Synchronizability and Synchronization Rate of AC Microgrids: A Topological Perspective
When various distributed generation (DG) technologies are integrated into an islanded AC microgrid (MG), the system's heterogeneous characteristics make synchronizing all units within the network more challenging. From the perspective of complex networks, the capability of an islanded MG to ach...
Saved in:
Published in | IEEE transactions on network science and engineering Vol. 11; no. 2; pp. 1 - 18 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | When various distributed generation (DG) technologies are integrated into an islanded AC microgrid (MG), the system's heterogeneous characteristics make synchronizing all units within the network more challenging. From the perspective of complex networks, the capability of an islanded MG to achieve synchronization is closely associated with its physical topology. Consequently, a pressing need exists for a theoretical analysis of the network topology's influence on synchronizability in AC MGs. In this paper, we first develop a concise criterion for the synchronization condition of AC MGs and then introduce the definition of the synchronizability index, which measures the robustness of synchronization against disturbances such as voltage sags, sudden load changes, and component failures. Subsequently, we investigate the topology effect on synchronizability in islanded AC MGs for cases involving additional new connections or a unit node. Moreover, we provide an explicit expression of the general algorithm for computing the synchronization rate associated with topology parameters, such as the incidence matrix, weight matrix, and algebraic connectivity, among others, in the MG. The condition for the maximum synchronization rate is also explored. Finally, the accuracy of the theoretical results is validated through several test systems. |
---|---|
AbstractList | When various distributed generation (DG) technologies are integrated into an islanded AC microgrid (MG), the system's heterogeneous characteristics make synchronizing all units within the network more challenging. From the perspective of complex networks, the capability of an islanded MG to achieve synchronization is closely associated with its physical topology. Consequently, a pressing need exists for a theoretical analysis of the network topology's influence on synchronizability in AC MGs. In this article, we first develop a concise criterion for the synchronization condition of AC MGs and then introduce the definition of the synchronizability index, which measures the robustness of synchronization against disturbances such as voltage sags, sudden load changes, and component failures. Subsequently, we investigate the topology effect on synchronizability in islanded AC MGs for cases involving additional new connections or a unit node. Moreover, we provide an explicit expression of the general algorithm for computing the synchronization rate associated with topology parameters, such as the incidence matrix, weight matrix, and algebraic connectivity, among others, in the MG. The condition for the maximum synchronization rate is also explored. Finally, the accuracy of the theoretical results is validated through several test systems. When various distributed generation (DG) technologies are integrated into an islanded AC microgrid (MG), the system's heterogeneous characteristics make synchronizing all units within the network more challenging. From the perspective of complex networks, the capability of an islanded MG to achieve synchronization is closely associated with its physical topology. Consequently, a pressing need exists for a theoretical analysis of the network topology's influence on synchronizability in AC MGs. In this paper, we first develop a concise criterion for the synchronization condition of AC MGs and then introduce the definition of the synchronizability index, which measures the robustness of synchronization against disturbances such as voltage sags, sudden load changes, and component failures. Subsequently, we investigate the topology effect on synchronizability in islanded AC MGs for cases involving additional new connections or a unit node. Moreover, we provide an explicit expression of the general algorithm for computing the synchronization rate associated with topology parameters, such as the incidence matrix, weight matrix, and algebraic connectivity, among others, in the MG. The condition for the maximum synchronization rate is also explored. Finally, the accuracy of the theoretical results is validated through several test systems. |
Author | Xiao, Wenqian Yu, Chang |
Author_xml | – sequence: 1 givenname: Chang orcidid: 0000-0002-6324-4382 surname: Yu fullname: Yu, Chang organization: School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan, PR China – sequence: 2 givenname: Wenqian surname: Xiao fullname: Xiao, Wenqian organization: Wuhan Institute of Shipbuilding Technology, Wuhan, PR China |
BookMark | eNpNkE1LAzEQhoNUsNb-AMFDwPPWJLO72XgrpX5A_cBW8RayaVJT1k1NtkL99e7SHnqaYXjemeE5R73a1wahS0pGlBJxs3ieT0eMMBgBMCZSdoL6DCBNgInPXtcznqS54GdoGOOaEEJZkQNAH33Md7X-Cr52f6p0lWt2WNVLfDRtnK_xm2oM9haPJ_jJ6eBXwS3jLR7jhd_4yq-cVhV-NSFujG7cr7lAp1ZV0QwPdYDe76aLyUMye7l_nIxniWZp3iTGWiCZVpaBLfI0LcuSlIXJiLBa5CUvlxSs1VlmFQDlVDGilTLASm6IyDgM0PV-7yb4n62JjVz7bajbk5IJ6BBOi5aie6r9PMZgrNwE963CTlIiO4OyMyg7g_JgsM1c7TPOGHPEM55SKuAfJcNvdQ |
CODEN | ITNSD5 |
Cites_doi | 10.1016/j.automatica.2013.05.018 10.1109/TSG.2017.2749259 10.1109/TII.2012.2221129 10.1016/j.cnsns.2016.04.030 10.1016/j.rser.2017.03.028 10.1140/epjst/e2015-50265-9 10.1140/epjst/e2014-02209-8 10.1109/TAC.2018.2876786 10.1109/TCSI.2021.3115109 10.1016/j.amc.2003.09.004 10.1109/TSTE.2022.3157473 10.1016/j.ijepes.2021.106804 10.1515/IJNSNS.2009.10.11-12.1481 10.1109/TAC.2019.2942536 10.1109/TNSE.2021.3063240 10.1109/TIE.2020.2972441 10.1103/PhysRevLett.109.064101 10.1109/TCNS.2015.2459391 10.1109/TNSE.2016.2566615 10.1049/gtd2.12805 10.1109/TPWRS.2020.3035688 10.1109/JPROC.2022.3179826 10.2172/1047105 10.1109/TSMC.2021.3056559 10.1109/81.974874 10.1109/TNNLS.2013.2250998 10.1063/1.5087919 10.1049/rpg2.12191 10.1049/iet-gtd.2020.0151 10.1109/ACC.2010.5530690 10.1140/epjb/e2013-40469-4 10.1109/TNSE.2019.2953285 10.1109/TPWRS.2019.2896853 10.1016/j.egyr.2022.04.063 10.1109/TCNS.2017.2711433 10.1109/JAS.2022.105443 10.1109/TCSI.2004.823672 10.1109/JSYST.2022.3204754 10.1016/j.cnsns.2020.105507 10.1109/TPWRS.2019.2925703 10.1063/1.4865895 10.1016/0024-3795(71)90031-0 10.1063/1.2965530 10.1088/1367-2630/14/8/083036 10.1109/CDC.2012.6426586 10.1109/TSG.2016.2537402 10.1109/ICSCET.2018.8537386 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TNSE.2023.3322942 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2334-329X |
EndPage | 18 |
ExternalDocumentID | 10_1109_TNSE_2023_3322942 10274119 |
Genre | orig-research |
GrantInformation_xml | – fundername: Open Fund of the Key Laboratory of Image Processing and Intelligent Control(Huazhong University of Science and Technology) – fundername: Ministry of Education, 2022. – fundername: National Natural Science Foundation of China grantid: 62173257; 62103310 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX AGSQL CITATION EJD IEDLZ RIG 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c246t-eff305caf23f8644bbb0b8e509fc96b7bd13ffc55fa33171a20caae32b7e09573 |
IEDL.DBID | RIE |
ISSN | 2327-4697 |
IngestDate | Mon Jun 30 08:33:07 EDT 2025 Tue Jul 01 03:10:48 EDT 2025 Wed Aug 27 02:13:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-eff305caf23f8644bbb0b8e509fc96b7bd13ffc55fa33171a20caae32b7e09573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6324-4382 0009-0004-8227-1644 |
PQID | 2930957718 |
PQPubID | 2040409 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1109_TNSE_2023_3322942 ieee_primary_10274119 proquest_journals_2930957718 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on network science and engineering |
PublicationTitleAbbrev | TNSE |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 Khalil (ref37) 2002 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref36 ref31 ref30 ref32 ref2 ref1 ref39 ref38 Kundur (ref33) 1994 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref6 doi: 10.1016/j.automatica.2013.05.018 – ident: ref45 doi: 10.1109/TSG.2017.2749259 – ident: ref8 doi: 10.1109/TII.2012.2221129 – ident: ref29 doi: 10.1016/j.cnsns.2016.04.030 – ident: ref39 doi: 10.1016/j.rser.2017.03.028 – ident: ref14 doi: 10.1140/epjst/e2015-50265-9 – ident: ref13 doi: 10.1140/epjst/e2014-02209-8 – ident: ref44 doi: 10.1109/TAC.2018.2876786 – ident: ref3 doi: 10.1109/TCSI.2021.3115109 – volume-title: Nonlinear Systems year: 2002 ident: ref37 – ident: ref32 doi: 10.1016/j.amc.2003.09.004 – ident: ref11 doi: 10.1109/TSTE.2022.3157473 – ident: ref12 doi: 10.1016/j.ijepes.2021.106804 – ident: ref24 doi: 10.1515/IJNSNS.2009.10.11-12.1481 – ident: ref7 doi: 10.1109/TAC.2019.2942536 – ident: ref21 doi: 10.1109/TNSE.2021.3063240 – ident: ref34 doi: 10.1109/TIE.2020.2972441 – ident: ref15 doi: 10.1103/PhysRevLett.109.064101 – ident: ref38 doi: 10.1109/TCNS.2015.2459391 – ident: ref27 doi: 10.1109/TNSE.2016.2566615 – ident: ref47 doi: 10.1049/gtd2.12805 – ident: ref49 doi: 10.1109/TPWRS.2020.3035688 – ident: ref2 doi: 10.1109/JPROC.2022.3179826 – ident: ref9 doi: 10.2172/1047105 – ident: ref40 doi: 10.1109/TSMC.2021.3056559 – ident: ref22 doi: 10.1109/81.974874 – ident: ref23 doi: 10.1109/TNNLS.2013.2250998 – ident: ref28 doi: 10.1063/1.5087919 – ident: ref35 doi: 10.1049/rpg2.12191 – ident: ref4 doi: 10.1049/iet-gtd.2020.0151 – ident: ref41 doi: 10.1109/ACC.2010.5530690 – ident: ref17 doi: 10.1140/epjb/e2013-40469-4 – ident: ref1 doi: 10.1109/TNSE.2019.2953285 – ident: ref48 doi: 10.1109/TPWRS.2019.2896853 – volume-title: Power System Stability and Control year: 1994 ident: ref33 – ident: ref36 doi: 10.1016/j.egyr.2022.04.063 – ident: ref10 doi: 10.1109/TCNS.2017.2711433 – ident: ref25 doi: 10.1109/JAS.2022.105443 – ident: ref19 doi: 10.1109/TCSI.2004.823672 – ident: ref31 doi: 10.1109/JSYST.2022.3204754 – ident: ref30 doi: 10.1016/j.cnsns.2020.105507 – ident: ref5 doi: 10.1109/TPWRS.2019.2925703 – ident: ref18 doi: 10.1063/1.4865895 – ident: ref46 doi: 10.1016/0024-3795(71)90031-0 – ident: ref20 doi: 10.1063/1.2965530 – ident: ref16 doi: 10.1088/1367-2630/14/8/083036 – ident: ref26 doi: 10.1109/CDC.2012.6426586 – ident: ref42 doi: 10.1109/TSG.2016.2537402 – ident: ref43 doi: 10.1109/ICSCET.2018.8537386 |
SSID | ssj0001286333 |
Score | 2.2900636 |
Snippet | When various distributed generation (DG) technologies are integrated into an islanded AC microgrid (MG), the system's heterogeneous characteristics make... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | AC microgrid Algorithms Complex networks Couplings Distributed generation Frequency synchronization Indexes Network topologies network topology Stability criteria Synchronism Synchronization Topology Voltage sags |
Title | Synchronizability and Synchronization Rate of AC Microgrids: A Topological Perspective |
URI | https://ieeexplore.ieee.org/document/10274119 https://www.proquest.com/docview/2930957718 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60Jz34rFitsgdPQmKSzWPjrZRKEVrEttJb2J3dFRFS6ePQ_nr3kWJUBG8hJGHZmcl8szPzDUI3QDnTAZu2b1AmQOGpRzkFLxIk4wkNgQmT0R0M0_4kfpwm06pZ3fbCSClt8Zn0zaXN5YsZrMxRmbZwQ7ZiSD53deTmmrVqByo0JYRUmcswyO_Gw1HPN-PBfaLVNo-jb77HDlP59Qe2buXhEA23C3LVJO_-asl92Pzgavz3io_QQQUwccdpxDHakeUJ2q_RDp6il9G6BEuKu3Es3WvMSoFrd4208LOGoXimcKeLB6Zs73X-Jhb3uIPHbrCCES9--mrWbKLJQ2_c7XvVfAUPojhdelIpbe3AVEQU1biIcx5wKjWEUJCnPOMiJEpBkihGNMwIWRQAY5JEPJMamWXkDDXKWSnPERYScjApuUDxWADPlXb7UlFGeEAA0ha63e588eFoNAobfgR5YcRUGDEVlZhaqGl2svag28QWam-FVVSWtig0XDFr0S724o_XLtGe_nrsCsfaqLGcr-SVRhJLfm016BNgvcjG |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kHtSDz4rVqnvwJCQmu3l6K9JStQ1iU-kt7E52RYRU2vTQ_np3kxSjIngLISHDzkzm252ZbxC6goAztWFT_g1Sb1C4ZwQ8AIOk1OduYANLdUZ3GHn9sfMwcSdVs3rRCyOEKIrPhKkvi1x-OoWFPipTHq7JVjTJ56YK_C4p27VqRyqBRymtcpe2Fd7E0ahr6gHhJlWGGzrkW_Qpxqn8-gcXgaW3h6K1SGU9ybu5yLkJqx9sjf-WeR_tVhATd0qbOEAbIjtEOzXiwSP0MlpmUNDirkqe7iVmWYprd7W-8LMCongqcecOD3Xh3uvsLZ3f4g6Oy9EKWsH46atds4nGvW581zeqCQsGEMfLDSGl8ndgklAZKGTEObd4IBSIkBB63OepTaUE15WMKqBhM2IBY4IS7guFzXx6jBrZNBMnCKcCQtBJOUtyJwUeShX4hQwY5RYF8Froer3yyUdJpJEUGxArTLSaEq2mpFJTCzX1StYeLBexhdprZSWVr80TBVi0LCrInv7x2iXa6sfDQTK4jx7P0Lb6kqPLyIjbRo18thDnClfk_KKwpk8GxcwW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synchronizability+and+Synchronization+Rate+of+AC+Microgrids%3A+A+Topological+Perspective&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Yu%2C+Chang&rft.au=Xiao%2C+Wenqian&rft.date=2024-03-01&rft.issn=2327-4697&rft.eissn=2334-329X&rft.volume=11&rft.issue=2&rft.spage=1424&rft.epage=1441&rft_id=info:doi/10.1109%2FTNSE.2023.3322942&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSE_2023_3322942 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |