Data-Driven Combined Longitudinal and Lateral Control for the Car Following Problem

This article studies the problem of data-driven combined longitudinal and lateral control of autonomous vehicles (AVs) such that the AV can stay within a safe but minimum distance from its leading vehicle and, at the same time, in the lane. Most of the existing methods for combined longitudinal and...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 33; no. 3; pp. 991 - 1005
Main Authors Cui, Leilei, Chakraborty, Sayan, Ozbay, Kaan, Jiang, Zhong-Ping
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6536
1558-0865
DOI10.1109/TCST.2025.3539216

Cover

Loading…
Abstract This article studies the problem of data-driven combined longitudinal and lateral control of autonomous vehicles (AVs) such that the AV can stay within a safe but minimum distance from its leading vehicle and, at the same time, in the lane. Most of the existing methods for combined longitudinal and lateral control are either model-based or developed by purely data-driven methods such as reinforcement learning. Traditional model-based control approaches are insufficient to address the adaptive optimal control design issue for AVs in dynamically changing environments and are subject to model uncertainty. Moreover, the conventional reinforcement learning approaches require a large volume of data, and cannot guarantee the stability of the vehicle. These limitations are addressed by integrating the advanced control theory with reinforcement learning techniques. To be more specific, by utilizing adaptive dynamic programming (ADP) techniques and using the motion data collected from the vehicles, a policy iteration algorithm is proposed such that the control policy is iteratively optimized in the absence of the precise knowledge of the AV's dynamical model. Furthermore, the stability of the AV is guaranteed with the control policy generated at each iteration of the algorithm. The efficiency of the proposed approach is validated by the integrated simulation of SUMO and CommonRoad.
AbstractList This article studies the problem of data-driven combined longitudinal and lateral control of autonomous vehicles (AVs) such that the AV can stay within a safe but minimum distance from its leading vehicle and, at the same time, in the lane. Most of the existing methods for combined longitudinal and lateral control are either model-based or developed by purely data-driven methods such as reinforcement learning. Traditional model-based control approaches are insufficient to address the adaptive optimal control design issue for AVs in dynamically changing environments and are subject to model uncertainty. Moreover, the conventional reinforcement learning approaches require a large volume of data, and cannot guarantee the stability of the vehicle. These limitations are addressed by integrating the advanced control theory with reinforcement learning techniques. To be more specific, by utilizing adaptive dynamic programming (ADP) techniques and using the motion data collected from the vehicles, a policy iteration algorithm is proposed such that the control policy is iteratively optimized in the absence of the precise knowledge of the AV's dynamical model. Furthermore, the stability of the AV is guaranteed with the control policy generated at each iteration of the algorithm. The efficiency of the proposed approach is validated by the integrated simulation of SUMO and CommonRoad.
Author Chakraborty, Sayan
Cui, Leilei
Jiang, Zhong-Ping
Ozbay, Kaan
Author_xml – sequence: 1
  givenname: Leilei
  orcidid: 0000-0001-8031-7638
  surname: Cui
  fullname: Cui, Leilei
  email: llcui@mit.edu
  organization: Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 2
  givenname: Sayan
  orcidid: 0000-0002-8638-4652
  surname: Chakraborty
  fullname: Chakraborty, Sayan
  email: sc8804@nyu.edu
  organization: Department of Electrical and Computer Engineering, Control and Networks Laboratory, Tandon School of Engineering, New York University, Brooklyn, NY, USA
– sequence: 3
  givenname: Kaan
  orcidid: 0000-0001-7909-6532
  surname: Ozbay
  fullname: Ozbay, Kaan
  email: kaan.ozbay@nyu.edu
  organization: Department of Civil and Urban Engineering, C2SMARTER Center, Tandon School of Engineering, New York University, Brooklyn, NY, USA
– sequence: 4
  givenname: Zhong-Ping
  orcidid: 0000-0002-4868-9359
  surname: Jiang
  fullname: Jiang, Zhong-Ping
  email: zjiang@nyu.edu
  organization: Department of Electrical and Computer Engineering, Department of Civil and Urban Engineering, Control and Networks Laboratory, Tandon School of Engineering, New York University, Brooklyn, NY, USA
BookMark eNpNkF9LwzAUxYMouE0_gOBDwOfO_GnS5FE6p8JAYX0PaXszM7pkpp3it7dje_DpHi7nHA6_KboMMQBCd5TMKSX6sSrX1ZwRJuZccM2ovEATKoTKiJLictRE8kwKLq_RtO-3hNBcsGKC1gs72GyR_DcEXMZd7QO0eBXDxg-H1gfbYRvGhx0gjbqMYUixwy4mPHwCLm3Cy9h18ceHDf5Ise5gd4OunO16uD3fGaqWz1X5mq3eX97Kp1XWsFwOmSXj3rwtgKpGU9pwIsBCXUhQbU2sbl1LW6COSe0UaOGYrqGQ2lqnakX4DD2cavcpfh2gH8w2HtK4uDec6kIxkks6uujJ1aTY9wmc2Se_s-nXUGKO6MwRnTmiM2d0Y-b-lPEA8M-vFJGK8T8T3GyH
CODEN IETTE2
Cites_doi 10.1016/j.ifacol.2017.08.2190
10.1007/978-1-4757-4573-3_2
10.1561/2600000023
10.1109/TITS.2015.2504718
10.1109/TIV.2023.3287131
10.1109/ITSC.2013.6728261
10.1007/978-3-319-17771-7
10.1109/TVT.2018.2816936
10.1109/ITSC.2018.8569938
10.1109/TVT.2010.2076320
10.1109/TITS.2015.2498170
10.1109/TITS.2016.2597279
10.1109/MITS.2018.2806623
10.1109/ACC.1999.782452
10.1109/TNNLS.2017.2761718
10.1109/87.852914
10.1109/ICSMC.2010.5642254
10.1109/ITSC.2014.6957819
10.1109/TITS.2014.2325776
10.1109/IVS.2017.7995802
10.1016/j.trb.2019.06.005
10.1016/j.trc.2019.08.003
10.1016/j.conengprac.2019.05.001
10.1109/TCST.2013.2258346
10.1109/TITS.2020.3024655
10.1137/1.9780898718683
10.1007/978-1-4614-1433-9
10.1109/TITS.2013.2278494
10.1109/TITS.2019.2947348
10.1109/TITS.2019.2895285
10.1002/acs.2834
10.1109/LCSYS.2020.2997994
10.1016/j.trc.2009.06.002
10.1109/TVT.2014.2356204
10.1109/TIE.2019.2958308
10.1016/j.trb.2019.07.001
10.1109/TCST.2012.2198886
10.1109/TITS.2006.884615
10.1016/j.trc.2010.05.004
10.1017/CBO9781139171502
10.2307/j.ctvcm4g0s
10.1080/00423114.2016.1193209
10.1109/TCYB.2020.3029077
10.1109/87.491200
10.1002/9781119132677
10.1109/TCST.2019.2893830
10.1016/j.isatra.2020.07.009
10.1016/j.trb.2022.09.003
10.1109/ICCA.2019.8900002
10.1109/tac.2024.3397928
10.1049/iet-its.2019.0846
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
DOI 10.1109/TCST.2025.3539216
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0865
EndPage 1005
ExternalDocumentID 10_1109_TCST_2025_3539216
10880682
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: ECCS-2210320; CNS-2227153
– fundername: Connected Cities for Smart Mobility toward Accessible and Resilient Transportation (C2SMART), the Tier 1 University Center Awarded by U.S. Department of Transportation through the University Transportation Centers Program
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
L7M
ID FETCH-LOGICAL-c246t-a02024d7e18c911c305eaeb76e8db0a9dfd1de1f269f8e95f29be769aaf8b803
IEDL.DBID RIE
ISSN 1063-6536
IngestDate Tue Jul 22 18:41:17 EDT 2025
Tue Aug 05 12:13:49 EDT 2025
Wed Aug 27 02:03:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-a02024d7e18c911c305eaeb76e8db0a9dfd1de1f269f8e95f29be769aaf8b803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4868-9359
0000-0002-8638-4652
0000-0001-8031-7638
0000-0001-7909-6532
PQID 3197820461
PQPubID 85425
PageCount 15
ParticipantIDs proquest_journals_3197820461
ieee_primary_10880682
crossref_primary_10_1109_TCST_2025_3539216
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on control systems technology
PublicationTitleAbbrev TCST
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Aström (ref52) 1997
ref12
ref15
ref14
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref46
ref45
Jiang (ref50) 1997; 33
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Khalil (ref53) 2002
References_xml – ident: ref30
  doi: 10.1016/j.ifacol.2017.08.2190
– ident: ref1
  doi: 10.1007/978-1-4757-4573-3_2
– ident: ref37
  doi: 10.1561/2600000023
– ident: ref11
  doi: 10.1109/TITS.2015.2504718
– ident: ref39
  doi: 10.1109/TIV.2023.3287131
– ident: ref8
  doi: 10.1109/ITSC.2013.6728261
– ident: ref54
  doi: 10.1007/978-3-319-17771-7
– ident: ref27
  doi: 10.1109/TVT.2018.2816936
– ident: ref46
  doi: 10.1109/ITSC.2018.8569938
– ident: ref49
  doi: 10.1109/TVT.2010.2076320
– ident: ref13
  doi: 10.1109/TITS.2015.2498170
– ident: ref40
  doi: 10.1109/TITS.2016.2597279
– ident: ref29
  doi: 10.1109/MITS.2018.2806623
– ident: ref25
  doi: 10.1109/ACC.1999.782452
– ident: ref43
  doi: 10.1109/TNNLS.2017.2761718
– ident: ref7
  doi: 10.1109/87.852914
– ident: ref20
  doi: 10.1109/ICSMC.2010.5642254
– ident: ref12
  doi: 10.1109/ITSC.2014.6957819
– ident: ref26
  doi: 10.1109/TITS.2014.2325776
– ident: ref47
  doi: 10.1109/IVS.2017.7995802
– ident: ref17
  doi: 10.1016/j.trb.2019.06.005
– ident: ref28
  doi: 10.1016/j.trc.2019.08.003
– ident: ref31
  doi: 10.1016/j.conengprac.2019.05.001
– volume-title: Adaptive Control
  year: 1997
  ident: ref52
– volume: 33
  start-page: 1393
  issue: 7
  year: 1997
  ident: ref50
  article-title: Tracking control of mobile robots: A case study in backstepping
  publication-title: Automatica
– ident: ref4
  doi: 10.1109/TCST.2013.2258346
– ident: ref35
  doi: 10.1109/TITS.2020.3024655
– ident: ref44
  doi: 10.1137/1.9780898718683
– ident: ref48
  doi: 10.1007/978-1-4614-1433-9
– ident: ref3
  doi: 10.1109/TITS.2013.2278494
– ident: ref32
  doi: 10.1109/TITS.2019.2947348
– volume-title: Nonlinear Systems
  year: 2002
  ident: ref53
– ident: ref41
  doi: 10.1109/TITS.2019.2895285
– ident: ref14
  doi: 10.1002/acs.2834
– ident: ref34
  doi: 10.1109/LCSYS.2020.2997994
– ident: ref23
  doi: 10.1016/j.trc.2009.06.002
– ident: ref19
  doi: 10.1109/TVT.2014.2356204
– ident: ref42
  doi: 10.1109/TIE.2019.2958308
– ident: ref16
  doi: 10.1016/j.trb.2019.07.001
– ident: ref21
  doi: 10.1109/TCST.2012.2198886
– ident: ref2
  doi: 10.1109/TITS.2006.884615
– ident: ref24
  doi: 10.1016/j.trc.2010.05.004
– ident: ref51
  doi: 10.1017/CBO9781139171502
– ident: ref45
  doi: 10.2307/j.ctvcm4g0s
– ident: ref5
  doi: 10.1080/00423114.2016.1193209
– ident: ref6
  doi: 10.1109/TCYB.2020.3029077
– ident: ref22
  doi: 10.1109/87.491200
– ident: ref36
  doi: 10.1002/9781119132677
– ident: ref33
  doi: 10.1109/TCST.2019.2893830
– ident: ref10
  doi: 10.1016/j.isatra.2020.07.009
– ident: ref15
  doi: 10.1016/j.trb.2022.09.003
– ident: ref18
  doi: 10.1109/ICCA.2019.8900002
– ident: ref38
  doi: 10.1109/tac.2024.3397928
– ident: ref9
  doi: 10.1049/iet-its.2019.0846
SSID ssj0014527
Score 2.459169
Snippet This article studies the problem of data-driven combined longitudinal and lateral control of autonomous vehicles (AVs) such that the AV can stay within a safe...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 991
SubjectTerms Accuracy
Adaptation models
Adaptive dynamic programming (ADP)
Car following
Changing environments
combined longitudinal and lateral control
connected vehicles
Control theory
Dynamic models
Dynamic programming
Electronic mail
Iterative algorithms
Lateral control
Mathematical models
Nonlinear dynamical systems
Optimal control
Reinforcement learning
Roads
Simulation
Stability
Transportation
Vehicle dynamics
Vehicles
Title Data-Driven Combined Longitudinal and Lateral Control for the Car Following Problem
URI https://ieeexplore.ieee.org/document/10880682
https://www.proquest.com/docview/3197820461
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78nFidkoMnobUfaZocZXMM0SFswm4laV4uyiazQ_Cv96XpZCiCt9KmoeS9_PJe38ePkCurDRe5NqFIFAuZBoZbimchGK2zRIH2hbSPYz56ZvezfNYWqze1MADQJJ9B5C6bWL5ZVCv3qwx3OGobF4i42-i5-WKt75AB8_ys6OJkIW9ikkHbUPNm2p9M0RVM8yjL0R5w3OYbh1DDqvILipvzZbhPxusv82klL9Gq1lH1-aNp478__YDstZYmvfWqcUi2YH5Edjf6Dx6TyUDVKhwsHeJRRAb0ksHQh4XjMFoZx5dF1RxvKFem_Er7Pq2dop1L0W6kfbWkQ9SjxQfORp88NU2XTId30_4obFkWwiplvA4VGowpMwUkokLkqxAAAGVUcBBGx0oaaxIDiU25tAJkblOpoeBSKSu0iLMT0pkv5nBKaKJVUUlmk0K4cKCVODzW1lhuLT7hAbler3r55ntplI0PEsvSiah0IipbEQWk61ZxY6BfwID01oIq2-32XiKOuL5_jCdnf7x2Tnbc7D5VsUc69XIFF2hO1PqyUaMvnoLHrw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA8yD-rBz4nTqTl4EjqXNk3To0zH1DkEK3grSfNyUVaZHYJ_vS9NJ0MRvJV-hryXX97r-_gRcma1ETLWJpBM8YBr4LikRBSA0TpiCrQvpL2fiNETv32On5ti9boWBgDq5DPoucM6lm_KYu5-leEKR20TEhF3FTf-mPlyre-gAfcMrejkRIGoo5KdpqXmRTZ4zNAZDONeFKNF4NjNl7ahmlflFxjXO8xwi0wWY_OJJS-9eaV7xeePto3_Hvw22WxsTXrplWOHrMB0l2wsdSDcI49XqlLB1cxhHkVsQD8ZDB2XjsVobhxjFlVTPKFcofIrHfjEdoqWLkXLkQ7UjA5Rk8oPfBt98OQ0bZINr7PBKGh4FoIi5KIKFJqMITcJMFkg9hUIAYBSSgRIo_sqNdYwA8yGIrUS0tiGqYZEpEpZqWU_2ietaTmFA0KZVkmRcssS6QKCNsXb-9oaK6zFK6JDzheznr_5bhp57YX009yJKHciyhsRdUjbzeLSjX4CO6S7EFTeLLj3HJHEdf7jgh3-8dgpWRtl9-N8fDO5OyLr7ks-cbFLWtVsDsdoXFT6pFapLzZ0yvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Combined+Longitudinal+and+Lateral+Control+for+the+Car+Following+Problem&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Cui%2C+Leilei&rft.au=Chakraborty%2C+Sayan&rft.au=Ozbay%2C+Kaan&rft.au=Zhong-Ping%2C+Jiang&rft.date=2025-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=33&rft.issue=3&rft.spage=991&rft_id=info:doi/10.1109%2FTCST.2025.3539216&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon