26
ref48
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
Bashivan (ref25) 2015
ref28
ref27
Bai (ref32) 2018
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref12
  doi: 10.1109/TAFFC.2017.2712143
– ident: ref26
  doi: 10.1007/978-3-319-70096-0_78
– ident: ref20
  doi: 10.1016/j.asoc.2022.108740
– ident: ref22
  doi: 10.1016/j.bspc.2022.104157
– ident: ref9
  doi: 10.1007/s12193-009-0025-5
– ident: ref14
  doi: 10.1109/JBHI.2017.2688239
– ident: ref24
  doi: 10.1016/j.bspc.2019.101642
– ident: ref5
  doi: 10.1109/ICME.2017.8019533
– ident: ref39
  doi: 10.14569/IJACSA.2017.081046
– ident: ref11
  doi: 10.1007/s12652-018-1065-z
– ident: ref17
  doi: 10.1109/JSEN.2019.2959697
– ident: ref19
  doi: 10.1016/j.bspc.2019.101569
– ident: ref21
  doi: 10.1109/TNSRE.2022.3166224
– ident: ref10
  doi: 10.1109/APSIPA.2017.8282315
– ident: ref46
  doi: 10.1109/JSEN.2021.3120787
– ident: ref3
  doi: 10.3389/fnins.2018.00162
– ident: ref33
  doi: 10.1109/TAMD.2015.2431497
– ident: ref35
  doi: 10.1109/TCDS.2022.3175538
– ident: ref40
  doi: 10.1109/BIBM52615.2021.9669465
– ident: ref43
  doi: 10.1016/j.patcog.2020.107626
– ident: ref42
  doi: 10.3390/brainsci11111392
– ident: ref6
  doi: 10.1109/TIM.2013.2287803
– ident: ref23
  doi: 10.1016/j.bbe.2020.04.005
– ident: ref7
  doi: 10.1109/TIM.2021.3121473
– ident: ref28
  doi: 10.1016/j.measurement.2022.111724
– year: 2015
  ident: ref25
  article-title: Learning representations from EEG with deep recurrent-convolutional neural networks
  publication-title: arXiv:1511.06448
– ident: ref48
  doi: 10.1109/JSEN.2020.3027181
– ident: ref8
  doi: 10.1016/j.measurement.2019.107369
– ident: ref41
  doi: 10.23919/JCC.2022.02.007
– ident: ref2
  doi: 10.1109/JSEN.2021.3078087
– ident: ref18
  doi: 10.1016/j.bspc.2020.102124
– ident: ref29
  doi: 10.1109/JSEN.2021.3108471
– ident: ref44
  doi: 10.1016/j.bspc.2021.103361
– ident: ref16
  doi: 10.1007/s11042-020-09354-y
– ident: ref13
  doi: 10.1109/T-AFFC.2011.15
– ident: ref1
  doi: 10.1016/j.compbiomed.2022.105519
– ident: ref36
  doi: 10.1109/TAFFC.2019.2937768
– ident: ref31
  doi: 10.21437/SSW.2016
– ident: ref37
  doi: 10.1109/TAFFC.2018.2817622
– year: 2018
  ident: ref32
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
  publication-title: arXiv:1803.01271
– ident: ref47
  doi: 10.1109/ICCCNT45670.2019.8944903
– ident: ref4
  doi: 10.1016/j.asoc.2020.106954
– ident: ref34
  doi: 10.1109/LSP.2022.3179946
– ident: ref38
  doi: 10.3390/e24091187
– volume: 238
  year: 2022
  ident: ref45
  article-title: Human emotion recognition based on time–frequency analysis of multivariate EEG signal
  publication-title: Knowl.-Based Syst.
– ident: ref15
  doi: 10.1109/NER.2013.6695876
– ident: ref27
  doi: 10.1109/EMBC48229.2022.9871720
– ident: ref30
  doi: 10.1109/CVPR.2016.90
SSID ssj0019757
Score 2.4089983
Snippet In this work, inspired by the frequency band division theory of electroencephalogram (EEG) signals, we propose the crucial frequency band convolution (CFBC)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 30451
SubjectTerms Band theory
Brain modeling
Convolution
Convolutional neural networks
Crucial frequency band selector
Electrodes
Electroencephalography
electroencephalography (EEG)
Emotion recognition
Emotions
Feature extraction
Feature maps
Feature recognition
Frequencies
Frequency conversion
Frequency domain analysis
Frequency ranges
Position (location)
Power spectral density
Spatial data
spatial feature extractor
spatial-frequency feature
Title CFBC: A Network for EEG Emotion Recognition by Selecting the Information of Crucial Frequency Bands
URI https://ieeexplore.ieee.org/document/10639352
https://www.proquest.com/docview/3112228913
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6i3rwY06cTsnBk9CaJumXt220jh16cA52K02aIgibzO4w_3pfklaGIngrtA0h773k9_J-7z2E7golQhWDIXnUUw6vWOnEhHOHVX5QiYBoooJmW2TBZM6nC3_RJKubXBillCGfKVc_mlh-uZIbfVUGFh7oTFLYcffBc7PJWt8hgzg0ZT3BgonDWbhoQpgeiR-msyQDV5Byl3FOmL7o2DmETFeVX1uxOV_SE5S1M7O0kjd3UwtXfv4o2vjvqZ-i4wZp4qFVjTO0p5ZddLRTf7CLDpoW6K_bcyTH6Wj8iIc4s8RwDGgWJ8kTTmyjH_zcUo3gWWzxzDTQgWEwQEjcZDWZl6sKj0FjQLFxurZM7S0e6ZTiHpqnyct44jQdGBxJeVA7FS1043RaygqQYcEk4C0BgMuTVJZ-Ae4t9RlAvEoWSsLpL7giikgifVECkIvYBeosV0t1ibBPAxlzj5cqBJeUF1EkaMFJEQoJ40ZlH923IsnfbaGN3DgoJM61_HItv7yRXx_19BLvfGhXt48GrRTzxhY_cgYzoVSHY6_--O0aHerRLUdvgDr1eqNuAGvU4tbo2BdxTc6x
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYQHAYH3ojBgBw4IXWkSdqu3LapYwzogYG0W9WkqZCQNjS2w_j1OEmHJhASt0ht0yi2Yzv-bANc5lpGOkZB8pmvPVHywoupEB4vg7CUITVABYO2SMP-ixiMglGVrG5zYbTWFnymm2ZoY_nFRM3NVRlKeGgySfHE3UDFHzCXrvUdNIgjW9gTZZh6gkejKojp0_h6MExSdAaZaHIhKDdXHStqyPZV-XUYWw3T24F0uTYHLHlrzmeyqT5_lG389-J3YbuyNUnbMccerOnxPmytVCDch1rVBP11cQCq2-t0b0ibpA4aTtCeJUlySxLX6oc8LcFGOJYLMrQtdHAagkYkqfKa7MNJSbrIM8japDd1WO0F6Zik4kN46SXP3b5X9WDwFBPhzCtZblqns0KVaBvmXOHGSzS5fMVUEeTo4LKAo5FXqlwr1P9SaKqpoiqQBZpyLX4E6-PJWB8DCVioYuGLQkfolIq81ZIsFzSPpMJ5W0UdrpYkyd5dqY3Muig0zgz9MkO_rKJfHQ7NFq-86Ha3Do0lFbNKGj8yjithzARkT_747AJq_efHh-zhLr0_hU3zJ4fYa8D6bDrXZ2h5zOS55bcvaofR-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFBC%3A+A+Network+for+EEG+Emotion+Recognition+by+Selecting+the+Information+of+Crucial+Frequency+Bands&rft.jtitle=IEEE+sensors+journal&rft.au=Zhu%2C+Mu&rft.au=Bai%2C+Zhongli&rft.au=Wu%2C+Qingzhou&rft.au=Wang%2C+Junchi&rft.date=2024-10-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=19&rft.spage=30451&rft.epage=30461&rft_id=info:doi/10.1109%2FJSEN.2024.3440340&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2024_3440340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon