Machine Learning Based Data Validation for Signal Integrity and Power Integrity Using Supervised Time Series Classification

A novel approach for the validation of data in signal integrity and power integrity using machine learning is proposed. This approach presents an alternative to the feature selective validation method outlined in the IEEE Standard 1597.1 for the validation of computational electromagnetics, computer...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electromagnetic compatibility Vol. 66; no. 6; pp. 2150 - 2158
Main Authors Hassab, Youcef, Hillebrecht, Til, Lurz, Fabian, Schuster, Christian
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9375
1558-187X
DOI10.1109/TEMC.2024.3474917

Cover

Loading…
Abstract A novel approach for the validation of data in signal integrity and power integrity using machine learning is proposed. This approach presents an alternative to the feature selective validation method outlined in the IEEE Standard 1597.1 for the validation of computational electromagnetics, computer modeling and simulations. The proposed approach focuses on replicating the human visual assessment by using data collected and labeled by expert engineers to train time series classification networks that predict the degree of agreement between two curves. The trained networks are then used for the systematic and automated validation of 1-D datasets. The performance and suitability of this approach for systematic data validation is evaluated and discussed. The trained network surpasses the single human subjects in predicting the expert opinion with an accuracy higher than 70%.
AbstractList A novel approach for the validation of data in signal integrity and power integrity using machine learning is proposed. This approach presents an alternative to the feature selective validation method outlined in the IEEE Standard 1597.1 for the validation of computational electromagnetics, computer modeling and simulations. The proposed approach focuses on replicating the human visual assessment by using data collected and labeled by expert engineers to train time series classification networks that predict the degree of agreement between two curves. The trained networks are then used for the systematic and automated validation of 1-D datasets. The performance and suitability of this approach for systematic data validation is evaluated and discussed. The trained network surpasses the single human subjects in predicting the expert opinion with an accuracy higher than 70%.
Author Hassab, Youcef
Schuster, Christian
Lurz, Fabian
Hillebrecht, Til
Author_xml – sequence: 1
  givenname: Youcef
  orcidid: 0009-0004-8219-5637
  surname: Hassab
  fullname: Hassab, Youcef
  email: youcef.hassab@tuhh.de
  organization: Institut für Theoretische Elektrotechnik, Hamburg University of Technology, Hamburg, Germany
– sequence: 2
  givenname: Til
  orcidid: 0000-0002-4142-311X
  surname: Hillebrecht
  fullname: Hillebrecht, Til
  email: til.hillebrecht@tuhh.de
  organization: Institut für Theoretische Elektrotechnik, Hamburg University of Technology, Hamburg, Germany
– sequence: 3
  givenname: Fabian
  orcidid: 0000-0003-4948-9655
  surname: Lurz
  fullname: Lurz, Fabian
  email: fabian.lurz@ovgu.de
  organization: Chair of Integrated Electronic Systems, Otto von Guericke University Magdeburg, Magdeburg, Germany
– sequence: 4
  givenname: Christian
  orcidid: 0000-0003-4019-0788
  surname: Schuster
  fullname: Schuster, Christian
  email: schuster@tuhh.de
  organization: Institut für Theoretische Elektrotechnik, Hamburg University of Technology, Hamburg, Germany
BookMark eNpNkE1Lw0AQhhepYFv9AYKHBc-p-5lNjhqrFloU2oq3sEkmdUu6qbupUvzzJraHnoYZ3veBeQaoZ2sLCF1TMqKUxHeL8SwZMcLEiAslYqrOUJ9KGQU0Uh891CeERkHMlbxAA-_X7Sok4330O9P5p7GAp6CdNXaFH7SHAj_qRuN3XZlCN6a2uKwdnpuV1RWe2AZWzjR7rG2B3-ofcCe3pe8g890W3LfpSAuzATwHZ8DjpNLem9Lk_9BLdF7qysPVcQ7R8mm8SF6C6evzJLmfBjkTYRMUJY2KklCi46gQjEqeA4WCZVkEXMpYFoppEKUsVUwAIsEzIinTUskwzMKMD9Htgbt19dcOfJOu651rX_Epp0JJGkatiyGih1Tuau8dlOnWmY12-5SStHOcdo7TznF6dNx2bg4dAwAnecUIl5z_Aa4ceyM
CODEN IEMCAE
Cites_doi 10.1109/EPEPS58208.2023.10314907
10.1007/s10618-019-00619-1
10.1109/EMCSIPI50001.2023.10241365
10.1109/ISEMC.2010.5711368
10.1109/ISEMC.2016.7571711
10.1109/TMTT.2009.2025470
10.1109/LEMCPA.2022.3226151
10.1109/temc.2006.879360
10.1109/ISEMC.2012.6351652
10.1109/MEMC.0.7989999
10.1109/temc.2006.879358
10.1109/ACCESS.2021.3061788
10.1108/03321640510615472
10.1162/neco.1997.9.8.1735
10.1201/9780429058264
10.1109/TEMC.2012.2231416
10.1109/ectc32696.2021.00289
10.1109/ICDMW51313.2020.00042
10.1007/s10618-020-00701-z
10.1007/s10618-020-00710-y
10.1109/IJCNN.2017.7966039
10.4324/9781410605337-29
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TEMC.2024.3474917
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-187X
EndPage 2158
ExternalDocumentID 10_1109_TEMC_2024_3474917
10720353
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c246t-df18df010a98d42153ce1ed2bb8e35595d72ae4f5f790ee843b0512a57566b6b3
IEDL.DBID RIE
ISSN 0018-9375
IngestDate Mon Jun 30 10:18:13 EDT 2025
Tue Jul 01 00:52:42 EDT 2025
Wed Aug 27 02:02:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-df18df010a98d42153ce1ed2bb8e35595d72ae4f5f790ee843b0512a57566b6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4019-0788
0009-0004-8219-5637
0000-0003-4948-9655
0000-0002-4142-311X
PQID 3147516852
PQPubID 85467
PageCount 9
ParticipantIDs proquest_journals_3147516852
crossref_primary_10_1109_TEMC_2024_3474917
ieee_primary_10720353
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on electromagnetic compatibility
PublicationTitleAbbrev TEMC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
(ref6) 2008
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
(ref7) 2011
ref18
Martin (ref4) 1999
ref26
ref21
Murphy (ref25) 2022
ref28
(ref19) 2022
ref27
Bai (ref32) 2018
Rossum (ref22) 2009
Arsenovic (ref23) 2016
ref29
ref8
ref9
ref3
ref5
Oguiza (ref24); 2022
References_xml – volume-title: Python 3 Reference Manual
  year: 2009
  ident: ref22
– ident: ref3
  doi: 10.1109/EPEPS58208.2023.10314907
– ident: ref15
  doi: 10.1007/s10618-019-00619-1
– ident: ref17
  doi: 10.1109/EMCSIPI50001.2023.10241365
– volume: 2022
  ident: ref24
  article-title: TSAI: A state-of-the-art deep learning library for time series and sequential data
– ident: ref14
  doi: 10.1109/ISEMC.2010.5711368
– ident: ref16
  doi: 10.1109/ISEMC.2016.7571711
– ident: ref21
  doi: 10.1109/TMTT.2009.2025470
– ident: ref10
  doi: 10.1109/LEMCPA.2022.3226151
– volume-title: Probabilistic Machine Learning: An Introduction
  year: 2022
  ident: ref25
– volume-title: ANSYS Electromagnetics Suite, Release 16.2
  year: 2022
  ident: ref19
– year: 2018
  ident: ref32
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
– ident: ref11
  doi: 10.1109/temc.2006.879360
– ident: ref12
  doi: 10.1109/ISEMC.2012.6351652
– ident: ref1
  doi: 10.1109/MEMC.0.7989999
– ident: ref5
  doi: 10.1109/temc.2006.879358
– ident: ref2
  doi: 10.1109/ACCESS.2021.3061788
– ident: ref8
  doi: 10.1108/03321640510615472
– ident: ref31
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref18
  doi: 10.1201/9780429058264
– start-page: 1
  year: 2011
  ident: ref7
  publication-title: IEEE Recommended Practice for Validation of Computational Electromagnetics Computer Modeling and Simulations
– ident: ref13
  doi: 10.1109/TEMC.2012.2231416
– ident: ref9
  doi: 10.1109/ectc32696.2021.00289
– ident: ref27
  doi: 10.1109/ICDMW51313.2020.00042
– ident: ref26
  doi: 10.1007/s10618-020-00701-z
– ident: ref28
  doi: 10.1007/s10618-020-00710-y
– year: 1999
  ident: ref4
  article-title: Quantitative data validation (automated visual evaluations)
– start-page: 1
  year: 2008
  ident: ref6
  publication-title: IEEE Standard for Validation of Computational Electromagnetics Computer Modeling and Simulations
– year: 2016
  ident: ref23
  article-title: Scikit-RF: Open source RF engineering
– ident: ref29
  doi: 10.1109/IJCNN.2017.7966039
– ident: ref30
  doi: 10.4324/9781410605337-29
SSID ssj0014523
Score 2.4096556
Snippet A novel approach for the validation of data in signal integrity and power integrity using machine learning is proposed. This approach presents an alternative...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2150
SubjectTerms Classification
Computational electromagnetics
Data validation
Electromagnetic compatibility
electromagnetic compatibility (EMC)
Feature selective validation
Human performance
Labeling
Machine learning
power integrity
Scattering parameters
Signal integrity
Simulation
Time series
Time series analysis
time series classification (TSC)
Visualization
Title Machine Learning Based Data Validation for Signal Integrity and Power Integrity Using Supervised Time Series Classification
URI https://ieeexplore.ieee.org/document/10720353
https://www.proquest.com/docview/3147516852
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7Ukx58i_XFHjwJqck-8jhqVVRoEdpKb2E3OxER2qLpRf-8M5tUiyJ4CyEZlp2ZnW92Xoydhg4FR5gsKK0NA3IgglSlJiB3wxgQUhsqTu724tuhuh_pUVOs7mthAMAnn0GbHn0s302KGV2VoYZT0FDLZbaMnltdrPUVMlBa1OHkCDVYJroJYUZhdj647nbQFRSqLVWiMj-c7NsI-akqv45ib19uNlhvvrI6reSlPatsu3j_0bTx30vfZOsN0uQXtWhssSUYb7O1hf6DO-yj61MpgTddVp_4JRo1x69MZfgjIvR64BJHYMv7z09E7s63l0Dozs3Y8Qeasbbwzicg8P5sSicQUaIKE043cPDG_fxNykzyRHfZ8OZ60LkNmmkMQSFUXAWujFJXovtmstQpRAqygAicsDYFBC2ZdshdUKUukywESJW0qPDCIB6MYxtbucdWxpMx7DMORaQAYpekYFTiCqtcJAGy0iaIx0LRYmdz9uTTuulG7p2VMMuJlznxMm942WK7tN0LH9Y73WJHc47mjV6-5TJSiY7iVIuDP347ZKtEvc5YOWIr1esMjhF3VPbEy9snIPrVRg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xOJQe2lJA3Za2PvRUKUv8yuPY8tBS2FUlFsQtsuMJqiotCLIX-PPMONl2VYTUWxTFjuWZ8XzjeQF8SQMxjnJl0nifJmxAJIUpXMLmhnOotHWcnDyeZKNz8-PSXvbJ6jEXBhFj8BkO-TH68sN1PeerMpJwdhpavQrrpPit7NK1_jgNjFWdQ1mSDOvc9k5MmZZ708PxPhmDygy1yU0Z25P9VUOxr8qTwzhqmKPXMFmsrQss-T2ct35Y3_9TtvG_F_8GXvVYU3zrmGMTVnD2Fl4uVSDcgodxDKZE0ddZvRLfSa0FceBaJy4Io3ctlwRBW3H264qnO44FJgi8CzcL4id3WVt6F0MQxNn8hs8gnolzTATfweGdiB04OTYpTroN50eH0_1R0vdjSGplsjYJjSxCQwacK4tgCCvoGiUG5X2BBFtKG4i-aBrb5GWKWBjtSeSVI0SYZT7zegfWZtczfAcCa2kQs5AX6Eweam-C1Ihl43NCZKkawNcFeaqbruxGFc2VtKyYlhXTsuppOYBt3u6lD7udHsDugqJVL5l3lZYmtzIrrHr_zLDP8GI0HZ9Wp8eTkw-wwX_q4ld2Ya29neNHQiGt_xR57xFppdiP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Based+Data+Validation+for+Signal+Integrity+and+Power+Integrity+Using+Supervised+Time+Series+Classification&rft.jtitle=IEEE+transactions+on+electromagnetic+compatibility&rft.au=Hassab%2C+Youcef&rft.au=Hillebrecht%2C+Til&rft.au=Lurz%2C+Fabian&rft.au=Schuster%2C+Christian&rft.date=2024-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9375&rft.eissn=1558-187X&rft.volume=66&rft.issue=6&rft.spage=2150&rft_id=info:doi/10.1109%2FTEMC.2024.3474917&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9375&client=summon