Security-Based Distributionally Robust Optimization Self-Triggered SMPC for Constrained Cyber-Physical Systems Subject to Unknown Disturbances and Denial-of-Service Attacks
In this article, we propose a distributionally robust optimization-based self-triggered stochastic model predictive control (DRSMPC) algorithm for linear discrete systems that are subject to unbounded stochastic disturbances and Denial-of-Service (DoS) attacks. Assuming that only the first and secon...
Saved in:
Published in | IEEE internet of things journal Vol. 12; no. 12; pp. 21757 - 21769 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
15.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, we propose a distributionally robust optimization-based self-triggered stochastic model predictive control (DRSMPC) algorithm for linear discrete systems that are subject to unbounded stochastic disturbances and Denial-of-Service (DoS) attacks. Assuming that only the first and second moments of the disturbances are available, we transform the objective function into a compact quadratic form and reformulate the state chance constraint into second-order cone constraint, which enhance tractability during the solution process. To reduce communication and sampling times within the system, we introduce a self-triggering update framework, which computes the sampling instants and the control input sequences between consecutive sampling instants based on the sampled state. The main contribution of DRSMPC is to deal with unknown disturbances, reduce the unnecessary sampling also be able to defend against DoS attacks. Furthermore, we demonstrate that DRSMPC is recursively feasible and cyber-physical systems (CPSs) remaining quadratic stability. Numerical simulations validate the effectiveness of the proposed algorithm. |
---|---|
AbstractList | In this article, we propose a distributionally robust optimization-based self-triggered stochastic model predictive control (DRSMPC) algorithm for linear discrete systems that are subject to unbounded stochastic disturbances and Denial-of-Service (DoS) attacks. Assuming that only the first and second moments of the disturbances are available, we transform the objective function into a compact quadratic form and reformulate the state chance constraint into second-order cone constraint, which enhance tractability during the solution process. To reduce communication and sampling times within the system, we introduce a self-triggering update framework, which computes the sampling instants and the control input sequences between consecutive sampling instants based on the sampled state. The main contribution of DRSMPC is to deal with unknown disturbances, reduce the unnecessary sampling also be able to defend against DoS attacks. Furthermore, we demonstrate that DRSMPC is recursively feasible and cyber-physical systems (CPSs) remaining quadratic stability. Numerical simulations validate the effectiveness of the proposed algorithm. |
Author | Chen, Yadong Cheng, Peng |
Author_xml | – sequence: 1 givenname: Yadong surname: Chen fullname: Chen, Yadong email: 2021326210015@stu.scu.edu.cn organization: School of Aeronautics and Astronautics, Sichuan University, Chengdu, China – sequence: 2 givenname: Peng orcidid: 0009-0003-0933-0305 surname: Cheng fullname: Cheng, Peng email: CP17208263046@163.com organization: School of Aeronautics and Astronautics, Sichuan University, Chengdu, China |
BookMark | eNpNkd1u1DAQhS1UJErbB0DiwhLXXvyXOL4s4a-o1VZkex05zqR4m7UX22kVnomHJMv2olczOjrfzGjOW3TigweE3jG6Yozqjz-u1psVp7xYiUJWkhav0CkXXBFZlvzkRf8GXaS0pZQuWMF0eYr-NmCn6PJMPpkEPf7sUo6um7IL3ozjjH-GbkoZr_fZ7dwfc9BxA-NANtHd30NcmObmtsZDiLgOfqGN84tYzx1EcvtrTs6aETdzyrBLuJm6LdiMc8B3_sGHJ_9_5RQ74y0kbPxyA3hnRhIG0kB8dBbwZc7GPqRz9HowY4KL53qG7r5-2dTfyfX621V9eU0sl2UmpuqtKjo7DBUoKYoKmJV9z5XmJRSU68oazkteUilUQVnHQXdScyPNQHvdizP04Th3H8PvCVJut2GKyz9SKzhTSgktxeJiR5eNIaUIQ7uPbmfi3DLaHnJpD7m0h1za51wW5v2RcQDwwq8Zl4qLf-vTjl8 |
CODEN | IITJAU |
Cites_doi | 10.1109/TASE.2022.3222182 10.1016/j.automatica.2021.109870 10.1109/TSMC.2023.3331231 10.1016/j.automatica.2020.109352 10.1016/j.automatica.2022.110424 10.1109/TCYB.2024.3349528 10.1016/j.ins.2020.07.004 10.1137/21M1465548 10.1109/tcns.2024.3425646 10.1109/TII.2019.2963294 10.1109/TAC.2023.3243863 10.1016/j.compchemeng.2019.106638 10.1016/j.automatica.2021.109519 10.1109/TCYB.2019.2936413 10.1109/TIA.2015.2501761 10.1016/j.automatica.2019.03.009 10.1016/j.automatica.2023.111014 10.1109/TCSII.2024.3358016 10.1016/j.automatica.2022.110208 10.1016/j.automatica.2020.109129 10.1016/j.automatica.2020.109402 10.1002/rnc.1249 10.1109/TAC.2022.3157131 10.1016/j.jfranklin.2021.04.034 10.1007/s10957-006-9084-x 10.1016/j.automatica.2023.111050 10.1016/j.tre.2023.103025 10.1109/TVT.2022.3215966 10.1016/j.automatica.2020.108803 10.1109/TAC.2010.2086553 10.1109/TAC.2023.3244116 10.1016/j.automatica.2024.111833 10.1016/j.jprocont.2016.03.005 10.1016/j.oceaneng.2022.113262 10.1109/JIOT.2024.3392563 10.1016/j.automatica.2016.04.008 10.1109/TAC.2021.3124750 10.1109/LCSYS.2019.2918763 10.1016/j.automatica.2022.110533 10.1109/TAC.2020.2987649 10.1016/j.automatica.2024.111917 10.1109/TAC.2023.3338749 10.1016/j.automatica.2018.02.017 10.1016/j.epsr.2020.106642 10.1016/j.automatica.2021.110055 10.1109/TVT.2023.3266829 10.1016/j.automatica.2023.111493 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/JIOT.2025.3548405 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2327-4662 |
EndPage | 21769 |
ExternalDocumentID | 10_1109_JIOT_2025_3548405 10912472 |
Genre | orig-research |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c246t-a8dc75bcff8e74358e1c4dd27926e50298ca226260437501b2e9b492a4af0d9d3 |
IEDL.DBID | RIE |
ISSN | 2327-4662 |
IngestDate | Thu Aug 28 13:11:11 EDT 2025 Thu Jul 03 08:47:02 EDT 2025 Wed Jun 25 06:00:24 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-a8dc75bcff8e74358e1c4dd27926e50298ca226260437501b2e9b492a4af0d9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0003-0933-0305 |
PQID | 3217773943 |
PQPubID | 2040421 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3217773943 ieee_primary_10912472 crossref_primary_10_1109_JIOT_2025_3548405 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-15 |
PublicationDateYYYYMMDD | 2025-06-15 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE internet of things journal |
PublicationTitleAbbrev | JIoT |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref48 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 Petersen (ref47) 2008; 7 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref2 doi: 10.1109/TASE.2022.3222182 – ident: ref44 doi: 10.1016/j.automatica.2021.109870 – ident: ref15 doi: 10.1109/TSMC.2023.3331231 – ident: ref26 doi: 10.1016/j.automatica.2020.109352 – ident: ref43 doi: 10.1016/j.automatica.2022.110424 – ident: ref22 doi: 10.1109/TCYB.2024.3349528 – ident: ref41 doi: 10.1016/j.ins.2020.07.004 – ident: ref33 doi: 10.1137/21M1465548 – ident: ref14 doi: 10.1109/tcns.2024.3425646 – ident: ref39 doi: 10.1109/TII.2019.2963294 – ident: ref16 doi: 10.1109/TAC.2023.3243863 – ident: ref6 doi: 10.1016/j.compchemeng.2019.106638 – ident: ref10 doi: 10.1016/j.automatica.2021.109519 – ident: ref11 doi: 10.1109/TCYB.2019.2936413 – ident: ref3 doi: 10.1109/TIA.2015.2501761 – ident: ref13 doi: 10.1016/j.automatica.2019.03.009 – ident: ref4 doi: 10.1016/j.automatica.2023.111014 – ident: ref38 doi: 10.1109/TCSII.2024.3358016 – ident: ref28 doi: 10.1016/j.automatica.2022.110208 – ident: ref27 doi: 10.1016/j.automatica.2020.109129 – ident: ref30 doi: 10.1016/j.automatica.2020.109402 – ident: ref5 doi: 10.1002/rnc.1249 – ident: ref29 doi: 10.1109/TAC.2022.3157131 – ident: ref42 doi: 10.1016/j.jfranklin.2021.04.034 – ident: ref35 doi: 10.1007/s10957-006-9084-x – ident: ref1 doi: 10.1016/j.automatica.2023.111050 – ident: ref34 doi: 10.1016/j.tre.2023.103025 – ident: ref40 doi: 10.1109/TVT.2022.3215966 – ident: ref23 doi: 10.1016/j.automatica.2020.108803 – ident: ref32 doi: 10.1109/TAC.2010.2086553 – ident: ref24 doi: 10.1109/TAC.2023.3244116 – ident: ref37 doi: 10.1016/j.automatica.2024.111833 – ident: ref31 doi: 10.1016/j.jprocont.2016.03.005 – ident: ref25 doi: 10.1016/j.oceaneng.2022.113262 – ident: ref12 doi: 10.1109/JIOT.2024.3392563 – ident: ref48 doi: 10.1016/j.automatica.2016.04.008 – ident: ref36 doi: 10.1109/TAC.2021.3124750 – ident: ref46 doi: 10.1109/LCSYS.2019.2918763 – ident: ref9 doi: 10.1016/j.automatica.2022.110533 – ident: ref17 doi: 10.1109/TAC.2020.2987649 – ident: ref20 doi: 10.1016/j.automatica.2024.111917 – ident: ref21 doi: 10.1109/TAC.2023.3338749 – ident: ref45 doi: 10.1016/j.automatica.2018.02.017 – ident: ref8 doi: 10.1016/j.epsr.2020.106642 – ident: ref18 doi: 10.1016/j.automatica.2021.110055 – volume: 7 volume-title: The Matrix Cookbook year: 2008 ident: ref47 – ident: ref7 doi: 10.1109/TVT.2023.3266829 – ident: ref19 doi: 10.1016/j.automatica.2023.111493 |
SSID | ssj0001105196 |
Score | 2.3430219 |
Snippet | In this article, we propose a distributionally robust optimization-based self-triggered stochastic model predictive control (DRSMPC) algorithm for linear... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 21757 |
SubjectTerms | Algorithms Chance constraint Constraints Control systems Cyber-physical systems Cybersecurity Denial of service attacks Discrete systems distributionally robust optimization Disturbances Event detection Internet of Things Optimization Prediction algorithms Predictive control Predictive models Quadratic forms Robustness (mathematics) Sampling self-triggered stochastic model predictive control (MPC) Sensors Stochastic models Stochastic processes Vectors |
Title | Security-Based Distributionally Robust Optimization Self-Triggered SMPC for Constrained Cyber-Physical Systems Subject to Unknown Disturbances and Denial-of-Service Attacks |
URI | https://ieeexplore.ieee.org/document/10912472 https://www.proquest.com/docview/3217773943 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI6AExfeiPFSDpyQMtY2SdsjDBAg8RDbJG5V0iYcGC3a2sP4TfxI7DQTCITErarSNJId-3Ni-yPkKCgg6LI2ZiKQmsFODFkqrWLWRiZNjQq5cVm-d_JqxG-exJMvVne1MMYYl3xmuvjo7vKLKm_wqOwEm1iGPAaLuwiRW1us9XWgEiAakf7mEoae3FzfDyECDEU3AlzOkaHum-9xZCq_LLBzK5er5G6-oDab5KXb1Lqbv__o1fjvFa-RFQ8w6WmrEetkwZQbZHVO3kD9Xt4kHwPPXMfOwJEV9Bw76HryKzUez-hjpZtpTe_Bprz6Yk06MGPLhhDQPyPFJx3cPvQpoF6KtJ-ObAJe9mfaTNiDlz_1LdEpWCg88qF1RUclnuSV7pfNRKPeTakqYQ2Y-TdmlWXehNHTusYmAFtkdHkx7F8xT93A8pDLmqmkyGOhc2sTAxhFJCbIeVFgt0JpBLZ9zxUAPwimeASYJdChSTVPQ8WV7RVpEW2TpbIqzQ6hCagZTCN7AEW5FlIpIZMIXC8EroCebIccz4WavbUdOjIX2fTSDDUgQw3IvAZ0yBYK6dvAVj4dsj_Xg8xv4mkWQbgWx1HKo90_Ptsjyzg7po4FYp8s1ZPGHABIqfWhU85PUCHn6w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NjtMwEB4tywEuLD-LKCzgA1yQ3G0cOz8HDkuXVbv_oq20t2An9gpREtQmQuVdeAOegWdjJnFhBeK4ErcoSuzI-TzzjT2eD-BFUGDQ5VzMVRAZjjNR8DRymjsX2jS1WkjbZvmeRqOZPLxQFxvw7ddZGGttm3xm-3TZ7uUXVd7QUtkuFbEUMhY-h_LIrr5ghLZ8Pd7H3_lSiIO30-GIexEBngsZ1VwnRR4rkzuXWPSWKrFBLouC6uZFVlEB8lwjBUFaL0P0noERNjUyFVpqNyjSIsR2b8BNJBpKdMfDfi_hBMR_Ir9Xih-3ezg-m2LMKVQ_xEhAkibeFW_Xyrf8ZfNbR3awBT_WQ9Dlr3zsN7Xp51__qA75347RXbjjKTTb6zB_DzZseR-21vIUzFurB_B94rX5-Bt01QXbpxrBXt5Lz-cr9q4yzbJmZ2g1P_njqGxi545PFx8uL0nElE1OzocMeT0jYdNWTgNvDlfGLvi5RzjzRd8Z2mBa1GJ1xWYlrVWWbZfNwtDMWjJd4jdQbuOcV457I8326prKHGzD7FrG7CFsllVpHwFLcCJhM9EAybY0KtJaRUmI5AJDc-SHrgev1iDKPnc1SLI2dhukGSEuI8RlHnE92CZQXHmww0MPdta4y7yZWmYhBqRxHKYyfPyP157DrdH05Dg7Hp8ePYHb1BMlygVqBzbrRWOfIiWrzbN2YjB4f90o-wkPI0Sn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Security-Based+Distributionally+Robust+Optimization+Self-Triggered+SMPC+for+Constrained+Cyber-Physical+Systems+Subject+to+Unknown+Disturbances+and+Denial-of-Service+Attacks&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Chen%2C+Yadong&rft.au=Cheng%2C+Peng&rft.date=2025-06-15&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=12&rft.issue=12&rft.spage=21757&rft.epage=21769&rft_id=info:doi/10.1109%2FJIOT.2025.3548405&rft.externalDocID=10912472 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |