Hierarchical Feature Fusion Triple Network for Change Detection With Bitemporal Remote Sensing Images

Achieving land cover change detection (LCCD) through remotely sensed images (RSIs) is important in the observation of the changes on the Earth's surface. In such detection, spectral-reflectance noise and the uncertainty of the imaging external conditions for the bitemporal RSIs usually cause so...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 63; pp. 1 - 12
Main Authors Lv, Zhiyong, Yang, Tianyv, Zhong, Pingdong, Sun, Weiwei, Atli Benediktsson, Jon, Li, Junhuai
Format Journal Article
LanguageEnglish
Published New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Achieving land cover change detection (LCCD) through remotely sensed images (RSIs) is important in the observation of the changes on the Earth's surface. In such detection, spectral-reflectance noise and the uncertainty of the imaging external conditions for the bitemporal RSIs usually cause some salt-and-pepper noisy pixels in the results and reduce the change detection accuracy. In this article, a hierarchical feature-fusion triple network (HFTN) is proposed to improve the performance of LCCD with RSIs. Overall, the proposed HFTN aims to learn representative features to improve change detection performance via two feature learning enhancement strategies and a hierarchical feature-fusion mechanism. First, an image feature difference model is proposed to generate the input feature for the middle branch and guide the learning performance. Second, a progressive denoising module (PDM) is proposed and applied to each temporal image to reduce the noise before feeding the features into the backbone of the proposed HFTN. Finally, a hierarchical feature-fusion module (HFFM) is proposed to fuse the learned deep feature for generating a change-magnitude image. Additionally, multiscale convolution, cross-scale fusion, and a shared weight are adopted in the backbone of the proposed HFTN to further enhance the feature learning performance. Compared with eight state-of-the-art methods, experimental results verified the feasibility and superiority of the proposed HFTN for LCCD with RSIs. For example, the proposed HFTN achieved improvement rates of approximately 0.43%-11.83% for overall accuracy (OA) and 0.11%-4.81% for false alarms (FAs) across six pairs of real RSIs. The code can be available at https://github.com/ImgSciGroup/HFTN-NET.git .
AbstractList Achieving land cover change detection (LCCD) through remotely sensed images (RSIs) is important in the observation of the changes on the Earth's surface. In such detection, spectral-reflectance noise and the uncertainty of the imaging external conditions for the bitemporal RSIs usually cause some salt-and-pepper noisy pixels in the results and reduce the change detection accuracy. In this article, a hierarchical feature-fusion triple network (HFTN) is proposed to improve the performance of LCCD with RSIs. Overall, the proposed HFTN aims to learn representative features to improve change detection performance via two feature learning enhancement strategies and a hierarchical feature-fusion mechanism. First, an image feature difference model is proposed to generate the input feature for the middle branch and guide the learning performance. Second, a progressive denoising module (PDM) is proposed and applied to each temporal image to reduce the noise before feeding the features into the backbone of the proposed HFTN. Finally, a hierarchical feature-fusion module (HFFM) is proposed to fuse the learned deep feature for generating a change-magnitude image. Additionally, multiscale convolution, cross-scale fusion, and a shared weight are adopted in the backbone of the proposed HFTN to further enhance the feature learning performance. Compared with eight state-of-the-art methods, experimental results verified the feasibility and superiority of the proposed HFTN for LCCD with RSIs. For example, the proposed HFTN achieved improvement rates of approximately 0.43%-11.83% for overall accuracy (OA) and 0.11%-4.81% for false alarms (FAs) across six pairs of real RSIs. The code can be available at https://github.com/ImgSciGroup/HFTN-NET.git .
Author Zhong, Pingdong
Atli Benediktsson, Jon
Lv, Zhiyong
Yang, Tianyv
Li, Junhuai
Sun, Weiwei
Author_xml – sequence: 1
  givenname: Zhiyong
  orcidid: 0000-0003-2595-4794
  surname: Lv
  fullname: Lv, Zhiyong
  email: Lvzhiyong_fly@hotmail.com
  organization: School of Computer Science and Engineering, Shaanxi Key Laboratory of Network Computing and Security Technology, Xi'an University of Technology, Xi'an, China
– sequence: 2
  givenname: Tianyv
  surname: Yang
  fullname: Yang, Tianyv
  email: Yangtianyv_dream@outlook.com
  organization: School of Computer Science and Engineering, Shaanxi Key Laboratory of Network Computing and Security Technology, Xi'an University of Technology, Xi'an, China
– sequence: 3
  givenname: Pingdong
  surname: Zhong
  fullname: Zhong, Pingdong
  email: Zhongpingdong_Mal@hotmail.com
  organization: School of Computer Science and Engineering, Shaanxi Key Laboratory of Network Computing and Security Technology, Xi'an University of Technology, Xi'an, China
– sequence: 4
  givenname: Weiwei
  orcidid: 0000-0003-3399-7858
  surname: Sun
  fullname: Sun, Weiwei
  email: nbsww@outlook.com
  organization: Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, Zhejiang, China
– sequence: 5
  givenname: Jon
  orcidid: 0000-0003-0621-9647
  surname: Atli Benediktsson
  fullname: Atli Benediktsson, Jon
  email: benedikt@hi.is
  organization: Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
– sequence: 6
  givenname: Junhuai
  orcidid: 0000-0001-5483-5175
  surname: Li
  fullname: Li, Junhuai
  email: lijunhuai@xaut.edu.cn
  organization: School of Computer Science and Engineering, Shaanxi Key Laboratory of Network Computing and Security Technology, Xi'an University of Technology, Xi'an, China
BookMark eNpNkE1LAzEQhoMo2FZ_gOAh4Hlrvjd71Go_oCi0FY9Lms62qe2mJiniv3eX9uBpGOZ534Gniy5rXwNCd5T0KSXF42I0m_cZYbLPJZOa0gvUoVLqjCghLlGH0EJlTBfsGnVj3BJChaR5B8HYQTDBbpw1OzwEk44B8PAYna_xIrjDDvAbpB8fvnDlAx5sTL0G_AIJbGqZT5c2-Nkl2B98aCpmsPcJ8Bzq6Oo1nuzNGuINuqrMLsLtefbQx_B1MRhn0_fRZPA0zSwTKmVWihykJrTSHCxZcpFrzfhKyWolSFVUxrZXy9XSKG0FUc1eLfXS5rlWFHgPPZx6D8F_HyGmcuuPoW5elpxKpRihkjUUPVE2-BgDVOUhuL0JvyUlZWuzbG2Wrc3ybLPJ3J8yDgD-8ZoVouD8D5dNctQ
CODEN IGRSD2
Cites_doi 10.1109/LGRS.2022.3200396
10.1109/JSTARS.2023.3283524
10.3390/rs13153053
10.1016/j.isprsjprs.2023.01.008
10.1109/TNNLS.2022.3184414
10.1016/j.isprsjprs.2020.09.019
10.1016/j.isprsjprs.2020.06.003
10.1109/IGARSS.2017.8127353
10.1109/TGRS.2024.3381632
10.3390/rs15030842
10.3390/rs13173394
10.1109/JSTARS.2021.3129318
10.4236/ars.2013.22022
10.1109/LGRS.2021.3056416
10.1109/TGRS.2022.3197901
10.1109/JSTARS.2022.3224081
10.1109/IGARSS46834.2022.9883686
10.1109/TGRS.2023.3310613
10.1109/MSP.2020.3014591
10.1109/JSTARS.2022.3177235
10.1007/978-3-319-24574-4_28
10.1109/tgrs.2021.3095166
10.21742/ijwmcis.2017.4.1.01
10.1109/tgrs.2021.3061686
10.1080/17538947.2022.2111470
10.1038/s41598-022-16329-6
10.1109/LGRS.2021.3098774
10.1109/TGRS.2003.817268
10.1109/TGRS.2023.3261273
10.1109/TCYB.2022.3219855
10.1109/TGRS.2022.3209972
10.5555/3045118.3045167
10.1016/j.jag.2021.102348
10.1109/JPROC.2017.2675998
10.1016/j.jag.2023.103303
10.1016/j.procs.2016.07.144
10.1109/TGRS.2018.2849692
10.1109/TPAMI.2021.3059968
10.1109/tgrs.2021.3085870
10.3390/rs12244135
10.1080/10095020.2022.2085633
10.1109/LGRS.2023.3305623
10.1109/TGRS.2024.3374600
10.1155/2018/7068349
10.1109/TGRS.2022.3199502
10.1109/TGRS.2022.3144894
10.5721/EuJRS20144723
10.1109/TNNLS.2018.2876865
10.1109/LGRS.2022.3173300
10.1109/LGRS.2017.2738149
10.1016/j.commatsci.2020.109850
10.1016/j.rse.2020.111716
10.1109/MGRS.2021.3063465
10.1109/TGRS.2022.3169479
10.1109/JPROC.2022.3219376
10.1109/TGRS.2020.2981051
10.1016/j.patcog.2020.107598
10.1109/TGRS.2023.3325220
10.1016/j.patcog.2014.12.016
10.1016/j.isprsjprs.2022.12.002
10.1109/URS.2009.5137540
10.1109/TGRS.2019.2927659
10.1109/ICEngTechnol.2017.8308186
10.3390/rs14071580
10.1109/MGRS.2021.3088865
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2025.3525811
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 12
ExternalDocumentID 10_1109_TGRS_2025_3525811
10829493
Genre orig-research
GrantInformation_xml – fundername: Natural Science Basic Research Programs of Shaanxi
  grantid: 2023-YBGY-236
  funderid: 10.13039/501100013804
– fundername: National Natural Science Foundation of China
  grantid: 42271385; 41971296; 42122009
  funderid: 10.13039/501100001809
– fundername: Zhejiang Province Pioneering Soldier and Leading Goose Research and Development Project
  grantid: 2023C01027
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c246t-c547e5801f83ec0b3478823d65fd40f9fac5801c36ba68c406c58fb8bc77861e3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 10:20:41 EDT 2025
Tue Jul 01 02:15:34 EDT 2025
Wed Aug 27 01:55:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-c547e5801f83ec0b3478823d65fd40f9fac5801c36ba68c406c58fb8bc77861e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3399-7858
0000-0003-2595-4794
0000-0003-0621-9647
0000-0001-5483-5175
PQID 3156620152
PQPubID 85465
PageCount 12
ParticipantIDs proquest_journals_3156620152
crossref_primary_10_1109_TGRS_2025_3525811
ieee_primary_10829493
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
Agarap (ref64) 2018
ref48
ref47
ref42
ref41
ref44
ref49
ref8
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
Prakasam (ref7) 2010; 1
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Saleh Al-amri (ref63) 2010
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref22
ref66
ref21
ref65
Han (ref43); 34
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref47
  doi: 10.1109/LGRS.2022.3200396
– ident: ref60
  doi: 10.1109/JSTARS.2023.3283524
– year: 2010
  ident: ref63
  article-title: A comparative study of removal noise from remote sensing image
  publication-title: arXiv:1002.1148
– ident: ref59
  doi: 10.3390/rs13153053
– ident: ref6
  doi: 10.1016/j.isprsjprs.2023.01.008
– ident: ref9
  doi: 10.1109/TNNLS.2022.3184414
– ident: ref38
  doi: 10.1016/j.isprsjprs.2020.09.019
– ident: ref52
  doi: 10.1016/j.isprsjprs.2020.06.003
– ident: ref58
  doi: 10.1109/IGARSS.2017.8127353
– ident: ref18
  doi: 10.1109/TGRS.2024.3381632
– ident: ref44
  doi: 10.3390/rs15030842
– ident: ref31
  doi: 10.3390/rs13173394
– ident: ref53
  doi: 10.1109/JSTARS.2021.3129318
– ident: ref3
  doi: 10.4236/ars.2013.22022
– ident: ref33
  doi: 10.1109/LGRS.2021.3056416
– ident: ref16
  doi: 10.1109/TGRS.2022.3197901
– ident: ref29
  doi: 10.1109/JSTARS.2022.3224081
– ident: ref35
  doi: 10.1109/IGARSS46834.2022.9883686
– ident: ref5
  doi: 10.1109/TGRS.2023.3310613
– ident: ref23
  doi: 10.1109/MSP.2020.3014591
– ident: ref45
  doi: 10.1109/JSTARS.2022.3177235
– ident: ref62
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref48
  doi: 10.1109/tgrs.2021.3095166
– ident: ref20
  doi: 10.21742/ijwmcis.2017.4.1.01
– ident: ref32
  doi: 10.1109/tgrs.2021.3061686
– ident: ref50
  doi: 10.1080/17538947.2022.2111470
– volume: 34
  start-page: 15908
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref43
  article-title: Transformer in transformer
– ident: ref56
  doi: 10.1038/s41598-022-16329-6
– ident: ref41
  doi: 10.1109/LGRS.2021.3098774
– ident: ref15
  doi: 10.1109/TGRS.2003.817268
– ident: ref69
  doi: 10.1109/TGRS.2023.3261273
– ident: ref10
  doi: 10.1109/TCYB.2022.3219855
– ident: ref46
  doi: 10.1109/TGRS.2022.3209972
– ident: ref66
  doi: 10.5555/3045118.3045167
– ident: ref51
  doi: 10.1016/j.jag.2021.102348
– ident: ref4
  doi: 10.1109/JPROC.2017.2675998
– ident: ref61
  doi: 10.1016/j.jag.2023.103303
– ident: ref8
  doi: 10.1016/j.procs.2016.07.144
– ident: ref27
  doi: 10.1109/TGRS.2018.2849692
– ident: ref25
  doi: 10.1109/TPAMI.2021.3059968
– ident: ref68
  doi: 10.1109/tgrs.2021.3085870
– ident: ref14
  doi: 10.3390/rs12244135
– ident: ref26
  doi: 10.1080/10095020.2022.2085633
– year: 2018
  ident: ref64
  article-title: Deep learning using rectified linear units (ReLU)
  publication-title: arXiv:1803.08375
– ident: ref55
  doi: 10.1109/LGRS.2023.3305623
– volume: 1
  start-page: 150
  issue: 2
  year: 2010
  ident: ref7
  article-title: Land use and land cover change detection through remote sensing approach: A case study of Kodaikanal taluk, Tamil Nadu
  publication-title: Int. J. Geomatics Geosci.
– ident: ref54
  doi: 10.1109/TGRS.2024.3374600
– ident: ref22
  doi: 10.1155/2018/7068349
– ident: ref67
  doi: 10.1109/TGRS.2022.3199502
– ident: ref39
  doi: 10.1109/TGRS.2022.3144894
– ident: ref19
  doi: 10.5721/EuJRS20144723
– ident: ref24
  doi: 10.1109/TNNLS.2018.2876865
– ident: ref40
  doi: 10.1109/LGRS.2022.3173300
– ident: ref34
  doi: 10.1109/LGRS.2017.2738149
– ident: ref28
  doi: 10.1016/j.commatsci.2020.109850
– ident: ref11
  doi: 10.1016/j.rse.2020.111716
– ident: ref36
  doi: 10.1109/MGRS.2021.3063465
– ident: ref42
  doi: 10.1109/TGRS.2022.3169479
– ident: ref1
  doi: 10.1109/JPROC.2022.3219376
– ident: ref30
  doi: 10.1109/TGRS.2020.2981051
– ident: ref21
  doi: 10.1016/j.patcog.2020.107598
– ident: ref49
  doi: 10.1109/TGRS.2023.3325220
– ident: ref12
  doi: 10.1016/j.patcog.2014.12.016
– ident: ref13
  doi: 10.1016/j.isprsjprs.2022.12.002
– ident: ref57
  doi: 10.1109/URS.2009.5137540
– ident: ref17
  doi: 10.1109/TGRS.2019.2927659
– ident: ref65
  doi: 10.1109/ICEngTechnol.2017.8308186
– ident: ref37
  doi: 10.3390/rs14071580
– ident: ref2
  doi: 10.1109/MGRS.2021.3088865
SSID ssj0014517
Score 2.4836397
Snippet Achieving land cover change detection (LCCD) through remotely sensed images (RSIs) is important in the observation of the changes on the Earth's surface. In...
Achieving land cover change detection (LCCD) through remotely sensed images (RSIs) is important in the observation of the changes on the Earth’s surface. In...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Change detection
Convolution
Convolutional neural networks
Earth surface
False alarms
Feature extraction
Imaging
Kernel
Land cover
Land cover change detection (LCCD)
Learning
Modules
neural network
Neural networks
Noise
Noise reduction
Performance enhancement
Reflectance
Remote sensing
remotely sensed images (RSIs)
Shape
Transformers
Title Hierarchical Feature Fusion Triple Network for Change Detection With Bitemporal Remote Sensing Images
URI https://ieeexplore.ieee.org/document/10829493
https://www.proquest.com/docview/3156620152
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYACQkOvBGDgXLghNSxNknXHnmNgcQOYwhu1ZK5MDEK2toLvx477RAPIXFr1Yei2Ik_O_5sgMOB0UhW2fcGuiU9hYobuRvjBcZohVFoBoqJwjfdsHOnrh_0Q0VWd1wYRHTJZ9jgS3eWP3y1BYfKaIVHQaxiOQ_z5LmVZK3PIwOl_YobHXrkRQTVEabfjI_7l71bcgUD3eDin5HvfzNCrqvKr63Y2Zf2KnRnIyvTSp4bRW4a9v1H0cZ_D30NViqkKU5K1ViHOcw2YPlL_cENWHT5n3a6CdgZMRPZNUYZC8aFxQRFu-BYmuhPOBovumXGuCCYK0pSgjjH3KVyZeJ-lD-J01FV6Wosekg6gOKW8-OzR3H1QvvWdAvu2hf9s45XdWDwbKDC3LNatVCTEUsjibZpJBfbD-Qw1OlQNdM4HVh-aiXJNIwsgQO6T01kLJel81Fuw0L2muEOCELxrSGSasQRKiSraEOUBCBQWnKIdasGRzORJG9loY3EOSjNOGH5JSy_pJJfDbZ4ir-8WM5uDeozKSbVWpwmkl1Uwjk62P3jsz1Y4r-XkZU6LOSTAvcJa-TmwOnYB8Diz8I
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB5BEVo48FrQlsfiAyeklCa20-TIq5QFeoAiuEW1O4Fq2XTVJhd-PTNOingIiVuiJIrlGXu-Gc83A7DXNxrJKvteX7ekp1BxI3djvMAYrTAKTV8xUfiqG3Zu1Z97fV-R1R0XBhFd8hk2-NKd5Q9GtuBQGa3wKIhVLGdhjgy_9ku61uuhgdJ-xY4OPfIjguoQ02_GB72z6xtyBgPd4PKfke-_M0Our8qnzdhZmPYydKdjKxNL_jaK3DTs84eyjd8e_AosVVhTHJbKsQozmK3B4psKhGsw7zJA7eQnYGfIXGTXGuVJMDIsxijaBUfTRG_M8XjRLXPGBQFdUdISxAnmLpkrE3fD_FEcDataV0_iGkkLUNxwhnz2IM7_0c41WYfb9mnvuONVPRg8G6gw96xWLdRkxtJIom0ayeX2AzkIdTpQzTRO-5afWklSDSNL8IDuUxMZy4XpfJQbUMtGGf4CQTi-NUBSjjhChWQXbYiSIARKSy6xbtVhfyqS5H9ZaiNxLkozTlh-CcsvqeRXh3We4jcvlrNbh-2pFJNqNU4SyU4qIR0dbH7x2S786PSuLpPL8-7FFizwn8o4yzbU8nGBO4Q8cvPb6dsLw-XTCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Feature+Fusion+Triple+Network+for+Change+Detection+With+Bitemporal+Remote+Sensing+Images&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Lv%2C+Zhiyong&rft.au=Yang%2C+Tianyv&rft.au=Zhong%2C+Pingdong&rft.au=Sun%2C+Weiwei&rft.date=2025&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=63&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTGRS.2025.3525811&rft.externalDocID=10829493
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon