An Optimized Sparse Response Mechanism for Differentially Private Federated Learning
Federated Learning (FL) enables geo-distributed clients to collaboratively train a learning model without exposing their private data. By only exposing local model parameters, FL well preserves data privacy of clients. Yet, it remains possible to recover raw samples from over frequently exposed para...
Saved in:
Published in | IEEE transactions on dependable and secure computing Vol. 21; no. 4; pp. 2285 - 2295 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington
IEEE
01.07.2024
IEEE Computer Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Federated Learning (FL) enables geo-distributed clients to collaboratively train a learning model without exposing their private data. By only exposing local model parameters, FL well preserves data privacy of clients. Yet, it remains possible to recover raw samples from over frequently exposed parameters resulting in privacy leakage. Differentially private federated learning (DPFL) has recently been suggested to protect these parameters by introducing information noises. In this way, even if attackers get these parameters, they cannot exactly infer true parameters from these noisy information. Directly incorporating Differentially Private (DP) into FL however can severely affect model utility. In this article, we present an optimized sparse response mechanism (OSRM) that seamlessly incorporates DP into FL to diminish privacy budget consumption and improve model accuracy. Through OSRM, each FL client only exposes a selected set of large gradients, so as not to waste privacy budgets in protecting valueless gradients. We theoretically derive the convergence rate of DPFL with OSRM under non-convex loss. Then, OSRM is optimized by minimizing the loss of the convergence rate. Based on analysis, we present an effective algorithm for optimizing OSRM. Extensive experiments are conducted with public datasets, including MNIST, Fashion-MNIST and CIFAR-10. The results suggest that OSRM can achieve the average improvement of accuracy by 18.42% as compared to state-of-the-art baselines with a fixed privacy budget. |
---|---|
AbstractList | Federated Learning (FL) enables geo-distributed clients to collaboratively train a learning model without exposing their private data. By only exposing local model parameters, FL well preserves data privacy of clients. Yet, it remains possible to recover raw samples from over frequently exposed parameters resulting in privacy leakage. Differentially private federated learning (DPFL) has recently been suggested to protect these parameters by introducing information noises. In this way, even if attackers get these parameters, they cannot exactly infer true parameters from these noisy information. Directly incorporating Differentially Private (DP) into FL however can severely affect model utility. In this article, we present an optimized sparse response mechanism (OSRM) that seamlessly incorporates DP into FL to diminish privacy budget consumption and improve model accuracy. Through OSRM, each FL client only exposes a selected set of large gradients, so as not to waste privacy budgets in protecting valueless gradients. We theoretically derive the convergence rate of DPFL with OSRM under non-convex loss. Then, OSRM is optimized by minimizing the loss of the convergence rate. Based on analysis, we present an effective algorithm for optimizing OSRM. Extensive experiments are conducted with public datasets, including MNIST, Fashion-MNIST and CIFAR-10. The results suggest that OSRM can achieve the average improvement of accuracy by 18.42% as compared to state-of-the-art baselines with a fixed privacy budget. |
Author | Cui, Laizhong Zhou, Yipeng Ma, Jiating Guo, Song |
Author_xml | – sequence: 1 givenname: Jiating orcidid: 0000-0002-1205-8782 surname: Ma fullname: Ma, Jiating email: 1270901086@qq.com organization: College of Computer Science and Software Engineering, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, China – sequence: 2 givenname: Yipeng orcidid: 0000-0003-1533-0865 surname: Zhou fullname: Zhou, Yipeng email: yipeng.zhou@mq.edu.au organization: School of Computing, FSE, Macquarie University, Macquarie Park, NSW, Australia – sequence: 3 givenname: Laizhong orcidid: 0000-0003-1991-290X surname: Cui fullname: Cui, Laizhong email: cuilz@szu.edu.cn organization: College of Computer Science and Software Engineering, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, China – sequence: 4 givenname: Song orcidid: 0000-0001-9831-2202 surname: Guo fullname: Guo, Song email: song.guo@polyu.edu.hk organization: Department of Computing, Hong Kong Polytechnic University, Kowloon, Hong Kong |
BookMark | eNpNkE1PAjEURRuDiYD-ABMXTVwPvn7MDF0SEDXBYATXTWfmVUugM7aDCf56h8DC1TuLe-9LzoD0fO2RkFsGI8ZAPaxnq-mIAxcjIYCPM3lB-kxJlgCwca_jVKZJqnJ2RQYxbgC4HCvZJ-uJp8umdTv3ixVdNSZEpO8Ym9p38Irll_Eu7qitA505azGgb53Zbg_0Lbgf0yKdY4Whg4ou0ATv_Oc1ubRmG_HmfIfkY_64nj4ni-XTy3SySEouszYxVVWlpTQyV1CKTCIvoLQARVFUkhV5wRQHI0RlUlWkPOUClSpz4BZYJqwQQ3J_2m1C_b3H2OpNvQ--e6kF5GMGOefQpdgpVYY6xoBWN8HtTDhoBvooTx_l6aM8fZbXde5OHYeI__KcQcqY-AMvHmy- |
CODEN | ITDSCM |
Cites_doi | 10.1145/3517820 10.1109/INFOCOM41043.2020.9155494 10.1109/INFOCOM48880.2022.9796841 10.1109/JSAC.2019.2904348 10.1109/jsait.2020.2985917 10.21203/rs.3.rs-1005694/v1 10.1109/JSAC.2021.3118354 10.1007/978-3-030-63076-8_2 10.1109/BigData47090.2019.9005465 10.1109/TDSC.2022.3168556 10.1109/ITCE48509.2020.9047776 10.1145/3340531.3411860 10.1007/978-3-030-59410-7_33 10.1109/TDSC.2020.3029899 10.1109/ICC.2019.8761315 10.1109/SP40000.2020.00025 10.18653/v1/2021.econlp-1.7 10.14778/3503585.3503592 10.1109/TII.2022.3161517 10.1109/TITS.2021.3081560 10.1145/3298981 10.1145/2976749.2978318 10.1109/tdsc.2023.3241057 10.1109/ICASSP39728.2021.9413764 10.1109/TDSC.2021.3135422 10.1109/TDSC.2021.3128679 10.1561/9781601988195 10.1109/tifs.2022.3174394 10.2478/popets-2022-0043 10.1109/tifs.2020.2988575 10.1109/INFOCOM.2019.8737416 10.1109/INFOCOM42981.2021.9488839 10.1109/TIFS.2022.3227761 10.1109/INFOCOM48880.2022.9796935 10.1109/ALLERTON.2015.7447103 10.14778/3055330.3055331 10.1609/aaai.v35i10.17053 |
ContentType | Journal Article |
Copyright | Copyright IEEE Computer Society 2024 |
Copyright_xml | – notice: Copyright IEEE Computer Society 2024 |
DBID | 97E RIA RIE AAYXX CITATION JQ2 |
DOI | 10.1109/TDSC.2023.3302864 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1941-0018 |
EndPage | 2295 |
ExternalDocumentID | 10_1109_TDSC_2023_3302864 10210511 |
Genre | orig-research |
GrantInformation_xml | – fundername: General Research Fund grantid: 152203/20E; 152244/21E; 152169/22E – fundername: National Key R&D Program of China grantid: 2022YFB3102302 – fundername: Key-Area Research and Development Program of Guangdong Province grantid: 2021B0101400003 – fundername: Hong Kong RGC Research Impact Fund grantid: R5060-19 – fundername: Areas of Excellence Scheme grantid: AoE/E-601/22-R – fundername: Shenzhen Science and Technology Program grantid: RCYX20200714114645048 – fundername: Shenzhen Science and Technology Innovation Commission grantid: JCYJ20200109142008673 funderid: 10.13039/501100010877 |
GroupedDBID | .4S .DC 0R~ 29I 3V. 4.4 5GY 5VS 6IK 7WY 8FE 8FG 8FL 8R4 8R5 97E AAJGR AASAJ AAYOK ABJCF ABQJQ ABUWG ACGFO ACIWK AENEX AETIX AFKRA AIBXA AKJIK ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS ATWAV AZQEC BEFXN BENPR BEZIV BFFAM BGLVJ BGNUA BKEBE BPEOZ BPHCQ CCPQU CS3 DU5 DWQXO EBS EDO EJD FRNLG GNUQQ GROUPED_ABI_INFORM_COMPLETE HCIFZ HZ~ IEDLZ IFIPE IPLJI ITG ITH JAVBF K60 K6V K6~ K7- L6V LAI M0C M0N M43 M7S O9- OCL P2P P62 PQBIZ PQBZA PQQKQ PROAC PTHSS Q2X RIA RIC RIE RIG RNI RNS RZB AAYXX CITATION JQ2 |
ID | FETCH-LOGICAL-c246t-addd5c4a4790c364e2b0cf00bbbd41b7b1920a33da59b52523e99c702f0163f33 |
IEDL.DBID | RIE |
ISSN | 1545-5971 |
IngestDate | Thu Oct 10 22:57:59 EDT 2024 Wed Jul 24 12:22:06 EDT 2024 Mon Nov 04 11:50:39 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-addd5c4a4790c364e2b0cf00bbbd41b7b1920a33da59b52523e99c702f0163f33 |
ORCID | 0000-0003-1991-290X 0000-0001-9831-2202 0000-0003-1533-0865 0000-0002-1205-8782 |
PQID | 3078107220 |
PQPubID | 27603 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TDSC_2023_3302864 ieee_primary_10210511 proquest_journals_3078107220 |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | IEEE transactions on dependable and secure computing |
PublicationTitleAbbrev | TDSC |
PublicationYear | 2024 |
Publisher | IEEE IEEE Computer Society |
Publisher_xml | – name: IEEE – name: IEEE Computer Society |
References | ref13 Choudhury (ref28) 2019 ref35 ref12 ref34 Fu (ref40) 2021 ref15 ref37 ref14 ref36 ref31 Geyer (ref4) 2017 ref30 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref24 ref23 ref26 Wang (ref44) ref25 McMahan (ref18) ref20 ref42 ref41 ref22 ref21 ref43 ref27 ref29 ref8 ref7 ref9 ref3 ref6 Zhang (ref11) 2021 Wei (ref5) 2020 |
References_xml | – ident: ref30 doi: 10.1145/3517820 – ident: ref42 doi: 10.1109/INFOCOM41043.2020.9155494 – ident: ref26 doi: 10.1109/INFOCOM48880.2022.9796841 – ident: ref34 doi: 10.1109/JSAC.2019.2904348 – start-page: 1273 volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist. ident: ref18 article-title: Communication-efficient learning of deep networks from decentralized data contributor: fullname: McMahan – ident: ref15 doi: 10.1109/jsait.2020.2985917 – ident: ref2 doi: 10.21203/rs.3.rs-1005694/v1 – ident: ref37 doi: 10.1109/JSAC.2021.3118354 – ident: ref6 doi: 10.1007/978-3-030-63076-8_2 – ident: ref25 doi: 10.1109/BigData47090.2019.9005465 – ident: ref24 doi: 10.1109/TDSC.2022.3168556 – start-page: 22802 volume-title: Proc. 39th Int. Conf. Mach. Learn. ident: ref44 article-title: Communication-efficient adaptive federated learning contributor: fullname: Wang – ident: ref41 doi: 10.1109/ITCE48509.2020.9047776 – year: 2021 ident: ref11 article-title: Wide network learning with differential privacy contributor: fullname: Zhang – ident: ref12 doi: 10.1145/3340531.3411860 – ident: ref14 doi: 10.1007/978-3-030-59410-7_33 – ident: ref39 doi: 10.1109/TDSC.2020.3029899 – ident: ref43 doi: 10.1109/ICC.2019.8761315 – year: 2020 ident: ref5 article-title: A framework for evaluating gradient leakage attacks in federated learning contributor: fullname: Wei – ident: ref9 doi: 10.1109/SP40000.2020.00025 – ident: ref29 doi: 10.18653/v1/2021.econlp-1.7 – ident: ref35 doi: 10.14778/3503585.3503592 – ident: ref10 doi: 10.1109/TII.2022.3161517 – ident: ref1 doi: 10.1109/TITS.2021.3081560 – ident: ref3 doi: 10.1145/3298981 – ident: ref32 doi: 10.1145/2976749.2978318 – ident: ref27 doi: 10.1109/tdsc.2023.3241057 – ident: ref36 doi: 10.1109/ICASSP39728.2021.9413764 – ident: ref38 doi: 10.1109/TDSC.2021.3135422 – ident: ref21 doi: 10.1109/TDSC.2021.3128679 – ident: ref22 doi: 10.1561/9781601988195 – ident: ref23 doi: 10.1109/tifs.2022.3174394 – year: 2019 ident: ref28 article-title: Differential privacy-enabled federated learning for sensitive health data contributor: fullname: Choudhury – ident: ref19 doi: 10.2478/popets-2022-0043 – ident: ref8 doi: 10.1109/tifs.2020.2988575 – ident: ref20 doi: 10.1109/INFOCOM.2019.8737416 – ident: ref16 doi: 10.1109/INFOCOM42981.2021.9488839 – ident: ref7 doi: 10.1109/TIFS.2022.3227761 – year: 2021 ident: ref40 article-title: On the practicality of differential privacy in federated learning by tuning iteration times contributor: fullname: Fu – year: 2017 ident: ref4 article-title: Differentially private federated learning: A client level perspective contributor: fullname: Geyer – ident: ref33 doi: 10.1109/INFOCOM48880.2022.9796935 – ident: ref13 doi: 10.1109/ALLERTON.2015.7447103 – ident: ref31 doi: 10.14778/3055330.3055331 – ident: ref17 doi: 10.1609/aaai.v35i10.17053 |
SSID | ssj0024894 |
Score | 2.432082 |
Snippet | Federated Learning (FL) enables geo-distributed clients to collaboratively train a learning model without exposing their private data. By only exposing local... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 2285 |
SubjectTerms | Algorithms Budgets Clients Computational modeling Convergence convergence rate Data models Differential privacy differentially private Distortion Exposure Federated learning Parameters Privacy sparse response Training |
Title | An Optimized Sparse Response Mechanism for Differentially Private Federated Learning |
URI | https://ieeexplore.ieee.org/document/10210511 https://www.proquest.com/docview/3078107220 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6UkxfxgRFF04Mnk1262-6jRwISYgIagYTbZvtYQ4SF8DjIr3e6W-IrJt562N00nen0m-3M9yF0RxQNUkiUHU24cJiMPIiDceoAko1F6kkvyEw3cn8Q9sbscRJMbLN60QujtS6Kz7RrhsVdvlrIrflV1jQy1OBEkOwcRjwum7U-ifXiQvXQQAIHULJnrzA9wpujzrDtGp1wF7J3Pw7Zt0OoUFX5FYqL86VbRYP9zMqykjd3uxGu3P0gbfz31E_QsUWauFW6xik60PkZqu5VHLDd1Odo1MrxEwSO-XSnFR4uIdPV-KUsndW4r01r8HQ9x4BuccfKqUBYmM3e8fPKaKNp3DWMFDBQ2NK1vtbQuPswavccq7XgSJ-FGwfCnAokS1nEiaQh074gMiNECKGYJyIBSJCklKo04CLwIX3VnMuI-BlgRppReoEq-SLXlwhnMlN-pHgcMGZ6pkXmpUTyOJRMKqplHd3vFz9ZlpQaSZGKEJ4YSyXGUom1VB3VzGJ-ebBcxzpq7O2V2F23TqhhLiKR75OrP167RkfwdVbW2zZQZbPa6htAFRtxW3jTB1d7yKI |
link.rule.ids | 315,782,786,798,27931,27932,54765 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQHOBCWYooqw-ckBKc2E7iYwVUBdqCaCv1FsVLEKK0VZcDfD3jxBWbkLj5kCiWZzx-E8-8h9AZ0ZRnkCh7hgjpMRUHEAeTzAMkm8gsUAHPbTdyuxM1--x2wAeuWb3ohTHGFMVnxrfD4i5fj9XC_iq7sDLU4ESQ7KxxFke8bNf6pNZLCt1DCwo8wMmBu8QMiLjoXXUvfasU7kP-HiYR-3YMFboqv4JxccI0KqiznFtZWPLiL-bSV-8_aBv_PfkttOmwJq6XzrGNVsxoB1WWOg7Ybetd1KuP8D2Ejtfnd6NxdwK5rsGPZfGswW1jm4OfZ68Y8C2-coIqEBiGwzf8MLXqaAY3LCcFDDR2hK1PVdRvXPcum55TW_BUyKK5B4FOc8UyFguiaMRMKInKCZFSahbIWAIWJBmlOuNC8hASWCOEikmYA2qkOaV7aHU0Hpl9hHOV6zDWIuGM2a5pmQcZUSKJFFOaGlVD58vFTyclqUZaJCNEpNZSqbVU6ixVQ1W7mF8eLNexho6W9krdvpul1HIXkTgMycEfr52i9Wav3UpbN527Q7QBX2Jl9e0RWp1PF-YYMMZcnhSe9QEJ_svx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimized+Sparse+Response+Mechanism+for+Differentially+Private+Federated+Learning&rft.jtitle=IEEE+transactions+on+dependable+and+secure+computing&rft.au=Ma%2C+Jiating&rft.au=Zhou%2C+Yipeng&rft.au=Cui%2C+Laizhong&rft.au=Guo%2C+Song&rft.date=2024-07-01&rft.pub=IEEE&rft.issn=1545-5971&rft.volume=21&rft.issue=4&rft.spage=2285&rft.epage=2295&rft_id=info:doi/10.1109%2FTDSC.2023.3302864&rft.externalDocID=10210511 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5971&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5971&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5971&client=summon |