Hierarchical Feature Fusion Triple Network for Change Detection With Bitemporal Remote Sensing Images
Achieving land cover change detection (LCCD) through remotely sensed images (RSIs) is important in the observation of the changes on the Earth's surface. In such detection, spectral-reflectance noise and the uncertainty of the imaging external conditions for the bitemporal RSIs usually cause so...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 63; pp. 1 - 12 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Achieving land cover change detection (LCCD) through remotely sensed images (RSIs) is important in the observation of the changes on the Earth's surface. In such detection, spectral-reflectance noise and the uncertainty of the imaging external conditions for the bitemporal RSIs usually cause some salt-and-pepper noisy pixels in the results and reduce the change detection accuracy. In this article, a hierarchical feature-fusion triple network (HFTN) is proposed to improve the performance of LCCD with RSIs. Overall, the proposed HFTN aims to learn representative features to improve change detection performance via two feature learning enhancement strategies and a hierarchical feature-fusion mechanism. First, an image feature difference model is proposed to generate the input feature for the middle branch and guide the learning performance. Second, a progressive denoising module (PDM) is proposed and applied to each temporal image to reduce the noise before feeding the features into the backbone of the proposed HFTN. Finally, a hierarchical feature-fusion module (HFFM) is proposed to fuse the learned deep feature for generating a change-magnitude image. Additionally, multiscale convolution, cross-scale fusion, and a shared weight are adopted in the backbone of the proposed HFTN to further enhance the feature learning performance. Compared with eight state-of-the-art methods, experimental results verified the feasibility and superiority of the proposed HFTN for LCCD with RSIs. For example, the proposed HFTN achieved improvement rates of approximately 0.43%-11.83% for overall accuracy (OA) and 0.11%-4.81% for false alarms (FAs) across six pairs of real RSIs. The code can be available at https://github.com/ImgSciGroup/HFTN-NET.git . |
---|---|
AbstractList | Achieving land cover change detection (LCCD) through remotely sensed images (RSIs) is important in the observation of the changes on the Earth's surface. In such detection, spectral-reflectance noise and the uncertainty of the imaging external conditions for the bitemporal RSIs usually cause some salt-and-pepper noisy pixels in the results and reduce the change detection accuracy. In this article, a hierarchical feature-fusion triple network (HFTN) is proposed to improve the performance of LCCD with RSIs. Overall, the proposed HFTN aims to learn representative features to improve change detection performance via two feature learning enhancement strategies and a hierarchical feature-fusion mechanism. First, an image feature difference model is proposed to generate the input feature for the middle branch and guide the learning performance. Second, a progressive denoising module (PDM) is proposed and applied to each temporal image to reduce the noise before feeding the features into the backbone of the proposed HFTN. Finally, a hierarchical feature-fusion module (HFFM) is proposed to fuse the learned deep feature for generating a change-magnitude image. Additionally, multiscale convolution, cross-scale fusion, and a shared weight are adopted in the backbone of the proposed HFTN to further enhance the feature learning performance. Compared with eight state-of-the-art methods, experimental results verified the feasibility and superiority of the proposed HFTN for LCCD with RSIs. For example, the proposed HFTN achieved improvement rates of approximately 0.43%-11.83% for overall accuracy (OA) and 0.11%-4.81% for false alarms (FAs) across six pairs of real RSIs. The code can be available at https://github.com/ImgSciGroup/HFTN-NET.git . |
Author | Zhong, Pingdong Atli Benediktsson, Jon Lv, Zhiyong Yang, Tianyv Li, Junhuai Sun, Weiwei |
Author_xml | – sequence: 1 givenname: Zhiyong orcidid: 0000-0003-2595-4794 surname: Lv fullname: Lv, Zhiyong email: Lvzhiyong_fly@hotmail.com organization: School of Computer Science and Engineering, Shaanxi Key Laboratory of Network Computing and Security Technology, Xi'an University of Technology, Xi'an, China – sequence: 2 givenname: Tianyv surname: Yang fullname: Yang, Tianyv email: Yangtianyv_dream@outlook.com organization: School of Computer Science and Engineering, Shaanxi Key Laboratory of Network Computing and Security Technology, Xi'an University of Technology, Xi'an, China – sequence: 3 givenname: Pingdong surname: Zhong fullname: Zhong, Pingdong email: Zhongpingdong_Mal@hotmail.com organization: School of Computer Science and Engineering, Shaanxi Key Laboratory of Network Computing and Security Technology, Xi'an University of Technology, Xi'an, China – sequence: 4 givenname: Weiwei orcidid: 0000-0003-3399-7858 surname: Sun fullname: Sun, Weiwei email: nbsww@outlook.com organization: Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, Zhejiang, China – sequence: 5 givenname: Jon orcidid: 0000-0003-0621-9647 surname: Atli Benediktsson fullname: Atli Benediktsson, Jon email: benedikt@hi.is organization: Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland – sequence: 6 givenname: Junhuai orcidid: 0000-0001-5483-5175 surname: Li fullname: Li, Junhuai email: lijunhuai@xaut.edu.cn organization: School of Computer Science and Engineering, Shaanxi Key Laboratory of Network Computing and Security Technology, Xi'an University of Technology, Xi'an, China |
BookMark | eNpNkE1LAzEQhoMo2FZ_gOAh4Hlrvjd71Go_oCi0FY9Lms62qe2mJiniv3eX9uBpGOZ534Gniy5rXwNCd5T0KSXF42I0m_cZYbLPJZOa0gvUoVLqjCghLlGH0EJlTBfsGnVj3BJChaR5B8HYQTDBbpw1OzwEk44B8PAYna_xIrjDDvAbpB8fvnDlAx5sTL0G_AIJbGqZT5c2-Nkl2B98aCpmsPcJ8Bzq6Oo1nuzNGuINuqrMLsLtefbQx_B1MRhn0_fRZPA0zSwTKmVWihykJrTSHCxZcpFrzfhKyWolSFVUxrZXy9XSKG0FUc1eLfXS5rlWFHgPPZx6D8F_HyGmcuuPoW5elpxKpRihkjUUPVE2-BgDVOUhuL0JvyUlZWuzbG2Wrc3ybLPJ3J8yDgD-8ZoVouD8D5dNctQ |
CODEN | IGRSD2 |
Cites_doi | 10.1109/LGRS.2022.3200396 10.1109/JSTARS.2023.3283524 10.3390/rs13153053 10.1016/j.isprsjprs.2023.01.008 10.1109/TNNLS.2022.3184414 10.1016/j.isprsjprs.2020.09.019 10.1016/j.isprsjprs.2020.06.003 10.1109/IGARSS.2017.8127353 10.1109/TGRS.2024.3381632 10.3390/rs15030842 10.3390/rs13173394 10.1109/JSTARS.2021.3129318 10.4236/ars.2013.22022 10.1109/LGRS.2021.3056416 10.1109/TGRS.2022.3197901 10.1109/JSTARS.2022.3224081 10.1109/IGARSS46834.2022.9883686 10.1109/TGRS.2023.3310613 10.1109/MSP.2020.3014591 10.1109/JSTARS.2022.3177235 10.1007/978-3-319-24574-4_28 10.1109/tgrs.2021.3095166 10.21742/ijwmcis.2017.4.1.01 10.1109/tgrs.2021.3061686 10.1080/17538947.2022.2111470 10.1038/s41598-022-16329-6 10.1109/LGRS.2021.3098774 10.1109/TGRS.2003.817268 10.1109/TGRS.2023.3261273 10.1109/TCYB.2022.3219855 10.1109/TGRS.2022.3209972 10.5555/3045118.3045167 10.1016/j.jag.2021.102348 10.1109/JPROC.2017.2675998 10.1016/j.jag.2023.103303 10.1016/j.procs.2016.07.144 10.1109/TGRS.2018.2849692 10.1109/TPAMI.2021.3059968 10.1109/tgrs.2021.3085870 10.3390/rs12244135 10.1080/10095020.2022.2085633 10.1109/LGRS.2023.3305623 10.1109/TGRS.2024.3374600 10.1155/2018/7068349 10.1109/TGRS.2022.3199502 10.1109/TGRS.2022.3144894 10.5721/EuJRS20144723 10.1109/TNNLS.2018.2876865 10.1109/LGRS.2022.3173300 10.1109/LGRS.2017.2738149 10.1016/j.commatsci.2020.109850 10.1016/j.rse.2020.111716 10.1109/MGRS.2021.3063465 10.1109/TGRS.2022.3169479 10.1109/JPROC.2022.3219376 10.1109/TGRS.2020.2981051 10.1016/j.patcog.2020.107598 10.1109/TGRS.2023.3325220 10.1016/j.patcog.2014.12.016 10.1016/j.isprsjprs.2022.12.002 10.1109/URS.2009.5137540 10.1109/TGRS.2019.2927659 10.1109/ICEngTechnol.2017.8308186 10.3390/rs14071580 10.1109/MGRS.2021.3088865 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2025.3525811 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 12 |
ExternalDocumentID | 10_1109_TGRS_2025_3525811 10829493 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Basic Research Programs of Shaanxi grantid: 2023-YBGY-236 funderid: 10.13039/501100013804 – fundername: National Natural Science Foundation of China grantid: 42271385; 41971296; 42122009 funderid: 10.13039/501100001809 – fundername: Zhejiang Province Pioneering Soldier and Leading Goose Research and Development Project grantid: 2023C01027 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c246t-c547e5801f83ec0b3478823d65fd40f9fac5801c36ba68c406c58fb8bc77861e3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Mon Jun 30 10:20:41 EDT 2025 Tue Jul 01 02:15:34 EDT 2025 Wed Aug 27 01:55:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-c547e5801f83ec0b3478823d65fd40f9fac5801c36ba68c406c58fb8bc77861e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3399-7858 0000-0003-2595-4794 0000-0003-0621-9647 0000-0001-5483-5175 |
PQID | 3156620152 |
PQPubID | 85465 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3156620152 crossref_primary_10_1109_TGRS_2025_3525811 ieee_primary_10829493 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 Agarap (ref64) 2018 ref48 ref47 ref42 ref41 ref44 ref49 ref8 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 Prakasam (ref7) 2010; 1 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Saleh Al-amri (ref63) 2010 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref22 ref66 ref21 ref65 Han (ref43); 34 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref47 doi: 10.1109/LGRS.2022.3200396 – ident: ref60 doi: 10.1109/JSTARS.2023.3283524 – year: 2010 ident: ref63 article-title: A comparative study of removal noise from remote sensing image publication-title: arXiv:1002.1148 – ident: ref59 doi: 10.3390/rs13153053 – ident: ref6 doi: 10.1016/j.isprsjprs.2023.01.008 – ident: ref9 doi: 10.1109/TNNLS.2022.3184414 – ident: ref38 doi: 10.1016/j.isprsjprs.2020.09.019 – ident: ref52 doi: 10.1016/j.isprsjprs.2020.06.003 – ident: ref58 doi: 10.1109/IGARSS.2017.8127353 – ident: ref18 doi: 10.1109/TGRS.2024.3381632 – ident: ref44 doi: 10.3390/rs15030842 – ident: ref31 doi: 10.3390/rs13173394 – ident: ref53 doi: 10.1109/JSTARS.2021.3129318 – ident: ref3 doi: 10.4236/ars.2013.22022 – ident: ref33 doi: 10.1109/LGRS.2021.3056416 – ident: ref16 doi: 10.1109/TGRS.2022.3197901 – ident: ref29 doi: 10.1109/JSTARS.2022.3224081 – ident: ref35 doi: 10.1109/IGARSS46834.2022.9883686 – ident: ref5 doi: 10.1109/TGRS.2023.3310613 – ident: ref23 doi: 10.1109/MSP.2020.3014591 – ident: ref45 doi: 10.1109/JSTARS.2022.3177235 – ident: ref62 doi: 10.1007/978-3-319-24574-4_28 – ident: ref48 doi: 10.1109/tgrs.2021.3095166 – ident: ref20 doi: 10.21742/ijwmcis.2017.4.1.01 – ident: ref32 doi: 10.1109/tgrs.2021.3061686 – ident: ref50 doi: 10.1080/17538947.2022.2111470 – volume: 34 start-page: 15908 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref43 article-title: Transformer in transformer – ident: ref56 doi: 10.1038/s41598-022-16329-6 – ident: ref41 doi: 10.1109/LGRS.2021.3098774 – ident: ref15 doi: 10.1109/TGRS.2003.817268 – ident: ref69 doi: 10.1109/TGRS.2023.3261273 – ident: ref10 doi: 10.1109/TCYB.2022.3219855 – ident: ref46 doi: 10.1109/TGRS.2022.3209972 – ident: ref66 doi: 10.5555/3045118.3045167 – ident: ref51 doi: 10.1016/j.jag.2021.102348 – ident: ref4 doi: 10.1109/JPROC.2017.2675998 – ident: ref61 doi: 10.1016/j.jag.2023.103303 – ident: ref8 doi: 10.1016/j.procs.2016.07.144 – ident: ref27 doi: 10.1109/TGRS.2018.2849692 – ident: ref25 doi: 10.1109/TPAMI.2021.3059968 – ident: ref68 doi: 10.1109/tgrs.2021.3085870 – ident: ref14 doi: 10.3390/rs12244135 – ident: ref26 doi: 10.1080/10095020.2022.2085633 – year: 2018 ident: ref64 article-title: Deep learning using rectified linear units (ReLU) publication-title: arXiv:1803.08375 – ident: ref55 doi: 10.1109/LGRS.2023.3305623 – volume: 1 start-page: 150 issue: 2 year: 2010 ident: ref7 article-title: Land use and land cover change detection through remote sensing approach: A case study of Kodaikanal taluk, Tamil Nadu publication-title: Int. J. Geomatics Geosci. – ident: ref54 doi: 10.1109/TGRS.2024.3374600 – ident: ref22 doi: 10.1155/2018/7068349 – ident: ref67 doi: 10.1109/TGRS.2022.3199502 – ident: ref39 doi: 10.1109/TGRS.2022.3144894 – ident: ref19 doi: 10.5721/EuJRS20144723 – ident: ref24 doi: 10.1109/TNNLS.2018.2876865 – ident: ref40 doi: 10.1109/LGRS.2022.3173300 – ident: ref34 doi: 10.1109/LGRS.2017.2738149 – ident: ref28 doi: 10.1016/j.commatsci.2020.109850 – ident: ref11 doi: 10.1016/j.rse.2020.111716 – ident: ref36 doi: 10.1109/MGRS.2021.3063465 – ident: ref42 doi: 10.1109/TGRS.2022.3169479 – ident: ref1 doi: 10.1109/JPROC.2022.3219376 – ident: ref30 doi: 10.1109/TGRS.2020.2981051 – ident: ref21 doi: 10.1016/j.patcog.2020.107598 – ident: ref49 doi: 10.1109/TGRS.2023.3325220 – ident: ref12 doi: 10.1016/j.patcog.2014.12.016 – ident: ref13 doi: 10.1016/j.isprsjprs.2022.12.002 – ident: ref57 doi: 10.1109/URS.2009.5137540 – ident: ref17 doi: 10.1109/TGRS.2019.2927659 – ident: ref65 doi: 10.1109/ICEngTechnol.2017.8308186 – ident: ref37 doi: 10.3390/rs14071580 – ident: ref2 doi: 10.1109/MGRS.2021.3088865 |
SSID | ssj0014517 |
Score | 2.4836397 |
Snippet | Achieving land cover change detection (LCCD) through remotely sensed images (RSIs) is important in the observation of the changes on the Earth's surface. In... Achieving land cover change detection (LCCD) through remotely sensed images (RSIs) is important in the observation of the changes on the Earth’s surface. In... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Change detection Convolution Convolutional neural networks Earth surface False alarms Feature extraction Imaging Kernel Land cover Land cover change detection (LCCD) Learning Modules neural network Neural networks Noise Noise reduction Performance enhancement Reflectance Remote sensing remotely sensed images (RSIs) Shape Transformers |
Title | Hierarchical Feature Fusion Triple Network for Change Detection With Bitemporal Remote Sensing Images |
URI | https://ieeexplore.ieee.org/document/10829493 https://www.proquest.com/docview/3156620152 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYACQkOvBGDgXLghNSxNknXHnmNgcQOYwhu1ZK5MDEK2toLvx477RAPIXFr1Yei2Ik_O_5sgMOB0UhW2fcGuiU9hYobuRvjBcZohVFoBoqJwjfdsHOnrh_0Q0VWd1wYRHTJZ9jgS3eWP3y1BYfKaIVHQaxiOQ_z5LmVZK3PIwOl_YobHXrkRQTVEabfjI_7l71bcgUD3eDin5HvfzNCrqvKr63Y2Zf2KnRnIyvTSp4bRW4a9v1H0cZ_D30NViqkKU5K1ViHOcw2YPlL_cENWHT5n3a6CdgZMRPZNUYZC8aFxQRFu-BYmuhPOBovumXGuCCYK0pSgjjH3KVyZeJ-lD-J01FV6Wosekg6gOKW8-OzR3H1QvvWdAvu2hf9s45XdWDwbKDC3LNatVCTEUsjibZpJBfbD-Qw1OlQNdM4HVh-aiXJNIwsgQO6T01kLJel81Fuw0L2muEOCELxrSGSasQRKiSraEOUBCBQWnKIdasGRzORJG9loY3EOSjNOGH5JSy_pJJfDbZ4ir-8WM5uDeozKSbVWpwmkl1Uwjk62P3jsz1Y4r-XkZU6LOSTAvcJa-TmwOnYB8Diz8I |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB5BEVo48FrQlsfiAyeklCa20-TIq5QFeoAiuEW1O4Fq2XTVJhd-PTNOingIiVuiJIrlGXu-Gc83A7DXNxrJKvteX7ekp1BxI3djvMAYrTAKTV8xUfiqG3Zu1Z97fV-R1R0XBhFd8hk2-NKd5Q9GtuBQGa3wKIhVLGdhjgy_9ku61uuhgdJ-xY4OPfIjguoQ02_GB72z6xtyBgPd4PKfke-_M0Our8qnzdhZmPYydKdjKxNL_jaK3DTs84eyjd8e_AosVVhTHJbKsQozmK3B4psKhGsw7zJA7eQnYGfIXGTXGuVJMDIsxijaBUfTRG_M8XjRLXPGBQFdUdISxAnmLpkrE3fD_FEcDataV0_iGkkLUNxwhnz2IM7_0c41WYfb9mnvuONVPRg8G6gw96xWLdRkxtJIom0ayeX2AzkIdTpQzTRO-5afWklSDSNL8IDuUxMZy4XpfJQbUMtGGf4CQTi-NUBSjjhChWQXbYiSIARKSy6xbtVhfyqS5H9ZaiNxLkozTlh-CcsvqeRXh3We4jcvlrNbh-2pFJNqNU4SyU4qIR0dbH7x2S786PSuLpPL8-7FFizwn8o4yzbU8nGBO4Q8cvPb6dsLw-XTCw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Feature+Fusion+Triple+Network+for+Change+Detection+With+Bitemporal+Remote+Sensing+Images&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Lv%2C+Zhiyong&rft.au=Yang%2C+Tianyv&rft.au=Zhong%2C+Pingdong&rft.au=Sun%2C+Weiwei&rft.date=2025&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=63&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTGRS.2025.3525811&rft.externalDocID=10829493 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |