On the Theory of Positional Differential Games for Neutral-Type Systems
For a dynamical system whose motion is described by neutral-type differential equations in Hale’s form, we consider a minimax–maximin differential game with a quality index evaluating the motion history realized up to the terminal time. The control actions of the players are subject to geometric con...
Saved in:
Published in | Proceedings of the Steklov Institute of Mathematics Vol. 309; no. Suppl 1; pp. S83 - S92 |
---|---|
Main Authors | , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Moscow
Pleiades Publishing
01.08.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For a dynamical system whose motion is described by neutral-type differential equations in Hale’s form, we consider a minimax–maximin differential game with a quality index evaluating the motion history realized up to the terminal time. The control actions of the players are subject to geometric constraints. The game is formalized in classes of pure positional strategies with a memory of the motion history. It is proved that the game has a value and a saddle point. The proof is based on the choice of an appropriate Lyapunov–Krasovskii functional for the construction of control strategies by the method of an extremal shift to accompanying points. |
---|---|
AbstractList | For a dynamical system whose motion is described by neutral-type differential equations in Hale’s form, we consider a minimax–maximin differential game with a quality index evaluating the motion history realized up to the terminal time. The control actions of the players are subject to geometric constraints. The game is formalized in classes of pure positional strategies with a memory of the motion history. It is proved that the game has a value and a saddle point. The proof is based on the choice of an appropriate Lyapunov–Krasovskii functional for the construction of control strategies by the method of an extremal shift to accompanying points. |
Author | Lukoyanov, N. Yu Plaksin, A. R. |
Author_xml | – sequence: 1 givenname: N. Yu surname: Lukoyanov fullname: Lukoyanov, N. Yu email: nyul@imm.uran.ru organization: Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ural Federal Universit – sequence: 2 givenname: A. R. surname: Plaksin fullname: Plaksin, A. R. email: a.r.plaksin@gmail.com organization: Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ural Federal Universit |
BookMark | eNp9kE1LAzEQhoNUsFZ_gLeA59V8bZI9StUqFCu0npfsdmK3bDc1SQ_7781SQVD0NMzM-8zHe45GnesAoStKbijl4nZJiKa54JoRIggl5ASNac5ppiXJR2g8tLOhf4bOQ9gmUa5EMUazRYfjBvBqA8732Fn86kITG9eZFt831oKHLjYpmZkdBGydxy9wiN602arfA172IcIuXKBTa9oAl19xgt4eH1bTp2y-mD1P7-ZZzYSM2boAoZQpCBdScCGYzjVURhR1wYDbqjAVaCWIWQ9VW0sj15VVRjMp61xYPkHXx7l77z4OEGK5dQefjg0lE1xpzTknSUWPqtq7EDzYcu-bnfF9SUk5-FX-8isx6gdTN9EMTqRnm_Zfkh3JkLZ07-C_b_ob-gRc_n5r |
CitedBy_id | crossref_primary_10_4213_rm10166 crossref_primary_10_4213_rm10166e crossref_primary_10_1007_s13235_024_00565_8 crossref_primary_10_1007_s00245_023_09980_6 crossref_primary_10_1134_S0081543824070083 |
Cites_doi | 10.1134/S0081543815080155 10.31857/S003282350002733-6 10.1016/0021-8928(78)90054-0 10.1007/978-1-4612-9892-2 10.1016/0021-8928(71)90032-3 10.1007/978-94-015-7793-9 10.1134/S0081543817090061 10.1134/S0081543818050048 |
ContentType | Journal Article Conference Proceeding |
Copyright | Pleiades Publishing, Ltd. 2020 Pleiades Publishing, Ltd. 2020. |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2020 – notice: Pleiades Publishing, Ltd. 2020. |
DBID | AAYXX CITATION |
DOI | 10.1134/S0081543820040100 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1531-8605 |
EndPage | S92 |
ExternalDocumentID | 10_1134_S0081543820040100 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C -~X .VR 06D 0R~ 0VY 123 1N0 29P 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5VS 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR IXC I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J P2P P9R PF0 PT4 QOS R89 R9I RIG RNS ROL RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XU3 YLTOR YNT ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ |
ID | FETCH-LOGICAL-c246t-d9e477a9034643442858eba49c92e3fb9abe8740adeba4fc6a6dbf7a8266c54f3 |
IEDL.DBID | AGYKE |
ISSN | 0081-5438 |
IngestDate | Fri Jul 25 11:10:17 EDT 2025 Tue Jul 01 03:08:47 EDT 2025 Thu Apr 24 22:53:16 EDT 2025 Fri Feb 21 02:31:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Suppl 1 |
Keywords | control theory neutral-type systems differential games |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-d9e477a9034643442858eba49c92e3fb9abe8740adeba4fc6a6dbf7a8266c54f3 |
Notes | ObjectType-Article-1 ObjectType-Feature-2 SourceType-Conference Papers & Proceedings-1 content type line 22 |
PQID | 2437883330 |
PQPubID | 2044165 |
ParticipantIDs | proquest_journals_2437883330 crossref_primary_10_1134_S0081543820040100 crossref_citationtrail_10_1134_S0081543820040100 springer_journals_10_1134_S0081543820040100 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: Heidelberg |
PublicationTitle | Proceedings of the Steklov Institute of Mathematics |
PublicationTitleAbbrev | Proc. Steklov Inst. Math |
PublicationYear | 2020 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | N. N. Krasovskii, Control of a Dynamical System (Nauka, Moscow, 1985) [in Russian]. V. I. Maksimov, “A differential game of guidance for systems with a deviating argument of neutral type,” in Problems of Dynamic Control (IMM UNTs AN SSSR, Sverdlovsk, 1981), pp. 33–45 [in Russian]. N. N. Krasovskii, Some Problems in the Theory of Motion Stability (Fizmatgiz, Moscow, 1959) [in Russian]. M. I. Gomoyunov and Yu. N. Lukoyanov, “On the numerical solution of differential games for neutral-type linear systems,” Proc. Steklov Inst. Math. 301 (Suppl. 1), S44–S56 (2018). doi 10.1134/S0081543818050048 J. Hale, Theory of Functional Differential Equations (Springer, New York, 1977). N. Yu. Lukoyanov and A. R. Plaksin, “Differential games for neutral-type systems: An approximation model,” Proc. Steklov Inst. Math. 291, 190–202 (2015). M. I. Gomoyunov, N. Yu. Lukoyanov, and A. R. Plaksin, “Existence of a value and a saddle point in positional differential games for neutral-type systems,” Proc. Steklov Inst. Math. 299 (Suppl. 1), S37–S48 (2017). M. I. Gomoyunov and A. R. Plaksin, “On the basic equation of differential games for neutral-type systems,” J. Appl. Math. Mech. 82 (6), 675–689 (2018). doi 10.31857/S003282350002733-6 A. V. Kryazhimskii, “On stable position control in differential games,” J. Appl. Math. Mech. 42 (6), 1055–1060 (1980). N. N. Krasovskii and A. I. Subbotin, Positional Differential Games (Nauka, Moscow, 1974) [in Russian]. Yu. S. Osipov, “On the theory of differential games of systems with aftereffect,” J. Appl. Math. Mech. 35 (2), 262–272 (1971). N. N. Krasovskii, “On the application of A. M. Lyapunov’s second method for time-delay equations,” Prikl. Mat. Mekh. 20 (3), 315–327 (1956). N. Yu. Lukoyanov, Functional Hamilton–Jacobi Equations and Control Problems with Hereditary Information (Izd. Ural. Fed. Univ., Yekaterinburg, 2011) [in Russian]. A. F. Filippov, Differential Equations with Discontinuous Righthand Sides (Nauka, Moscow, 1985; Springer, Berlin, 1988). 8010_CR2 8010_CR1 8010_CR6 8010_CR5 8010_CR4 8010_CR3 8010_CR11 8010_CR10 8010_CR9 8010_CR8 8010_CR7 8010_CR13 8010_CR12 8010_CR14 |
References_xml | – reference: V. I. Maksimov, “A differential game of guidance for systems with a deviating argument of neutral type,” in Problems of Dynamic Control (IMM UNTs AN SSSR, Sverdlovsk, 1981), pp. 33–45 [in Russian]. – reference: N. N. Krasovskii and A. I. Subbotin, Positional Differential Games (Nauka, Moscow, 1974) [in Russian]. – reference: N. N. Krasovskii, Some Problems in the Theory of Motion Stability (Fizmatgiz, Moscow, 1959) [in Russian]. – reference: A. V. Kryazhimskii, “On stable position control in differential games,” J. Appl. Math. Mech. 42 (6), 1055–1060 (1980). – reference: N. Yu. Lukoyanov, Functional Hamilton–Jacobi Equations and Control Problems with Hereditary Information (Izd. Ural. Fed. Univ., Yekaterinburg, 2011) [in Russian]. – reference: Yu. S. Osipov, “On the theory of differential games of systems with aftereffect,” J. Appl. Math. Mech. 35 (2), 262–272 (1971). – reference: M. I. Gomoyunov, N. Yu. Lukoyanov, and A. R. Plaksin, “Existence of a value and a saddle point in positional differential games for neutral-type systems,” Proc. Steklov Inst. Math. 299 (Suppl. 1), S37–S48 (2017). – reference: N. N. Krasovskii, “On the application of A. M. Lyapunov’s second method for time-delay equations,” Prikl. Mat. Mekh. 20 (3), 315–327 (1956). – reference: J. Hale, Theory of Functional Differential Equations (Springer, New York, 1977). – reference: M. I. Gomoyunov and A. R. Plaksin, “On the basic equation of differential games for neutral-type systems,” J. Appl. Math. Mech. 82 (6), 675–689 (2018). doi 10.31857/S003282350002733-6 – reference: N. Yu. Lukoyanov and A. R. Plaksin, “Differential games for neutral-type systems: An approximation model,” Proc. Steklov Inst. Math. 291, 190–202 (2015). – reference: N. N. Krasovskii, Control of a Dynamical System (Nauka, Moscow, 1985) [in Russian]. – reference: A. F. Filippov, Differential Equations with Discontinuous Righthand Sides (Nauka, Moscow, 1985; Springer, Berlin, 1988). – reference: M. I. Gomoyunov and Yu. N. Lukoyanov, “On the numerical solution of differential games for neutral-type linear systems,” Proc. Steklov Inst. Math. 301 (Suppl. 1), S44–S56 (2018). doi 10.1134/S0081543818050048 – ident: 8010_CR5 doi: 10.1134/S0081543815080155 – ident: 8010_CR7 doi: 10.31857/S003282350002733-6 – ident: 8010_CR9 doi: 10.1016/0021-8928(78)90054-0 – ident: 8010_CR4 doi: 10.1007/978-1-4612-9892-2 – ident: 8010_CR2 doi: 10.1016/0021-8928(71)90032-3 – ident: 8010_CR11 – ident: 8010_CR10 – ident: 8010_CR12 – ident: 8010_CR13 doi: 10.1007/978-94-015-7793-9 – ident: 8010_CR1 – ident: 8010_CR14 – ident: 8010_CR3 – ident: 8010_CR6 doi: 10.1134/S0081543817090061 – ident: 8010_CR8 doi: 10.1134/S0081543818050048 |
SSID | ssj0045749 |
Score | 2.1838057 |
Snippet | For a dynamical system whose motion is described by neutral-type differential equations in Hale’s form, we consider a minimax–maximin differential game with a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | S83 |
SubjectTerms | Differential equations Differential games Game theory Geometric constraints Mathematics Mathematics and Statistics Minimax technique Saddle points |
Title | On the Theory of Positional Differential Games for Neutral-Type Systems |
URI | https://link.springer.com/article/10.1134/S0081543820040100 https://www.proquest.com/docview/2437883330 |
Volume | 309 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8MgHCZmu-jBt3E6Fw6eNCxtgVKOm-4RzaaHLZmnhlK4uHTGdRf_eqGlW3wmO7Y80gKF7ys_vg-Aa988XUptUHskKSKKCBQJJhHVmnpp4BNVqOuPxuFwSh5mdObOcS-raPdqS7KYqUvfEVKc6TXrPY5svxoWYXh63cAPj9RAvTN4eexVEzChzKHeyEe2gNvM_LWSr8vRBmN-2xYtVpv-AZhUz1kGmby2V3nSlh_fJBy3fJFDsO_QJ-yUw-UI7KjsGOyN1tKtyxMweMqguYTloX240PDZxXWZgvfOTsVMC3M4sAG20IBeOFYr-8MEWVILnQb6KZj2e5O7IXJuC0gGJMxRyhVhTHAPE4NSiKElNFKJIFzyQGGdcJEo698nUntXy1CEaaKZMPwklJRofAZq2SJT5wAGUjLNOPP9hBOGeZQyyzupCpg1wMIN4FWNHksnRW4dMeZxQUkwiX-0UQPcrIu8lToc_2VuVj0Zu09yGVvlReusjE3ybdUxm-Q_K7vYKvcl2A0sIy9CBJuglr-v1JWBLXnSMsO03-2OW264fgI_v98q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8MgHCZmO6gH38bpVA6eNCxrgVKOi-6he-hhS-apoRQuLp1x28W_XmjpFucj2bHlEQoUfh-_H98HwI1nWpdQG9QeSoqIIgKFgklEtab1xPeIytj1-4OgMyJPYzp297hnRbR74ZLMVupcd4Rkd3rNfo9DO64GRRicXiYGgptpXW60X7vNYgEmlDmrN_SQLeCcmb9W8n07WtmYa27RbLdp7YNh0c48yOSttpjHNfm5RuG44YccgD1nfcJGPl0OwZZKj8Buf0ndOjsG7ecUmkeYX9qHUw1fXFyXKfjg5FTMsjCBbRtgC43RCwdqYQ9MkAW10HGgn4BRqzm87yCntoCkT4I5SrgijAlex8RYKcTAEhqqWBAuua-wjrmIldXvE4l9q2UggiTWTBh8EkhKND4FpXSaqjMAfSmZZpx5XswJwzxMmMWdVPnMCmDhCqgXnR5JR0VuFTEmUQZJMIl-9FEF3C6LvOc8HP9lrhYjGblfchZZ5kWrrIxN8l0xMKvkPys73yj3NdjuDPu9qPc46F6AHd-i8yxcsApK84-FujQmzDy-clP2C9_D4J0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8IwGG4MJEYPfhtR1B48aYpsa9f1SORDRZCDJHiaXddeJIPIuPjrbbcOIn4kxuPWj3R7u_Z91vd9HgAuHD26mJig9kAQhCXmKOBUIKIUqceug2XGrt_r-7dDfD8iI6tzOiui3YsjyTynwbA0Jen1NFZWgwRn-b167_cCY2ONKDRmL2NDbVcC5UbnudsqFmNMqPWAAweZBvZg89tOPm9NS39z5Yg023na2-ClGHMecPJam6dRTbyv0Dn-46F2wJb1SmEjn0a7YE0me2Czt6B0ne2DzmMC9SXMk_nhRMGBjffSDZtWZkUvF2PYMYG3UDvDsC_n5kcKMmAXWm70AzBst55ubpFVYUDCxX6KYiYxpZzVPay9F6zhCglkxDETzJWeihiPpNH147G5q4TP_ThSlGvc4guClXcISskkkUcAukJQRRl1nIhh6rEgpgaPEulSI4zlVUC9MEAoLEW5UcoYhxlU8XD45R1VwOWiyTTn5_itcrWwamg_1VloGBmN4rKni68KIy2Lf-zs-E-1z8H6oNkOH-763ROw4RrQnkURVkEpfZvLU-3ZpNGZnb0fwS3pgQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+Steklov+Institute+of+Mathematics&rft.atitle=On+the+Theory+of+Positional+Differential+Games+for+Neutral-Type+Systems&rft.au=Yu%2C+Lukoyanov+N&rft.au=Plaksin%2C+A+R&rft.date=2020-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0081-5438&rft.eissn=1531-8605&rft.volume=309&rft.issue=1&rft.spage=S83&rft.epage=S92&rft_id=info:doi/10.1134%2FS0081543820040100&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0081-5438&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0081-5438&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0081-5438&client=summon |