Real-Time EEG-Based Driver Drowsiness Detection Based on Convolutional Neural Network With Gumbel-Softmax Trick
Nowadays, severe traffic accidents attributed to driver drowsiness have become increasingly frequent, prompting a widespread concern among researchers in electroencephalography (EEG)-based driver drowsiness detection. However, due to the significant differences in EEG signals between participants, t...
Saved in:
Published in | IEEE sensors journal Vol. 25; no. 1; pp. 1860 - 1871 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nowadays, severe traffic accidents attributed to driver drowsiness have become increasingly frequent, prompting a widespread concern among researchers in electroencephalography (EEG)-based driver drowsiness detection. However, due to the significant differences in EEG signals between participants, the prevalence of redundant information in multichannel EEG data, and the computational burden in combining channel selection with neural networks, achieving an accurate and efficient real-time driver drowsiness recognition remains challenging. To overcome these limitations, this article proposes a novel deep learning framework that utilizes a separable convolutional neural network (CNN) to mine the intricate spatiotemporal information in EEG signals, combined with the channel selection layer to jointly optimize EEG channels and network parameters. This layer employs an efficient embedded Gumbel-Softmax technique for discrete sampling and differentiable approximation. To prevent the introduction of duplicate channels, we impose penalties on the row sums of the selection matrix to encourage the selection neurons to learn distinct channels, enabling the neural network to train in an end-to-end manner. The proposed model achieves an average accuracy of 80.84% and an F1 score of 79.65% in cross-subject drowsiness identification for 11 subjects on the publicly available sustained-attention driving task dataset. Compared to the results of recent relevant works, our model exhibits superior performance, surpassing state-of-the-art (SOTA) deep learning methods by 1.47%. Furthermore, building upon the model's advantages, we have further actualized a real-time driver drowsiness detection graphical user interface (GUI), providing a practical reference for real-world applications. |
---|---|
AbstractList | Nowadays, severe traffic accidents attributed to driver drowsiness have become increasingly frequent, prompting a widespread concern among researchers in electroencephalography (EEG)-based driver drowsiness detection. However, due to the significant differences in EEG signals between participants, the prevalence of redundant information in multichannel EEG data, and the computational burden in combining channel selection with neural networks, achieving an accurate and efficient real-time driver drowsiness recognition remains challenging. To overcome these limitations, this article proposes a novel deep learning framework that utilizes a separable convolutional neural network (CNN) to mine the intricate spatiotemporal information in EEG signals, combined with the channel selection layer to jointly optimize EEG channels and network parameters. This layer employs an efficient embedded Gumbel-Softmax technique for discrete sampling and differentiable approximation. To prevent the introduction of duplicate channels, we impose penalties on the row sums of the selection matrix to encourage the selection neurons to learn distinct channels, enabling the neural network to train in an end-to-end manner. The proposed model achieves an average accuracy of 80.84% and an F1 score of 79.65% in cross-subject drowsiness identification for 11 subjects on the publicly available sustained-attention driving task dataset. Compared to the results of recent relevant works, our model exhibits superior performance, surpassing state-of-the-art (SOTA) deep learning methods by 1.47%. Furthermore, building upon the model's advantages, we have further actualized a real-time driver drowsiness detection graphical user interface (GUI), providing a practical reference for real-world applications. |
Author | Liu, Wanqing Qiao, Yinghao Liu, Guangyuan Xie, Jialan Feng, Weibin Wang, Xiaoping |
Author_xml | – sequence: 1 givenname: Weibin surname: Feng fullname: Feng, Weibin email: wbfeng@hust.edu.cn organization: School of Artificial Intelligence and Automation, the Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China and Hubei Key Laboratory of Brain-inspired Intelligent Systems, Huazhong University of Science and Technology, Wuhan, China – sequence: 2 givenname: Xiaoping orcidid: 0000-0002-4909-8286 surname: Wang fullname: Wang, Xiaoping email: wangxiaoping@hust.edu.cn organization: School of Artificial Intelligence and Automation, the Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China and Hubei Key Laboratory of Brain-inspired Intelligent Systems, Huazhong University of Science and Technology, Wuhan, China – sequence: 3 givenname: Jialan surname: Xie fullname: Xie, Jialan organization: College of Electronic and Information Engineering and the Institute of Affective Computing and Intelligent Information Processing, Southwest University, Chongqing, China – sequence: 4 givenname: Wanqing surname: Liu fullname: Liu, Wanqing organization: College of Electronic and Information Engineering and the Institute of Affective Computing and Intelligent Information Processing, Southwest University, Chongqing, China – sequence: 5 givenname: Yinghao surname: Qiao fullname: Qiao, Yinghao organization: College of Electronic and Information Engineering and the Institute of Affective Computing and Intelligent Information Processing, Southwest University, Chongqing, China – sequence: 6 givenname: Guangyuan surname: Liu fullname: Liu, Guangyuan organization: College of Electronic and Information Engineering and the Institute of Affective Computing and Intelligent Information Processing, Southwest University, Chongqing, China |
BookMark | eNpNkMFOg0AQhjemJtbqA5h4IPFM3Vl2WThqi1XT1MTW6I0sMERaYOsutPr2gu3B0z-ZfP9k8p2TQa1rJOQK6BiAhrfPy2gxZpTxscdDBtI_IUMQInBB8mDQzx51uSc_zsi5tWtKIZRCDol-RVW6q6JCJ4pm7r2ymDlTU-zQdKH3tqjRWmeKDaZNoWvnQHTDRNc7Xbb9UpXOAlvzF81em43zXjSfzqytEizdpc6bSn07K1OkmwtymqvS4uUxR-TtIVpNHt35y-xpcjd3U8b9xkUeBEmQ-hl4wP1AiCSHNAyZzEOV-SHNWRZSyJjPGQUuGU-pEgpzmnDGkszzRuTmcHdr9FeLtonXujXdpzb2QEBfFLSj4EClRltrMI-3pqiU-YmBxr3XuPca917jo9euc33oFIj4j5cCZBB4v_txdYY |
CODEN | ISJEAZ |
Cites_doi | 10.1016/j.eswa.2015.05.028 10.1109/TNSRE.2023.3238852 10.1016/j.engappai.2023.106237 10.1109/JSEN.2018.2807245 10.1109/EMBC.2015.7319915 10.1109/TITS.2016.2582900 10.1016/j.neucom.2020.05.085 10.1016/j.eswa.2023.120279 10.1109/JBHI.2021.3096984 10.1109/TITS.2022.3211536 10.1109/TITS.2023.3347075 10.1016/S0893-6080(98)00010-0 10.1109/TNSRE.2018.2790359 10.1109/TCSVT.2021.3082635 10.1109/TII.2020.3020694 10.1109/TITS.2018.2868499 10.1016/j.actpsy.2009.10.001 10.48550/arXiv.1502.03167 10.1016/j.aei.2024.102575 10.1038/s41597-019-0027-4 10.1109/TNSRE.2023.3336897 10.1109/TNSRE.2022.3230250 10.1007/s10489-023-04584-7 10.1109/TIM.2022.3216409 10.1109/TNSRE.2021.3079505 10.1016/j.bspc.2021.103023 10.1016/j.bbe.2020.08.009 10.1109/TNNLS.2018.2886414 10.1109/TNNLS.2021.3084827 10.1109/TNNLS.2022.3147208 10.3390/s18124477 10.1109/TNNLS.2021.3071401 10.1109/TGRS.2021.3075663 10.1155/2014/317056 10.1109/TCBB.2021.3052811 10.1109/TCAD.2020.3042155 10.1088/1741-2552/abfa71 10.1007/s10994-021-05964-1 10.1016/j.compind.2020.103303 10.1142/S0129065723500090 10.1016/j.ymeth.2021.04.017 10.1016/j.ymeth.2021.04.009 10.1109/TAFFC.2017.2660485 10.1109/TITS.2021.3134222 10.1016/j.media.2022.102570 10.1109/TPAMI.2022.3157042 10.1088/1741-2552/ac115d 10.1016/j.aei.2020.101157 10.7312/gumb92958 10.3390/s21113786 10.1109/TNSRE.2023.3299156 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2024.3492176 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 1871 |
ExternalDocumentID | 10_1109_JSEN_2024_3492176 10751788 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62236005; 61936004 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c246t-e488b8c6d13146855bf1c9927f9ad690f2d901d2642014724c0a5aef0b422bd33 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:08:48 EDT 2025 Tue Jul 01 03:03:03 EDT 2025 Wed Aug 27 01:57:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-e488b8c6d13146855bf1c9927f9ad690f2d901d2642014724c0a5aef0b422bd33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4909-8286 |
PQID | 3151264250 |
PQPubID | 75733 |
PageCount | 12 |
ParticipantIDs | ieee_primary_10751788 proquest_journals_3151264250 crossref_primary_10_1109_JSEN_2024_3492176 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-Jan.1,-1 2025-1-1 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-Jan.1,-1 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 Stewart (ref1) 2023 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 Jang (ref20); 1611 ref46 ref45 ref48 ref47 ref42 ref41 Maddison (ref34) ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Kingma (ref44); 1412 ref35 ref37 ref36 ref31 ref30 ref33 ref2 ref39 ref38 ref24 ref23 Cawley (ref43) 2010; 11 ref26 ref25 ref22 Abid (ref32); 97 ref21 ref28 ref27 ref29 |
References_xml | – start-page: 712 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref34 article-title: The concrete distribution: A continuous relaxation of discrete random variables – ident: ref16 doi: 10.1016/j.eswa.2015.05.028 – ident: ref52 doi: 10.1109/TNSRE.2023.3238852 – ident: ref54 doi: 10.1016/j.engappai.2023.106237 – ident: ref2 doi: 10.1109/JSEN.2018.2807245 – ident: ref29 doi: 10.1109/EMBC.2015.7319915 – ident: ref4 doi: 10.1109/TITS.2016.2582900 – ident: ref39 doi: 10.1016/j.neucom.2020.05.085 – ident: ref53 doi: 10.1016/j.eswa.2023.120279 – ident: ref15 doi: 10.1109/JBHI.2021.3096984 – ident: ref7 doi: 10.1109/TITS.2022.3211536 – ident: ref31 doi: 10.1109/TITS.2023.3347075 – ident: ref45 doi: 10.1016/S0893-6080(98)00010-0 – ident: ref28 doi: 10.1109/TNSRE.2018.2790359 – ident: ref3 doi: 10.1109/TCSVT.2021.3082635 – ident: ref9 doi: 10.1109/TII.2020.3020694 – ident: ref13 doi: 10.1109/TITS.2018.2868499 – ident: ref26 doi: 10.1016/j.actpsy.2009.10.001 – volume: 1412 start-page: 6980 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref44 article-title: Adam: A method for stochastic optimization – volume: 1611 start-page: 1144 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref20 article-title: Categorical reparameterization with Gumbel–Softmax – ident: ref42 doi: 10.48550/arXiv.1502.03167 – ident: ref55 doi: 10.1016/j.aei.2024.102575 – ident: ref25 doi: 10.1038/s41597-019-0027-4 – ident: ref49 doi: 10.1109/TNSRE.2023.3336897 – ident: ref51 doi: 10.1109/TNSRE.2022.3230250 – ident: ref23 doi: 10.1007/s10489-023-04584-7 – ident: ref19 doi: 10.1109/TIM.2022.3216409 – volume: 11 start-page: 2079 year: 2010 ident: ref43 article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation publication-title: J. Mach. Learn. Res. – ident: ref8 doi: 10.1109/TNSRE.2021.3079505 – ident: ref6 doi: 10.1016/j.bspc.2021.103023 – ident: ref12 doi: 10.1016/j.bbe.2020.08.009 – ident: ref5 doi: 10.1109/TNNLS.2018.2886414 – ident: ref38 doi: 10.1109/TNNLS.2021.3084827 – ident: ref17 doi: 10.1109/TNNLS.2022.3147208 – ident: ref14 doi: 10.3390/s18124477 – ident: ref24 doi: 10.1109/TNNLS.2021.3071401 – ident: ref36 doi: 10.1109/TGRS.2021.3075663 – ident: ref37 doi: 10.1155/2014/317056 – ident: ref11 doi: 10.1109/TCBB.2021.3052811 – ident: ref41 doi: 10.1109/TCAD.2020.3042155 – ident: ref10 doi: 10.1088/1741-2552/abfa71 – ident: ref46 doi: 10.1007/s10994-021-05964-1 – ident: ref40 doi: 10.1016/j.compind.2020.103303 – ident: ref50 doi: 10.1142/S0129065723500090 – ident: ref30 doi: 10.1016/j.ymeth.2021.04.017 – ident: ref48 doi: 10.1016/j.ymeth.2021.04.009 – ident: ref56 doi: 10.1109/TAFFC.2017.2660485 – ident: ref47 doi: 10.1109/TITS.2021.3134222 – volume-title: Overview of motor vehicle traffic crashes in 2021 year: 2023 ident: ref1 – ident: ref22 doi: 10.1016/j.media.2022.102570 – volume: 97 start-page: 444 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref32 article-title: Concrete autoencoders for differentiable feature selection and reconstruction – ident: ref27 doi: 10.1038/s41597-019-0027-4 – ident: ref21 doi: 10.1109/TPAMI.2022.3157042 – ident: ref33 doi: 10.1088/1741-2552/ac115d – ident: ref57 doi: 10.1016/j.aei.2020.101157 – ident: ref35 doi: 10.7312/gumb92958 – ident: ref58 doi: 10.3390/s21113786 – ident: ref18 doi: 10.1109/TNSRE.2023.3299156 |
SSID | ssj0019757 |
Score | 2.41613 |
Snippet | Nowadays, severe traffic accidents attributed to driver drowsiness have become increasingly frequent, prompting a widespread concern among researchers in... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1860 |
SubjectTerms | Accuracy Artificial neural networks Brain modeling Channels Deep learning Driver drowsiness detection Driver fatigue Electroencephalography electroencephalography (EEG) Feature extraction Graphical user interface graphical user interface (GUI) Gumbel-Softmax trick Machine learning Neural networks Neurons Real time Real-time systems Reviews Sleepiness Target tracking Traffic accidents Training Vectors |
Title | Real-Time EEG-Based Driver Drowsiness Detection Based on Convolutional Neural Network With Gumbel-Softmax Trick |
URI | https://ieeexplore.ieee.org/document/10751788 https://www.proquest.com/docview/3151264250 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsQwDLWAC3BgRwybcuCElKFL2jRHlgGExBxYxNyqZhMIaBF02L4eJ-2gEQiJS5ND2lpxHNuJ_Qyww6xlJjScokNbUJYJRgvcLKlOM2mY1KhBXILzeT89vWZng2TQJqv7XBhjjA8-M13X9Xf5ulJDd1SGEs6TEH22SZjEZ5Os9X1lILiH9UQJDiiL-aC9wgwDsXd22eujKxixrsPiCx2-yJgS8lVVfm3FXr8cz0N_RFkTVnLfHdayqz5_gDb-m_QFmGstTbLfLI1FmDDlEsyO4Q8uwXRbAv32YxmqCzQZqcsIIb3eCT1A7abJ0bML28Cmemvi48mRqX3wVkmaEdg5rMrXdgHj_xzah298eDm5uatvyYkrO_JAL3HLfyzeyZWD4l-B6-Pe1eEpbasxUBWxtKYGRV1mKtVh7NK1kkTaUAkRcSsKjT62jTTaFhoNLLQpGI-YCoqkMDaQLIqkjuNVmCqr0qwBCTOLnwy0ymzBOA-FsjLlQmulYsUy3YHdEXvypwZ0I_fOSiByx8vc8TJvedmBFTfdYwObme7A5oijeSuXL3nsDBykMAnW_3htA2YiV-LXn7JswlT9PDRbaHfUctuvty8b79Pw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VeoAeaHmpy6P4wAnJ28Rx4vhIYWF57QEWsbcofomqbVLRbB_8esZOFq2oKvUUH5zE8ng839gz3wDsc-e4ja2g6NCWlOeS0xI3S2qyXFmuDFoQn-B8NcqGt_x8kk66ZPWQC2OtDcFntu-b4S7f1Hrqj8pQw0Uao8-2AK_R8KesTdd6vjSQIhB7og5HlCdi0l1ixpH8eH4zGKEzyHjfs_HFnmFkzgyFuip_bcbBwpy8hdFsbG1gyZf-tFF9_fiCtvG_B_8OVjqsSQ7bxbEKr2y1Bm_mGAjXYKkrgn7_Zx3qawSN1OeEkMHglH5C-2bI8YMP3MBH_auNkCfHtgnhWxVpe2DjqK5-dksY_-f5PsIjBJiTu8_NPTn1hUe-0hvc9L-Vv8nYk_FvwO3JYHw0pF09BqoZzxpqUdlVrjMTJz5hK02Vi7WUTDhZGvSyHTOILgxCLEQVXDCuozItrYsUZ0yZJNmExaqu7Hsgce7wk5HRuSu5ELHUTmVCGqN1onluenAwE0_xvaXdKIK7EsnCy7Lwsiw6WfZgw0_3XMd2pnuwM5No0WnmjyLxEAdHmEZb_3htD5aG46vL4vJsdLENy8wX_A1nLjuw2DxM7S6ikEZ9CGvvCVfr1zo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+EEG-Based+Driver+Drowsiness+Detection+Based+on+Convolutional+Neural+Network+With+Gumbel-Softmax+Trick&rft.jtitle=IEEE+sensors+journal&rft.au=Feng%2C+Weibin&rft.au=Wang%2C+Xiaoping&rft.au=Xie%2C+Jialan&rft.au=Liu%2C+Wanqing&rft.date=2025-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=1&rft.spage=1860&rft_id=info:doi/10.1109%2FJSEN.2024.3492176&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |