Machine Learning Based Data Validation for Signal Integrity and Power Integrity Using Supervised Time Series Classification
A novel approach for the validation of data in signal integrity and power integrity using machine learning is proposed. This approach presents an alternative to the feature selective validation method outlined in the IEEE Standard 1597.1 for the validation of computational electromagnetics, computer...
Saved in:
Published in | IEEE transactions on electromagnetic compatibility Vol. 66; no. 6; pp. 2150 - 2158 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9375 1558-187X |
DOI | 10.1109/TEMC.2024.3474917 |
Cover
Loading…
Abstract | A novel approach for the validation of data in signal integrity and power integrity using machine learning is proposed. This approach presents an alternative to the feature selective validation method outlined in the IEEE Standard 1597.1 for the validation of computational electromagnetics, computer modeling and simulations. The proposed approach focuses on replicating the human visual assessment by using data collected and labeled by expert engineers to train time series classification networks that predict the degree of agreement between two curves. The trained networks are then used for the systematic and automated validation of 1-D datasets. The performance and suitability of this approach for systematic data validation is evaluated and discussed. The trained network surpasses the single human subjects in predicting the expert opinion with an accuracy higher than 70%. |
---|---|
AbstractList | A novel approach for the validation of data in signal integrity and power integrity using machine learning is proposed. This approach presents an alternative to the feature selective validation method outlined in the IEEE Standard 1597.1 for the validation of computational electromagnetics, computer modeling and simulations. The proposed approach focuses on replicating the human visual assessment by using data collected and labeled by expert engineers to train time series classification networks that predict the degree of agreement between two curves. The trained networks are then used for the systematic and automated validation of 1-D datasets. The performance and suitability of this approach for systematic data validation is evaluated and discussed. The trained network surpasses the single human subjects in predicting the expert opinion with an accuracy higher than 70%. |
Author | Hassab, Youcef Schuster, Christian Lurz, Fabian Hillebrecht, Til |
Author_xml | – sequence: 1 givenname: Youcef orcidid: 0009-0004-8219-5637 surname: Hassab fullname: Hassab, Youcef email: youcef.hassab@tuhh.de organization: Institut für Theoretische Elektrotechnik, Hamburg University of Technology, Hamburg, Germany – sequence: 2 givenname: Til orcidid: 0000-0002-4142-311X surname: Hillebrecht fullname: Hillebrecht, Til email: til.hillebrecht@tuhh.de organization: Institut für Theoretische Elektrotechnik, Hamburg University of Technology, Hamburg, Germany – sequence: 3 givenname: Fabian orcidid: 0000-0003-4948-9655 surname: Lurz fullname: Lurz, Fabian email: fabian.lurz@ovgu.de organization: Chair of Integrated Electronic Systems, Otto von Guericke University Magdeburg, Magdeburg, Germany – sequence: 4 givenname: Christian orcidid: 0000-0003-4019-0788 surname: Schuster fullname: Schuster, Christian email: schuster@tuhh.de organization: Institut für Theoretische Elektrotechnik, Hamburg University of Technology, Hamburg, Germany |
BookMark | eNpNkE1Lw0AQhhepYFv9AYKHBc-p-5lNjhqrFloU2oq3sEkmdUu6qbupUvzzJraHnoYZ3veBeQaoZ2sLCF1TMqKUxHeL8SwZMcLEiAslYqrOUJ9KGQU0Uh891CeERkHMlbxAA-_X7Sok4330O9P5p7GAp6CdNXaFH7SHAj_qRuN3XZlCN6a2uKwdnpuV1RWe2AZWzjR7rG2B3-ofcCe3pe8g890W3LfpSAuzATwHZ8DjpNLem9Lk_9BLdF7qysPVcQ7R8mm8SF6C6evzJLmfBjkTYRMUJY2KklCi46gQjEqeA4WCZVkEXMpYFoppEKUsVUwAIsEzIinTUskwzMKMD9Htgbt19dcOfJOu651rX_Epp0JJGkatiyGih1Tuau8dlOnWmY12-5SStHOcdo7TznF6dNx2bg4dAwAnecUIl5z_Aa4ceyM |
CODEN | IEMCAE |
Cites_doi | 10.1109/EPEPS58208.2023.10314907 10.1007/s10618-019-00619-1 10.1109/EMCSIPI50001.2023.10241365 10.1109/ISEMC.2010.5711368 10.1109/ISEMC.2016.7571711 10.1109/TMTT.2009.2025470 10.1109/LEMCPA.2022.3226151 10.1109/temc.2006.879360 10.1109/ISEMC.2012.6351652 10.1109/MEMC.0.7989999 10.1109/temc.2006.879358 10.1109/ACCESS.2021.3061788 10.1108/03321640510615472 10.1162/neco.1997.9.8.1735 10.1201/9780429058264 10.1109/TEMC.2012.2231416 10.1109/ectc32696.2021.00289 10.1109/ICDMW51313.2020.00042 10.1007/s10618-020-00701-z 10.1007/s10618-020-00710-y 10.1109/IJCNN.2017.7966039 10.4324/9781410605337-29 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TEMC.2024.3474917 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-187X |
EndPage | 2158 |
ExternalDocumentID | 10_1109_TEMC_2024_3474917 10720353 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TAF TN5 VH1 AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c246t-df18df010a98d42153ce1ed2bb8e35595d72ae4f5f790ee843b0512a57566b6b3 |
IEDL.DBID | RIE |
ISSN | 0018-9375 |
IngestDate | Mon Jun 30 10:18:13 EDT 2025 Tue Jul 01 00:52:42 EDT 2025 Wed Aug 27 02:02:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-df18df010a98d42153ce1ed2bb8e35595d72ae4f5f790ee843b0512a57566b6b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4019-0788 0009-0004-8219-5637 0000-0003-4948-9655 0000-0002-4142-311X |
PQID | 3147516852 |
PQPubID | 85467 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3147516852 crossref_primary_10_1109_TEMC_2024_3474917 ieee_primary_10720353 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on electromagnetic compatibility |
PublicationTitleAbbrev | TEMC |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 (ref6) 2008 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref2 ref1 ref17 ref16 (ref7) 2011 ref18 Martin (ref4) 1999 ref26 ref21 Murphy (ref25) 2022 ref28 (ref19) 2022 ref27 Bai (ref32) 2018 Rossum (ref22) 2009 Arsenovic (ref23) 2016 ref29 ref8 ref9 ref3 ref5 Oguiza (ref24); 2022 |
References_xml | – volume-title: Python 3 Reference Manual year: 2009 ident: ref22 – ident: ref3 doi: 10.1109/EPEPS58208.2023.10314907 – ident: ref15 doi: 10.1007/s10618-019-00619-1 – ident: ref17 doi: 10.1109/EMCSIPI50001.2023.10241365 – volume: 2022 ident: ref24 article-title: TSAI: A state-of-the-art deep learning library for time series and sequential data – ident: ref14 doi: 10.1109/ISEMC.2010.5711368 – ident: ref16 doi: 10.1109/ISEMC.2016.7571711 – ident: ref21 doi: 10.1109/TMTT.2009.2025470 – ident: ref10 doi: 10.1109/LEMCPA.2022.3226151 – volume-title: Probabilistic Machine Learning: An Introduction year: 2022 ident: ref25 – volume-title: ANSYS Electromagnetics Suite, Release 16.2 year: 2022 ident: ref19 – year: 2018 ident: ref32 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling – ident: ref11 doi: 10.1109/temc.2006.879360 – ident: ref12 doi: 10.1109/ISEMC.2012.6351652 – ident: ref1 doi: 10.1109/MEMC.0.7989999 – ident: ref5 doi: 10.1109/temc.2006.879358 – ident: ref2 doi: 10.1109/ACCESS.2021.3061788 – ident: ref8 doi: 10.1108/03321640510615472 – ident: ref31 doi: 10.1162/neco.1997.9.8.1735 – ident: ref18 doi: 10.1201/9780429058264 – start-page: 1 year: 2011 ident: ref7 publication-title: IEEE Recommended Practice for Validation of Computational Electromagnetics Computer Modeling and Simulations – ident: ref13 doi: 10.1109/TEMC.2012.2231416 – ident: ref9 doi: 10.1109/ectc32696.2021.00289 – ident: ref27 doi: 10.1109/ICDMW51313.2020.00042 – ident: ref26 doi: 10.1007/s10618-020-00701-z – ident: ref28 doi: 10.1007/s10618-020-00710-y – year: 1999 ident: ref4 article-title: Quantitative data validation (automated visual evaluations) – start-page: 1 year: 2008 ident: ref6 publication-title: IEEE Standard for Validation of Computational Electromagnetics Computer Modeling and Simulations – year: 2016 ident: ref23 article-title: Scikit-RF: Open source RF engineering – ident: ref29 doi: 10.1109/IJCNN.2017.7966039 – ident: ref30 doi: 10.4324/9781410605337-29 |
SSID | ssj0014523 |
Score | 2.4096556 |
Snippet | A novel approach for the validation of data in signal integrity and power integrity using machine learning is proposed. This approach presents an alternative... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2150 |
SubjectTerms | Classification Computational electromagnetics Data validation Electromagnetic compatibility electromagnetic compatibility (EMC) Feature selective validation Human performance Labeling Machine learning power integrity Scattering parameters Signal integrity Simulation Time series Time series analysis time series classification (TSC) Visualization |
Title | Machine Learning Based Data Validation for Signal Integrity and Power Integrity Using Supervised Time Series Classification |
URI | https://ieeexplore.ieee.org/document/10720353 https://www.proquest.com/docview/3147516852 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7Ukx58i_XFHjwJqck-8jhqVVRoEdpKb2E3OxER2qLpRf-8M5tUiyJ4CyEZlp2ZnW92Xoydhg4FR5gsKK0NA3IgglSlJiB3wxgQUhsqTu724tuhuh_pUVOs7mthAMAnn0GbHn0s302KGV2VoYZT0FDLZbaMnltdrPUVMlBa1OHkCDVYJroJYUZhdj647nbQFRSqLVWiMj-c7NsI-akqv45ib19uNlhvvrI6reSlPatsu3j_0bTx30vfZOsN0uQXtWhssSUYb7O1hf6DO-yj61MpgTddVp_4JRo1x69MZfgjIvR64BJHYMv7z09E7s63l0Dozs3Y8Qeasbbwzicg8P5sSicQUaIKE043cPDG_fxNykzyRHfZ8OZ60LkNmmkMQSFUXAWujFJXovtmstQpRAqygAicsDYFBC2ZdshdUKUukywESJW0qPDCIB6MYxtbucdWxpMx7DMORaQAYpekYFTiCqtcJAGy0iaIx0LRYmdz9uTTuulG7p2VMMuJlznxMm942WK7tN0LH9Y73WJHc47mjV6-5TJSiY7iVIuDP347ZKtEvc5YOWIr1esMjhF3VPbEy9snIPrVRg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xOJQe2lJA3Za2PvRUKUv8yuPY8tBS2FUlFsQtsuMJqiotCLIX-PPMONl2VYTUWxTFjuWZ8XzjeQF8SQMxjnJl0nifJmxAJIUpXMLmhnOotHWcnDyeZKNz8-PSXvbJ6jEXBhFj8BkO-TH68sN1PeerMpJwdhpavQrrpPit7NK1_jgNjFWdQ1mSDOvc9k5MmZZ708PxPhmDygy1yU0Z25P9VUOxr8qTwzhqmKPXMFmsrQss-T2ct35Y3_9TtvG_F_8GXvVYU3zrmGMTVnD2Fl4uVSDcgodxDKZE0ddZvRLfSa0FceBaJy4Io3ctlwRBW3H264qnO44FJgi8CzcL4id3WVt6F0MQxNn8hs8gnolzTATfweGdiB04OTYpTroN50eH0_1R0vdjSGplsjYJjSxCQwacK4tgCCvoGiUG5X2BBFtKG4i-aBrb5GWKWBjtSeSVI0SYZT7zegfWZtczfAcCa2kQs5AX6Eweam-C1Ihl43NCZKkawNcFeaqbruxGFc2VtKyYlhXTsuppOYBt3u6lD7udHsDugqJVL5l3lZYmtzIrrHr_zLDP8GI0HZ9Wp8eTkw-wwX_q4ld2Ya29neNHQiGt_xR57xFppdiP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Based+Data+Validation+for+Signal+Integrity+and+Power+Integrity+Using+Supervised+Time+Series+Classification&rft.jtitle=IEEE+transactions+on+electromagnetic+compatibility&rft.au=Hassab%2C+Youcef&rft.au=Hillebrecht%2C+Til&rft.au=Lurz%2C+Fabian&rft.au=Schuster%2C+Christian&rft.date=2024-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9375&rft.eissn=1558-187X&rft.volume=66&rft.issue=6&rft.spage=2150&rft_id=info:doi/10.1109%2FTEMC.2024.3474917&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9375&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9375&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9375&client=summon |