On the Theory of Positional Differential Games for Neutral-Type Systems

For a dynamical system whose motion is described by neutral-type differential equations in Hale’s form, we consider a minimax–maximin differential game with a quality index evaluating the motion history realized up to the terminal time. The control actions of the players are subject to geometric con...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Steklov Institute of Mathematics Vol. 309; no. Suppl 1; pp. S83 - S92
Main Authors Lukoyanov, N. Yu, Plaksin, A. R.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Moscow Pleiades Publishing 01.08.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For a dynamical system whose motion is described by neutral-type differential equations in Hale’s form, we consider a minimax–maximin differential game with a quality index evaluating the motion history realized up to the terminal time. The control actions of the players are subject to geometric constraints. The game is formalized in classes of pure positional strategies with a memory of the motion history. It is proved that the game has a value and a saddle point. The proof is based on the choice of an appropriate Lyapunov–Krasovskii functional for the construction of control strategies by the method of an extremal shift to accompanying points.
AbstractList For a dynamical system whose motion is described by neutral-type differential equations in Hale’s form, we consider a minimax–maximin differential game with a quality index evaluating the motion history realized up to the terminal time. The control actions of the players are subject to geometric constraints. The game is formalized in classes of pure positional strategies with a memory of the motion history. It is proved that the game has a value and a saddle point. The proof is based on the choice of an appropriate Lyapunov–Krasovskii functional for the construction of control strategies by the method of an extremal shift to accompanying points.
Author Lukoyanov, N. Yu
Plaksin, A. R.
Author_xml – sequence: 1
  givenname: N. Yu
  surname: Lukoyanov
  fullname: Lukoyanov, N. Yu
  email: nyul@imm.uran.ru
  organization: Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ural Federal Universit
– sequence: 2
  givenname: A. R.
  surname: Plaksin
  fullname: Plaksin, A. R.
  email: a.r.plaksin@gmail.com
  organization: Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ural Federal Universit
BookMark eNp9kE1LAzEQhoNUsFZ_gLeA59V8bZI9StUqFCu0npfsdmK3bDc1SQ_7781SQVD0NMzM-8zHe45GnesAoStKbijl4nZJiKa54JoRIggl5ASNac5ppiXJR2g8tLOhf4bOQ9gmUa5EMUazRYfjBvBqA8732Fn86kITG9eZFt831oKHLjYpmZkdBGydxy9wiN602arfA172IcIuXKBTa9oAl19xgt4eH1bTp2y-mD1P7-ZZzYSM2boAoZQpCBdScCGYzjVURhR1wYDbqjAVaCWIWQ9VW0sj15VVRjMp61xYPkHXx7l77z4OEGK5dQefjg0lE1xpzTknSUWPqtq7EDzYcu-bnfF9SUk5-FX-8isx6gdTN9EMTqRnm_Zfkh3JkLZ07-C_b_ob-gRc_n5r
CitedBy_id crossref_primary_10_4213_rm10166
crossref_primary_10_4213_rm10166e
crossref_primary_10_1007_s13235_024_00565_8
crossref_primary_10_1007_s00245_023_09980_6
crossref_primary_10_1134_S0081543824070083
Cites_doi 10.1134/S0081543815080155
10.31857/S003282350002733-6
10.1016/0021-8928(78)90054-0
10.1007/978-1-4612-9892-2
10.1016/0021-8928(71)90032-3
10.1007/978-94-015-7793-9
10.1134/S0081543817090061
10.1134/S0081543818050048
ContentType Journal Article
Conference Proceeding
Copyright Pleiades Publishing, Ltd. 2020
Pleiades Publishing, Ltd. 2020.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2020
– notice: Pleiades Publishing, Ltd. 2020.
DBID AAYXX
CITATION
DOI 10.1134/S0081543820040100
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1531-8605
EndPage S92
ExternalDocumentID 10_1134_S0081543820040100
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
-~X
.VR
06D
0R~
0VY
123
1N0
29P
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5VS
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9R
PF0
PT4
QOS
R89
R9I
RIG
RNS
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XU3
YLTOR
YNT
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
ID FETCH-LOGICAL-c246t-d9e477a9034643442858eba49c92e3fb9abe8740adeba4fc6a6dbf7a8266c54f3
IEDL.DBID AGYKE
ISSN 0081-5438
IngestDate Fri Jul 25 11:10:17 EDT 2025
Tue Jul 01 03:08:47 EDT 2025
Thu Apr 24 22:53:16 EDT 2025
Fri Feb 21 02:31:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue Suppl 1
Keywords control theory
neutral-type systems
differential games
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-d9e477a9034643442858eba49c92e3fb9abe8740adeba4fc6a6dbf7a8266c54f3
Notes ObjectType-Article-1
ObjectType-Feature-2
SourceType-Conference Papers & Proceedings-1
content type line 22
PQID 2437883330
PQPubID 2044165
ParticipantIDs proquest_journals_2437883330
crossref_primary_10_1134_S0081543820040100
crossref_citationtrail_10_1134_S0081543820040100
springer_journals_10_1134_S0081543820040100
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Heidelberg
PublicationTitle Proceedings of the Steklov Institute of Mathematics
PublicationTitleAbbrev Proc. Steklov Inst. Math
PublicationYear 2020
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References N. N. Krasovskii, Control of a Dynamical System (Nauka, Moscow, 1985) [in Russian].
V. I. Maksimov, “A differential game of guidance for systems with a deviating argument of neutral type,” in Problems of Dynamic Control (IMM UNTs AN SSSR, Sverdlovsk, 1981), pp. 33–45 [in Russian].
N. N. Krasovskii, Some Problems in the Theory of Motion Stability (Fizmatgiz, Moscow, 1959) [in Russian].
M. I. Gomoyunov and Yu. N. Lukoyanov, “On the numerical solution of differential games for neutral-type linear systems,” Proc. Steklov Inst. Math. 301 (Suppl. 1), S44–S56 (2018). doi 10.1134/S0081543818050048
J. Hale, Theory of Functional Differential Equations (Springer, New York, 1977).
N. Yu. Lukoyanov and A. R. Plaksin, “Differential games for neutral-type systems: An approximation model,” Proc. Steklov Inst. Math. 291, 190–202 (2015).
M. I. Gomoyunov, N. Yu. Lukoyanov, and A. R. Plaksin, “Existence of a value and a saddle point in positional differential games for neutral-type systems,” Proc. Steklov Inst. Math. 299 (Suppl. 1), S37–S48 (2017).
M. I. Gomoyunov and A. R. Plaksin, “On the basic equation of differential games for neutral-type systems,” J. Appl. Math. Mech. 82 (6), 675–689 (2018). doi 10.31857/S003282350002733-6
A. V. Kryazhimskii, “On stable position control in differential games,” J. Appl. Math. Mech. 42 (6), 1055–1060 (1980).
N. N. Krasovskii and A. I. Subbotin, Positional Differential Games (Nauka, Moscow, 1974) [in Russian].
Yu. S. Osipov, “On the theory of differential games of systems with aftereffect,” J. Appl. Math. Mech. 35 (2), 262–272 (1971).
N. N. Krasovskii, “On the application of A. M. Lyapunov’s second method for time-delay equations,” Prikl. Mat. Mekh. 20 (3), 315–327 (1956).
N. Yu. Lukoyanov, Functional Hamilton–Jacobi Equations and Control Problems with Hereditary Information (Izd. Ural. Fed. Univ., Yekaterinburg, 2011) [in Russian].
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides (Nauka, Moscow, 1985; Springer, Berlin, 1988).
8010_CR2
8010_CR1
8010_CR6
8010_CR5
8010_CR4
8010_CR3
8010_CR11
8010_CR10
8010_CR9
8010_CR8
8010_CR7
8010_CR13
8010_CR12
8010_CR14
References_xml – reference: V. I. Maksimov, “A differential game of guidance for systems with a deviating argument of neutral type,” in Problems of Dynamic Control (IMM UNTs AN SSSR, Sverdlovsk, 1981), pp. 33–45 [in Russian].
– reference: N. N. Krasovskii and A. I. Subbotin, Positional Differential Games (Nauka, Moscow, 1974) [in Russian].
– reference: N. N. Krasovskii, Some Problems in the Theory of Motion Stability (Fizmatgiz, Moscow, 1959) [in Russian].
– reference: A. V. Kryazhimskii, “On stable position control in differential games,” J. Appl. Math. Mech. 42 (6), 1055–1060 (1980).
– reference: N. Yu. Lukoyanov, Functional Hamilton–Jacobi Equations and Control Problems with Hereditary Information (Izd. Ural. Fed. Univ., Yekaterinburg, 2011) [in Russian].
– reference: Yu. S. Osipov, “On the theory of differential games of systems with aftereffect,” J. Appl. Math. Mech. 35 (2), 262–272 (1971).
– reference: M. I. Gomoyunov, N. Yu. Lukoyanov, and A. R. Plaksin, “Existence of a value and a saddle point in positional differential games for neutral-type systems,” Proc. Steklov Inst. Math. 299 (Suppl. 1), S37–S48 (2017).
– reference: N. N. Krasovskii, “On the application of A. M. Lyapunov’s second method for time-delay equations,” Prikl. Mat. Mekh. 20 (3), 315–327 (1956).
– reference: J. Hale, Theory of Functional Differential Equations (Springer, New York, 1977).
– reference: M. I. Gomoyunov and A. R. Plaksin, “On the basic equation of differential games for neutral-type systems,” J. Appl. Math. Mech. 82 (6), 675–689 (2018). doi 10.31857/S003282350002733-6
– reference: N. Yu. Lukoyanov and A. R. Plaksin, “Differential games for neutral-type systems: An approximation model,” Proc. Steklov Inst. Math. 291, 190–202 (2015).
– reference: N. N. Krasovskii, Control of a Dynamical System (Nauka, Moscow, 1985) [in Russian].
– reference: A. F. Filippov, Differential Equations with Discontinuous Righthand Sides (Nauka, Moscow, 1985; Springer, Berlin, 1988).
– reference: M. I. Gomoyunov and Yu. N. Lukoyanov, “On the numerical solution of differential games for neutral-type linear systems,” Proc. Steklov Inst. Math. 301 (Suppl. 1), S44–S56 (2018). doi 10.1134/S0081543818050048
– ident: 8010_CR5
  doi: 10.1134/S0081543815080155
– ident: 8010_CR7
  doi: 10.31857/S003282350002733-6
– ident: 8010_CR9
  doi: 10.1016/0021-8928(78)90054-0
– ident: 8010_CR4
  doi: 10.1007/978-1-4612-9892-2
– ident: 8010_CR2
  doi: 10.1016/0021-8928(71)90032-3
– ident: 8010_CR11
– ident: 8010_CR10
– ident: 8010_CR12
– ident: 8010_CR13
  doi: 10.1007/978-94-015-7793-9
– ident: 8010_CR1
– ident: 8010_CR14
– ident: 8010_CR3
– ident: 8010_CR6
  doi: 10.1134/S0081543817090061
– ident: 8010_CR8
  doi: 10.1134/S0081543818050048
SSID ssj0045749
Score 2.1838057
Snippet For a dynamical system whose motion is described by neutral-type differential equations in Hale’s form, we consider a minimax–maximin differential game with a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage S83
SubjectTerms Differential equations
Differential games
Game theory
Geometric constraints
Mathematics
Mathematics and Statistics
Minimax technique
Saddle points
Title On the Theory of Positional Differential Games for Neutral-Type Systems
URI https://link.springer.com/article/10.1134/S0081543820040100
https://www.proquest.com/docview/2437883330
Volume 309
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8MgHCZmu-jBt3E6Fw6eNCxtgVKOm-4RzaaHLZmnhlK4uHTGdRf_eqGlW3wmO7Y80gKF7ys_vg-Aa988XUptUHskKSKKCBQJJhHVmnpp4BNVqOuPxuFwSh5mdObOcS-raPdqS7KYqUvfEVKc6TXrPY5svxoWYXh63cAPj9RAvTN4eexVEzChzKHeyEe2gNvM_LWSr8vRBmN-2xYtVpv-AZhUz1kGmby2V3nSlh_fJBy3fJFDsO_QJ-yUw-UI7KjsGOyN1tKtyxMweMqguYTloX240PDZxXWZgvfOTsVMC3M4sAG20IBeOFYr-8MEWVILnQb6KZj2e5O7IXJuC0gGJMxRyhVhTHAPE4NSiKElNFKJIFzyQGGdcJEo698nUntXy1CEaaKZMPwklJRofAZq2SJT5wAGUjLNOPP9hBOGeZQyyzupCpg1wMIN4FWNHksnRW4dMeZxQUkwiX-0UQPcrIu8lToc_2VuVj0Zu09yGVvlReusjE3ybdUxm-Q_K7vYKvcl2A0sIy9CBJuglr-v1JWBLXnSMsO03-2OW264fgI_v98q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8MgHCZmO6gH38bpVA6eNCxrgVKOi-6he-hhS-apoRQuLp1x28W_XmjpFucj2bHlEQoUfh-_H98HwI1nWpdQG9QeSoqIIgKFgklEtab1xPeIytj1-4OgMyJPYzp297hnRbR74ZLMVupcd4Rkd3rNfo9DO64GRRicXiYGgptpXW60X7vNYgEmlDmrN_SQLeCcmb9W8n07WtmYa27RbLdp7YNh0c48yOSttpjHNfm5RuG44YccgD1nfcJGPl0OwZZKj8Buf0ndOjsG7ecUmkeYX9qHUw1fXFyXKfjg5FTMsjCBbRtgC43RCwdqYQ9MkAW10HGgn4BRqzm87yCntoCkT4I5SrgijAlex8RYKcTAEhqqWBAuua-wjrmIldXvE4l9q2UggiTWTBh8EkhKND4FpXSaqjMAfSmZZpx5XswJwzxMmMWdVPnMCmDhCqgXnR5JR0VuFTEmUQZJMIl-9FEF3C6LvOc8HP9lrhYjGblfchZZ5kWrrIxN8l0xMKvkPys73yj3NdjuDPu9qPc46F6AHd-i8yxcsApK84-FujQmzDy-clP2C9_D4J0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8IwGG4MJEYPfhtR1B48aYpsa9f1SORDRZCDJHiaXddeJIPIuPjrbbcOIn4kxuPWj3R7u_Z91vd9HgAuHD26mJig9kAQhCXmKOBUIKIUqceug2XGrt_r-7dDfD8iI6tzOiui3YsjyTynwbA0Jen1NFZWgwRn-b167_cCY2ONKDRmL2NDbVcC5UbnudsqFmNMqPWAAweZBvZg89tOPm9NS39z5Yg023na2-ClGHMecPJam6dRTbyv0Dn-46F2wJb1SmEjn0a7YE0me2Czt6B0ne2DzmMC9SXMk_nhRMGBjffSDZtWZkUvF2PYMYG3UDvDsC_n5kcKMmAXWm70AzBst55ubpFVYUDCxX6KYiYxpZzVPay9F6zhCglkxDETzJWeihiPpNH147G5q4TP_ThSlGvc4guClXcISskkkUcAukJQRRl1nIhh6rEgpgaPEulSI4zlVUC9MEAoLEW5UcoYhxlU8XD45R1VwOWiyTTn5_itcrWwamg_1VloGBmN4rKni68KIy2Lf-zs-E-1z8H6oNkOH-763ROw4RrQnkURVkEpfZvLU-3ZpNGZnb0fwS3pgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+Steklov+Institute+of+Mathematics&rft.atitle=On+the+Theory+of+Positional+Differential+Games+for+Neutral-Type+Systems&rft.au=Yu%2C+Lukoyanov+N&rft.au=Plaksin%2C+A+R&rft.date=2020-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0081-5438&rft.eissn=1531-8605&rft.volume=309&rft.issue=1&rft.spage=S83&rft.epage=S92&rft_id=info:doi/10.1134%2FS0081543820040100&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0081-5438&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0081-5438&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0081-5438&client=summon