Real-Time EEG-Based Driver Drowsiness Detection Based on Convolutional Neural Network With Gumbel-Softmax Trick

Nowadays, severe traffic accidents attributed to driver drowsiness have become increasingly frequent, prompting a widespread concern among researchers in electroencephalography (EEG)-based driver drowsiness detection. However, due to the significant differences in EEG signals between participants, t...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 25; no. 1; pp. 1860 - 1871
Main Authors Feng, Weibin, Wang, Xiaoping, Xie, Jialan, Liu, Wanqing, Qiao, Yinghao, Liu, Guangyuan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nowadays, severe traffic accidents attributed to driver drowsiness have become increasingly frequent, prompting a widespread concern among researchers in electroencephalography (EEG)-based driver drowsiness detection. However, due to the significant differences in EEG signals between participants, the prevalence of redundant information in multichannel EEG data, and the computational burden in combining channel selection with neural networks, achieving an accurate and efficient real-time driver drowsiness recognition remains challenging. To overcome these limitations, this article proposes a novel deep learning framework that utilizes a separable convolutional neural network (CNN) to mine the intricate spatiotemporal information in EEG signals, combined with the channel selection layer to jointly optimize EEG channels and network parameters. This layer employs an efficient embedded Gumbel-Softmax technique for discrete sampling and differentiable approximation. To prevent the introduction of duplicate channels, we impose penalties on the row sums of the selection matrix to encourage the selection neurons to learn distinct channels, enabling the neural network to train in an end-to-end manner. The proposed model achieves an average accuracy of 80.84% and an F1 score of 79.65% in cross-subject drowsiness identification for 11 subjects on the publicly available sustained-attention driving task dataset. Compared to the results of recent relevant works, our model exhibits superior performance, surpassing state-of-the-art (SOTA) deep learning methods by 1.47%. Furthermore, building upon the model's advantages, we have further actualized a real-time driver drowsiness detection graphical user interface (GUI), providing a practical reference for real-world applications.
AbstractList Nowadays, severe traffic accidents attributed to driver drowsiness have become increasingly frequent, prompting a widespread concern among researchers in electroencephalography (EEG)-based driver drowsiness detection. However, due to the significant differences in EEG signals between participants, the prevalence of redundant information in multichannel EEG data, and the computational burden in combining channel selection with neural networks, achieving an accurate and efficient real-time driver drowsiness recognition remains challenging. To overcome these limitations, this article proposes a novel deep learning framework that utilizes a separable convolutional neural network (CNN) to mine the intricate spatiotemporal information in EEG signals, combined with the channel selection layer to jointly optimize EEG channels and network parameters. This layer employs an efficient embedded Gumbel-Softmax technique for discrete sampling and differentiable approximation. To prevent the introduction of duplicate channels, we impose penalties on the row sums of the selection matrix to encourage the selection neurons to learn distinct channels, enabling the neural network to train in an end-to-end manner. The proposed model achieves an average accuracy of 80.84% and an F1 score of 79.65% in cross-subject drowsiness identification for 11 subjects on the publicly available sustained-attention driving task dataset. Compared to the results of recent relevant works, our model exhibits superior performance, surpassing state-of-the-art (SOTA) deep learning methods by 1.47%. Furthermore, building upon the model's advantages, we have further actualized a real-time driver drowsiness detection graphical user interface (GUI), providing a practical reference for real-world applications.
Author Liu, Wanqing
Qiao, Yinghao
Liu, Guangyuan
Xie, Jialan
Feng, Weibin
Wang, Xiaoping
Author_xml – sequence: 1
  givenname: Weibin
  surname: Feng
  fullname: Feng, Weibin
  email: wbfeng@hust.edu.cn
  organization: School of Artificial Intelligence and Automation, the Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China and Hubei Key Laboratory of Brain-inspired Intelligent Systems, Huazhong University of Science and Technology, Wuhan, China
– sequence: 2
  givenname: Xiaoping
  orcidid: 0000-0002-4909-8286
  surname: Wang
  fullname: Wang, Xiaoping
  email: wangxiaoping@hust.edu.cn
  organization: School of Artificial Intelligence and Automation, the Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China and Hubei Key Laboratory of Brain-inspired Intelligent Systems, Huazhong University of Science and Technology, Wuhan, China
– sequence: 3
  givenname: Jialan
  surname: Xie
  fullname: Xie, Jialan
  organization: College of Electronic and Information Engineering and the Institute of Affective Computing and Intelligent Information Processing, Southwest University, Chongqing, China
– sequence: 4
  givenname: Wanqing
  surname: Liu
  fullname: Liu, Wanqing
  organization: College of Electronic and Information Engineering and the Institute of Affective Computing and Intelligent Information Processing, Southwest University, Chongqing, China
– sequence: 5
  givenname: Yinghao
  surname: Qiao
  fullname: Qiao, Yinghao
  organization: College of Electronic and Information Engineering and the Institute of Affective Computing and Intelligent Information Processing, Southwest University, Chongqing, China
– sequence: 6
  givenname: Guangyuan
  surname: Liu
  fullname: Liu, Guangyuan
  organization: College of Electronic and Information Engineering and the Institute of Affective Computing and Intelligent Information Processing, Southwest University, Chongqing, China
BookMark eNpNkMFOg0AQhjemJtbqA5h4IPFM3Vl2WThqi1XT1MTW6I0sMERaYOsutPr2gu3B0z-ZfP9k8p2TQa1rJOQK6BiAhrfPy2gxZpTxscdDBtI_IUMQInBB8mDQzx51uSc_zsi5tWtKIZRCDol-RVW6q6JCJ4pm7r2ymDlTU-zQdKH3tqjRWmeKDaZNoWvnQHTDRNc7Xbb9UpXOAlvzF81em43zXjSfzqytEizdpc6bSn07K1OkmwtymqvS4uUxR-TtIVpNHt35y-xpcjd3U8b9xkUeBEmQ-hl4wP1AiCSHNAyZzEOV-SHNWRZSyJjPGQUuGU-pEgpzmnDGkszzRuTmcHdr9FeLtonXujXdpzb2QEBfFLSj4EClRltrMI-3pqiU-YmBxr3XuPca917jo9euc33oFIj4j5cCZBB4v_txdYY
CODEN ISJEAZ
Cites_doi 10.1016/j.eswa.2015.05.028
10.1109/TNSRE.2023.3238852
10.1016/j.engappai.2023.106237
10.1109/JSEN.2018.2807245
10.1109/EMBC.2015.7319915
10.1109/TITS.2016.2582900
10.1016/j.neucom.2020.05.085
10.1016/j.eswa.2023.120279
10.1109/JBHI.2021.3096984
10.1109/TITS.2022.3211536
10.1109/TITS.2023.3347075
10.1016/S0893-6080(98)00010-0
10.1109/TNSRE.2018.2790359
10.1109/TCSVT.2021.3082635
10.1109/TII.2020.3020694
10.1109/TITS.2018.2868499
10.1016/j.actpsy.2009.10.001
10.48550/arXiv.1502.03167
10.1016/j.aei.2024.102575
10.1038/s41597-019-0027-4
10.1109/TNSRE.2023.3336897
10.1109/TNSRE.2022.3230250
10.1007/s10489-023-04584-7
10.1109/TIM.2022.3216409
10.1109/TNSRE.2021.3079505
10.1016/j.bspc.2021.103023
10.1016/j.bbe.2020.08.009
10.1109/TNNLS.2018.2886414
10.1109/TNNLS.2021.3084827
10.1109/TNNLS.2022.3147208
10.3390/s18124477
10.1109/TNNLS.2021.3071401
10.1109/TGRS.2021.3075663
10.1155/2014/317056
10.1109/TCBB.2021.3052811
10.1109/TCAD.2020.3042155
10.1088/1741-2552/abfa71
10.1007/s10994-021-05964-1
10.1016/j.compind.2020.103303
10.1142/S0129065723500090
10.1016/j.ymeth.2021.04.017
10.1016/j.ymeth.2021.04.009
10.1109/TAFFC.2017.2660485
10.1109/TITS.2021.3134222
10.1016/j.media.2022.102570
10.1109/TPAMI.2022.3157042
10.1088/1741-2552/ac115d
10.1016/j.aei.2020.101157
10.7312/gumb92958
10.3390/s21113786
10.1109/TNSRE.2023.3299156
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3492176
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 1871
ExternalDocumentID 10_1109_JSEN_2024_3492176
10751788
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62236005; 61936004
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c246t-e488b8c6d13146855bf1c9927f9ad690f2d901d2642014724c0a5aef0b422bd33
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:08:48 EDT 2025
Tue Jul 01 03:03:03 EDT 2025
Wed Aug 27 01:57:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-e488b8c6d13146855bf1c9927f9ad690f2d901d2642014724c0a5aef0b422bd33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4909-8286
PQID 3151264250
PQPubID 75733
PageCount 12
ParticipantIDs ieee_primary_10751788
proquest_journals_3151264250
crossref_primary_10_1109_JSEN_2024_3492176
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-Jan.1,-1
2025-1-1
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-Jan.1,-1
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
Stewart (ref1) 2023
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
Jang (ref20); 1611
ref46
ref45
ref48
ref47
ref42
ref41
Maddison (ref34)
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Kingma (ref44); 1412
ref35
ref37
ref36
ref31
ref30
ref33
ref2
ref39
ref38
ref24
ref23
Cawley (ref43) 2010; 11
ref26
ref25
ref22
Abid (ref32); 97
ref21
ref28
ref27
ref29
References_xml – start-page: 712
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref34
  article-title: The concrete distribution: A continuous relaxation of discrete random variables
– ident: ref16
  doi: 10.1016/j.eswa.2015.05.028
– ident: ref52
  doi: 10.1109/TNSRE.2023.3238852
– ident: ref54
  doi: 10.1016/j.engappai.2023.106237
– ident: ref2
  doi: 10.1109/JSEN.2018.2807245
– ident: ref29
  doi: 10.1109/EMBC.2015.7319915
– ident: ref4
  doi: 10.1109/TITS.2016.2582900
– ident: ref39
  doi: 10.1016/j.neucom.2020.05.085
– ident: ref53
  doi: 10.1016/j.eswa.2023.120279
– ident: ref15
  doi: 10.1109/JBHI.2021.3096984
– ident: ref7
  doi: 10.1109/TITS.2022.3211536
– ident: ref31
  doi: 10.1109/TITS.2023.3347075
– ident: ref45
  doi: 10.1016/S0893-6080(98)00010-0
– ident: ref28
  doi: 10.1109/TNSRE.2018.2790359
– ident: ref3
  doi: 10.1109/TCSVT.2021.3082635
– ident: ref9
  doi: 10.1109/TII.2020.3020694
– ident: ref13
  doi: 10.1109/TITS.2018.2868499
– ident: ref26
  doi: 10.1016/j.actpsy.2009.10.001
– volume: 1412
  start-page: 6980
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref44
  article-title: Adam: A method for stochastic optimization
– volume: 1611
  start-page: 1144
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref20
  article-title: Categorical reparameterization with Gumbel–Softmax
– ident: ref42
  doi: 10.48550/arXiv.1502.03167
– ident: ref55
  doi: 10.1016/j.aei.2024.102575
– ident: ref25
  doi: 10.1038/s41597-019-0027-4
– ident: ref49
  doi: 10.1109/TNSRE.2023.3336897
– ident: ref51
  doi: 10.1109/TNSRE.2022.3230250
– ident: ref23
  doi: 10.1007/s10489-023-04584-7
– ident: ref19
  doi: 10.1109/TIM.2022.3216409
– volume: 11
  start-page: 2079
  year: 2010
  ident: ref43
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: J. Mach. Learn. Res.
– ident: ref8
  doi: 10.1109/TNSRE.2021.3079505
– ident: ref6
  doi: 10.1016/j.bspc.2021.103023
– ident: ref12
  doi: 10.1016/j.bbe.2020.08.009
– ident: ref5
  doi: 10.1109/TNNLS.2018.2886414
– ident: ref38
  doi: 10.1109/TNNLS.2021.3084827
– ident: ref17
  doi: 10.1109/TNNLS.2022.3147208
– ident: ref14
  doi: 10.3390/s18124477
– ident: ref24
  doi: 10.1109/TNNLS.2021.3071401
– ident: ref36
  doi: 10.1109/TGRS.2021.3075663
– ident: ref37
  doi: 10.1155/2014/317056
– ident: ref11
  doi: 10.1109/TCBB.2021.3052811
– ident: ref41
  doi: 10.1109/TCAD.2020.3042155
– ident: ref10
  doi: 10.1088/1741-2552/abfa71
– ident: ref46
  doi: 10.1007/s10994-021-05964-1
– ident: ref40
  doi: 10.1016/j.compind.2020.103303
– ident: ref50
  doi: 10.1142/S0129065723500090
– ident: ref30
  doi: 10.1016/j.ymeth.2021.04.017
– ident: ref48
  doi: 10.1016/j.ymeth.2021.04.009
– ident: ref56
  doi: 10.1109/TAFFC.2017.2660485
– ident: ref47
  doi: 10.1109/TITS.2021.3134222
– volume-title: Overview of motor vehicle traffic crashes in 2021
  year: 2023
  ident: ref1
– ident: ref22
  doi: 10.1016/j.media.2022.102570
– volume: 97
  start-page: 444
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref32
  article-title: Concrete autoencoders for differentiable feature selection and reconstruction
– ident: ref27
  doi: 10.1038/s41597-019-0027-4
– ident: ref21
  doi: 10.1109/TPAMI.2022.3157042
– ident: ref33
  doi: 10.1088/1741-2552/ac115d
– ident: ref57
  doi: 10.1016/j.aei.2020.101157
– ident: ref35
  doi: 10.7312/gumb92958
– ident: ref58
  doi: 10.3390/s21113786
– ident: ref18
  doi: 10.1109/TNSRE.2023.3299156
SSID ssj0019757
Score 2.41613
Snippet Nowadays, severe traffic accidents attributed to driver drowsiness have become increasingly frequent, prompting a widespread concern among researchers in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1860
SubjectTerms Accuracy
Artificial neural networks
Brain modeling
Channels
Deep learning
Driver drowsiness detection
Driver fatigue
Electroencephalography
electroencephalography (EEG)
Feature extraction
Graphical user interface
graphical user interface (GUI)
Gumbel-Softmax trick
Machine learning
Neural networks
Neurons
Real time
Real-time systems
Reviews
Sleepiness
Target tracking
Traffic accidents
Training
Vectors
Title Real-Time EEG-Based Driver Drowsiness Detection Based on Convolutional Neural Network With Gumbel-Softmax Trick
URI https://ieeexplore.ieee.org/document/10751788
https://www.proquest.com/docview/3151264250
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsQwDLWAC3BgRwybcuCElKFL2jRHlgGExBxYxNyqZhMIaBF02L4eJ-2gEQiJS5ND2lpxHNuJ_Qyww6xlJjScokNbUJYJRgvcLKlOM2mY1KhBXILzeT89vWZng2TQJqv7XBhjjA8-M13X9Xf5ulJDd1SGEs6TEH22SZjEZ5Os9X1lILiH9UQJDiiL-aC9wgwDsXd22eujKxixrsPiCx2-yJgS8lVVfm3FXr8cz0N_RFkTVnLfHdayqz5_gDb-m_QFmGstTbLfLI1FmDDlEsyO4Q8uwXRbAv32YxmqCzQZqcsIIb3eCT1A7abJ0bML28Cmemvi48mRqX3wVkmaEdg5rMrXdgHj_xzah298eDm5uatvyYkrO_JAL3HLfyzeyZWD4l-B6-Pe1eEpbasxUBWxtKYGRV1mKtVh7NK1kkTaUAkRcSsKjT62jTTaFhoNLLQpGI-YCoqkMDaQLIqkjuNVmCqr0qwBCTOLnwy0ymzBOA-FsjLlQmulYsUy3YHdEXvypwZ0I_fOSiByx8vc8TJvedmBFTfdYwObme7A5oijeSuXL3nsDBykMAnW_3htA2YiV-LXn7JswlT9PDRbaHfUctuvty8b79Pw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VeoAeaHmpy6P4wAnJ28Rx4vhIYWF57QEWsbcofomqbVLRbB_8esZOFq2oKvUUH5zE8ng839gz3wDsc-e4ja2g6NCWlOeS0xI3S2qyXFmuDFoQn-B8NcqGt_x8kk66ZPWQC2OtDcFntu-b4S7f1Hrqj8pQw0Uao8-2AK_R8KesTdd6vjSQIhB7og5HlCdi0l1ixpH8eH4zGKEzyHjfs_HFnmFkzgyFuip_bcbBwpy8hdFsbG1gyZf-tFF9_fiCtvG_B_8OVjqsSQ7bxbEKr2y1Bm_mGAjXYKkrgn7_Zx3qawSN1OeEkMHglH5C-2bI8YMP3MBH_auNkCfHtgnhWxVpe2DjqK5-dksY_-f5PsIjBJiTu8_NPTn1hUe-0hvc9L-Vv8nYk_FvwO3JYHw0pF09BqoZzxpqUdlVrjMTJz5hK02Vi7WUTDhZGvSyHTOILgxCLEQVXDCuozItrYsUZ0yZJNmExaqu7Hsgce7wk5HRuSu5ELHUTmVCGqN1onluenAwE0_xvaXdKIK7EsnCy7Lwsiw6WfZgw0_3XMd2pnuwM5No0WnmjyLxEAdHmEZb_3htD5aG46vL4vJsdLENy8wX_A1nLjuw2DxM7S6ikEZ9CGvvCVfr1zo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-Time+EEG-Based+Driver+Drowsiness+Detection+Based+on+Convolutional+Neural+Network+With+Gumbel-Softmax+Trick&rft.jtitle=IEEE+sensors+journal&rft.au=Feng%2C+Weibin&rft.au=Wang%2C+Xiaoping&rft.au=Xie%2C+Jialan&rft.au=Liu%2C+Wanqing&rft.date=2025-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=1&rft.spage=1860&rft_id=info:doi/10.1109%2FJSEN.2024.3492176&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon