Domain-Adversarial Learning for UWB NLOS Identification in Dynamic Obstacle Environments

Ultrawideband (UWB) radio frequency positioning technology has found extensive applications in indoor and outdoor localization due to its strong anti-interference capabilities, high penetration power, and precise measurement accuracy. However, its positioning accuracy significantly decreases under n...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 25; no. 13; pp. 23312 - 23325
Main Authors Wang, Qiu, Chen, Ming-Song, Yan, Xin, Lin, Yong-Cheng, Li, Kai, Liu, Jia-Jie, Zhang, Chi-Zhou
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2024.3491178

Cover

Loading…
Abstract Ultrawideband (UWB) radio frequency positioning technology has found extensive applications in indoor and outdoor localization due to its strong anti-interference capabilities, high penetration power, and precise measurement accuracy. However, its positioning accuracy significantly decreases under nonline-of-sight (NLOS) conditions, particularly in dynamic NLOS environments. Therefore, it is essential to identify NLOS propagation and mitigate its associated errors. To overcome these issues, this study proposes a novel enhanced domain-adversarial neural network for UWB signal occlusion recognition (EDANN-SOR). EDANN-SOR integrates hybrid manually extracted channel impulse response (CIR) features, effectively aligning the source and target domains and extracting discriminative and domain-invariant UWB CIR features in dynamic NLOS environments. Through adversarial learning, our method achieves high generalization with minimal CIR sample requirements, reducing the need for extensive data collection and significantly enhancing robustness in distance measurement and positioning under dynamic NLOS conditions. In contrast to state-of-the-art NLOS identification and transfer learning (TL) techniques, our method excels in both binary and multiclass NLOS classification. Specifically, it achieves an accuracy of over 97.36% in conventional LOS/NLOS binary classification across scenarios and 97.07% in multiclass classification. The integration of manually extracted features has been proved effective in improving the EDANN-SOR model's ability to distinguish among LOS, human, and glass obstacles.
AbstractList Ultrawideband (UWB) radio frequency positioning technology has found extensive applications in indoor and outdoor localization due to its strong anti-interference capabilities, high penetration power, and precise measurement accuracy. However, its positioning accuracy significantly decreases under nonline-of-sight (NLOS) conditions, particularly in dynamic NLOS environments. Therefore, it is essential to identify NLOS propagation and mitigate its associated errors. To overcome these issues, this study proposes a novel enhanced domain-adversarial neural network for UWB signal occlusion recognition (EDANN-SOR). EDANN-SOR integrates hybrid manually extracted channel impulse response (CIR) features, effectively aligning the source and target domains and extracting discriminative and domain-invariant UWB CIR features in dynamic NLOS environments. Through adversarial learning, our method achieves high generalization with minimal CIR sample requirements, reducing the need for extensive data collection and significantly enhancing robustness in distance measurement and positioning under dynamic NLOS conditions. In contrast to state-of-the-art NLOS identification and transfer learning (TL) techniques, our method excels in both binary and multiclass NLOS classification. Specifically, it achieves an accuracy of over 97.36% in conventional LOS/NLOS binary classification across scenarios and 97.07% in multiclass classification. The integration of manually extracted features has been proved effective in improving the EDANN-SOR model’s ability to distinguish among LOS, human, and glass obstacles.
Author Li, Kai
Yan, Xin
Liu, Jia-Jie
Wang, Qiu
Chen, Ming-Song
Lin, Yong-Cheng
Zhang, Chi-Zhou
Author_xml – sequence: 1
  givenname: Qiu
  orcidid: 0009-0007-9629-745X
  surname: Wang
  fullname: Wang, Qiu
  email: 213801014@csu.edu.cn
  organization: Light Alloy Research Institute, Central South University, Changsha, Hunan, China
– sequence: 2
  givenname: Ming-Song
  orcidid: 0000-0003-3828-4996
  surname: Chen
  fullname: Chen, Ming-Song
  email: chenms18@csu.edu.cn
  organization: Light Alloy Research Institute, Central South University, Changsha, Hunan, China
– sequence: 3
  givenname: Xin
  orcidid: 0009-0007-1409-2881
  surname: Yan
  fullname: Yan, Xin
  email: 233811006@csu.edu.cn
  organization: Light Alloy Research Institute, Central South University, Changsha, Hunan, China
– sequence: 4
  givenname: Yong-Cheng
  orcidid: 0000-0001-9033-1564
  surname: Lin
  fullname: Lin, Yong-Cheng
  email: yclin@csu.edu.cn
  organization: School of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, China
– sequence: 5
  givenname: Kai
  orcidid: 0000-0002-1290-1450
  surname: Li
  fullname: Li, Kai
  email: likai01@csu.edu.cn
  organization: School of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, China
– sequence: 6
  givenname: Jia-Jie
  orcidid: 0009-0005-8609-622X
  surname: Liu
  fullname: Liu, Jia-Jie
  email: ljj1631632022@163.com
  organization: Light Alloy Research Institute, Central South University, Changsha, Hunan, China
– sequence: 7
  givenname: Chi-Zhou
  orcidid: 0000-0002-0458-5523
  surname: Zhang
  fullname: Zhang, Chi-Zhou
  email: 213801003@csu.edu.cn
  organization: Light Alloy Research Institute, Central South University, Changsha, Hunan, China
BookMark eNpNkM9PwjAYhhuDiYD-ASYemnge9ufaHRFQMQsckMht6brOlECL7SDhv3cLHDx97-F53y95BqDnvDMAPGI0whhlL5-r2WJEEGEjyjKMhbwBfcy5TLBgstdlihJGxeYODGLcIoQzwUUfbKZ-r6xLxtXJhKiCVTuYGxWcdT-w9gGuv1_hIl-u4LwyrrG11aqx3kHr4PTs1N5quCxjo_TOwJk72eDdvgXjPbit1S6ah-sdgvXb7GvykeTL9_lknCeasLRJJOelFqhkrKwqrikhusQSScJIhbnGqaHIlJWURsmaliXSGctqXWlCkWZpSofg-bJ7CP73aGJTbP0xuPZl0Y4JlCGeypbCF0oHH2MwdXEIdq_CucCo6AQWncCiE1hcBbadp0vHGmP-8YIjLDD9A9Gjbiw
CODEN ISJEAZ
Cites_doi 10.1109/TVT.2022.3172863
10.1109/LCOMM.2023.3260953
10.3390/s19020424
10.1016/j.eswa.2023.122298
10.1109/JSEN.2022.3232479
10.1109/JSSC.2005.852421
10.1080/10095020.2023.2178334
10.1109/LCOMM.2022.3220506
10.1109/LCOMM.2020.3009659
10.3390/s24061959
10.1109/LCOMM.2023.3340248
10.1109/TCOMM.2012.042712.110035
10.1109/LWC.2020.3046531
10.1109/JIOT.2020.3030174
10.1109/MILCOM.1993.408628
10.1109/TIM.2020.2967114
10.1109/GLOBECOM46510.2021.9685213
10.1109/LCOMM.2020.2999904
10.1109/JPROC.2020.3004555
10.1109/JSEN.2023.3323564
10.1016/j.compag.2022.107573
10.3390/electronics9101714
10.1109/TII.2023.3329655
10.1007/s11277-021-08425-z
10.1007/s12243-021-00884-6
10.1007/s40747-023-01156-7
10.1016/j.jocs.2022.101654
10.1109/TII.2016.2554522
10.1109/MIM.2024.10623162
10.5555/2946645.2946704
10.3390/s24051703
10.3390/ijgi9110627
10.1109/PIMRC.2007.4394238
10.1016/j.measurement.2022.111191
10.1109/JIOT.2023.3299319
10.1109/LCOMM.2023.3249834
10.1109/TCSI.2007.895378
10.1109/jsen.2022.3156971
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3491178
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 23325
ExternalDocumentID 10_1109_JSEN_2024_3491178
10750171
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Hainan Province; Natural Science Foundation of Hunan Province of China
  grantid: 2025JJ50270
  funderid: 10.13039/501100004761
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c246t-855bc70b44bdd5c322cb1808242d15c16e30ebd88ea8f3bb0c949fcdc230c4663
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Thu Aug 28 18:03:43 EDT 2025
Thu Jul 10 09:59:52 EDT 2025
Wed Aug 27 02:12:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-855bc70b44bdd5c322cb1808242d15c16e30ebd88ea8f3bb0c949fcdc230c4663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3828-4996
0000-0001-9033-1564
0009-0007-1409-2881
0009-0005-8609-622X
0000-0002-0458-5523
0000-0002-1290-1450
0009-0007-9629-745X
PQID 3227090568
PQPubID 75733
PageCount 14
ParticipantIDs proquest_journals_3227090568
crossref_primary_10_1109_JSEN_2024_3491178
ieee_primary_10750171
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
Snoek (ref39); 25
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref23
  doi: 10.1109/TVT.2022.3172863
– ident: ref22
  doi: 10.1109/LCOMM.2023.3260953
– ident: ref3
  doi: 10.3390/s19020424
– ident: ref4
  doi: 10.1016/j.eswa.2023.122298
– ident: ref19
  doi: 10.1109/JSEN.2022.3232479
– ident: ref36
  doi: 10.1109/JSSC.2005.852421
– ident: ref6
  doi: 10.1080/10095020.2023.2178334
– ident: ref31
  doi: 10.1109/LCOMM.2022.3220506
– ident: ref12
  doi: 10.1109/LCOMM.2020.3009659
– ident: ref27
  doi: 10.3390/s24061959
– ident: ref7
  doi: 10.1109/LCOMM.2023.3340248
– ident: ref8
  doi: 10.1109/TCOMM.2012.042712.110035
– ident: ref26
  doi: 10.1109/LWC.2020.3046531
– ident: ref1
  doi: 10.1109/JIOT.2020.3030174
– ident: ref34
  doi: 10.1109/MILCOM.1993.408628
– ident: ref5
  doi: 10.1109/TIM.2020.2967114
– ident: ref38
  doi: 10.1109/GLOBECOM46510.2021.9685213
– ident: ref10
  doi: 10.1109/LCOMM.2020.2999904
– ident: ref13
  doi: 10.1109/JPROC.2020.3004555
– ident: ref17
  doi: 10.1109/JSEN.2023.3323564
– ident: ref29
  doi: 10.1016/j.compag.2022.107573
– ident: ref32
  doi: 10.3390/electronics9101714
– ident: ref15
  doi: 10.1109/TII.2023.3329655
– ident: ref16
  doi: 10.1007/s11277-021-08425-z
– ident: ref20
  doi: 10.1007/s12243-021-00884-6
– volume: 25
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref39
  article-title: Practical Bayesian optimization of machine learning algorithms
– ident: ref28
  doi: 10.1007/s40747-023-01156-7
– ident: ref30
  doi: 10.1016/j.jocs.2022.101654
– ident: ref18
  doi: 10.1109/TII.2016.2554522
– ident: ref11
  doi: 10.1109/MIM.2024.10623162
– ident: ref37
  doi: 10.5555/2946645.2946704
– ident: ref21
  doi: 10.3390/s24051703
– ident: ref2
  doi: 10.3390/ijgi9110627
– ident: ref35
  doi: 10.1109/PIMRC.2007.4394238
– ident: ref25
  doi: 10.1016/j.measurement.2022.111191
– ident: ref14
  doi: 10.1109/JIOT.2023.3299319
– ident: ref9
  doi: 10.1109/LCOMM.2023.3249834
– ident: ref33
  doi: 10.1109/TCSI.2007.895378
– ident: ref24
  doi: 10.1109/jsen.2022.3156971
SSID ssj0019757
Score 2.4368782
Snippet Ultrawideband (UWB) radio frequency positioning technology has found extensive applications in indoor and outdoor localization due to its strong...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 23312
SubjectTerms Accuracy
Adversarial neural network
Barriers
Channel impulse response
Classification
Data mining
Distance measurement
domain adaption
Feature extraction
Impulse response
Location awareness
Machine learning
Neural networks
nonline-of-sight (NLOS) identification
Occlusion
Sensors
Testing
Training
Transfer learning
transfer learning (TL)
Ultrawideband
ultrawideband (UWB)
Title Domain-Adversarial Learning for UWB NLOS Identification in Dynamic Obstacle Environments
URI https://ieeexplore.ieee.org/document/10750171
https://www.proquest.com/docview/3227090568
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWgCzDwUYooFOSBCSnFSZzaHoEWVRVqh1LRLYo_AhUiRTQd4NdzdlxUgZDYMiTKyefzvbP97iF0ofOExzohsPqJLKCCZ4FkUgSJYYwLoyNVdfscdvoTOpgmU09Wd1wYY4y7fGba9tGd5eu5WtqtMohwyG-hZYxvQuVWkbW-jwwEc209IYJJQGM29UeYIRFXg3FvCKVgRNsxheC2kmprScipqvxail1-udtDw5Vl1bWSl_aylG31-aNp479N30e7Hmni62pqHKANU9TRzlr_wTra8hLozx-HaNqdv2azInAKzYvMzkvsm68-YUC2ePJ4g4f3ozGuuL253-zDswJ3K1l7PJKANeFnuLdGn2ugyV3v4bYfeNmFQEW0UwY8SaRiRFIqtU4URLySIQeoQCMdJirsmJgYqTk3Gc9jKYkSVORKK6hmFAUEc4Rqxbwwxwgb2YlJRqSj4OaARVmsGRVUxkZB4Sqa6HLlh_St6q6RuqqEiNQ6LbVOS73Tmqhhx3XtxWpIm6i1cl3qA3CRgtWMCEB3_OSPz07RdmS1fN3V2xaqle9LcwYAo5TnbmJ9AeDOy0k
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOACH0vIQW2jrAyekLE5ir-0jj0ULLOEAK_YWxY-0CDWLYPdQfj1jx1utiipxyyFRRh6P5xvb33wAB7bmMrec4uqnqoQpWSVaaJVwJ4RUzmam7fZZ9AYjdjnm40hWD1wY51y4fOa6_jGc5duJmfmtMoxwzG-pZ4yvcM_Gbelafw8NlAiNPTGGacJyMY6HmClVR5e3_QKLwYx1c4bh7UXVFtJQ0FV5txiHDHO-AcXctvZiyWN3NtVd8_pP28YPG_8ZPkWsSY7byfEFllyzCesLHQg3YTWKoP_6swXjs8nv6qFJgkbzS-VnJontV38SxLZkdH9CiuHNLWnZvXXc7iMPDTlrhe3JjUa0iT8j_QUC3TaMzvt3p4MkCi8kJmO9aSI510ZQzZi2lhuMeaNTiWCBZTblJu25nDptpXSVrHOtqVFM1cYarGcMQwyzA8vNpHG7QJzu5bSiOpBwa0SjIreCKaZzZ7B0VR04nPuhfGr7a5ShLqGq9E4rvdPK6LQObPtxXXixHdIO7M9dV8YQfCnRakEV4jv59T-f_YDVwd31sBxeFFd7sJZ5Zd9wEXcflqfPM_cN4cZUfw-T7A2m2M6R
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain-Adversarial+Learning+for+UWB+NLOS+Identification+in+Dynamic+Obstacle+Environments&rft.jtitle=IEEE+sensors+journal&rft.au=Wang%2C+Qiu&rft.au=Ming-Song%2C+Chen&rft.au=Yan%2C+Xin&rft.au=Yong-Cheng%2C+Lin&rft.date=2025-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=11&rft.spage=23312&rft.epage=23325&rft_id=info:doi/10.1109%2FJSEN.2024.3491178&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon