Domain-Adversarial Learning for UWB NLOS Identification in Dynamic Obstacle Environments
Ultrawideband (UWB) radio frequency positioning technology has found extensive applications in indoor and outdoor localization due to its strong anti-interference capabilities, high penetration power, and precise measurement accuracy. However, its positioning accuracy significantly decreases under n...
Saved in:
Published in | IEEE sensors journal Vol. 25; no. 13; pp. 23312 - 23325 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1530-437X 1558-1748 |
DOI | 10.1109/JSEN.2024.3491178 |
Cover
Loading…
Abstract | Ultrawideband (UWB) radio frequency positioning technology has found extensive applications in indoor and outdoor localization due to its strong anti-interference capabilities, high penetration power, and precise measurement accuracy. However, its positioning accuracy significantly decreases under nonline-of-sight (NLOS) conditions, particularly in dynamic NLOS environments. Therefore, it is essential to identify NLOS propagation and mitigate its associated errors. To overcome these issues, this study proposes a novel enhanced domain-adversarial neural network for UWB signal occlusion recognition (EDANN-SOR). EDANN-SOR integrates hybrid manually extracted channel impulse response (CIR) features, effectively aligning the source and target domains and extracting discriminative and domain-invariant UWB CIR features in dynamic NLOS environments. Through adversarial learning, our method achieves high generalization with minimal CIR sample requirements, reducing the need for extensive data collection and significantly enhancing robustness in distance measurement and positioning under dynamic NLOS conditions. In contrast to state-of-the-art NLOS identification and transfer learning (TL) techniques, our method excels in both binary and multiclass NLOS classification. Specifically, it achieves an accuracy of over 97.36% in conventional LOS/NLOS binary classification across scenarios and 97.07% in multiclass classification. The integration of manually extracted features has been proved effective in improving the EDANN-SOR model's ability to distinguish among LOS, human, and glass obstacles. |
---|---|
AbstractList | Ultrawideband (UWB) radio frequency positioning technology has found extensive applications in indoor and outdoor localization due to its strong anti-interference capabilities, high penetration power, and precise measurement accuracy. However, its positioning accuracy significantly decreases under nonline-of-sight (NLOS) conditions, particularly in dynamic NLOS environments. Therefore, it is essential to identify NLOS propagation and mitigate its associated errors. To overcome these issues, this study proposes a novel enhanced domain-adversarial neural network for UWB signal occlusion recognition (EDANN-SOR). EDANN-SOR integrates hybrid manually extracted channel impulse response (CIR) features, effectively aligning the source and target domains and extracting discriminative and domain-invariant UWB CIR features in dynamic NLOS environments. Through adversarial learning, our method achieves high generalization with minimal CIR sample requirements, reducing the need for extensive data collection and significantly enhancing robustness in distance measurement and positioning under dynamic NLOS conditions. In contrast to state-of-the-art NLOS identification and transfer learning (TL) techniques, our method excels in both binary and multiclass NLOS classification. Specifically, it achieves an accuracy of over 97.36% in conventional LOS/NLOS binary classification across scenarios and 97.07% in multiclass classification. The integration of manually extracted features has been proved effective in improving the EDANN-SOR model’s ability to distinguish among LOS, human, and glass obstacles. |
Author | Li, Kai Yan, Xin Liu, Jia-Jie Wang, Qiu Chen, Ming-Song Lin, Yong-Cheng Zhang, Chi-Zhou |
Author_xml | – sequence: 1 givenname: Qiu orcidid: 0009-0007-9629-745X surname: Wang fullname: Wang, Qiu email: 213801014@csu.edu.cn organization: Light Alloy Research Institute, Central South University, Changsha, Hunan, China – sequence: 2 givenname: Ming-Song orcidid: 0000-0003-3828-4996 surname: Chen fullname: Chen, Ming-Song email: chenms18@csu.edu.cn organization: Light Alloy Research Institute, Central South University, Changsha, Hunan, China – sequence: 3 givenname: Xin orcidid: 0009-0007-1409-2881 surname: Yan fullname: Yan, Xin email: 233811006@csu.edu.cn organization: Light Alloy Research Institute, Central South University, Changsha, Hunan, China – sequence: 4 givenname: Yong-Cheng orcidid: 0000-0001-9033-1564 surname: Lin fullname: Lin, Yong-Cheng email: yclin@csu.edu.cn organization: School of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, China – sequence: 5 givenname: Kai orcidid: 0000-0002-1290-1450 surname: Li fullname: Li, Kai email: likai01@csu.edu.cn organization: School of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, China – sequence: 6 givenname: Jia-Jie orcidid: 0009-0005-8609-622X surname: Liu fullname: Liu, Jia-Jie email: ljj1631632022@163.com organization: Light Alloy Research Institute, Central South University, Changsha, Hunan, China – sequence: 7 givenname: Chi-Zhou orcidid: 0000-0002-0458-5523 surname: Zhang fullname: Zhang, Chi-Zhou email: 213801003@csu.edu.cn organization: Light Alloy Research Institute, Central South University, Changsha, Hunan, China |
BookMark | eNpNkM9PwjAYhhuDiYD-ASYemnge9ufaHRFQMQsckMht6brOlECL7SDhv3cLHDx97-F53y95BqDnvDMAPGI0whhlL5-r2WJEEGEjyjKMhbwBfcy5TLBgstdlihJGxeYODGLcIoQzwUUfbKZ-r6xLxtXJhKiCVTuYGxWcdT-w9gGuv1_hIl-u4LwyrrG11aqx3kHr4PTs1N5quCxjo_TOwJk72eDdvgXjPbit1S6ah-sdgvXb7GvykeTL9_lknCeasLRJJOelFqhkrKwqrikhusQSScJIhbnGqaHIlJWURsmaliXSGctqXWlCkWZpSofg-bJ7CP73aGJTbP0xuPZl0Y4JlCGeypbCF0oHH2MwdXEIdq_CucCo6AQWncCiE1hcBbadp0vHGmP-8YIjLDD9A9Gjbiw |
CODEN | ISJEAZ |
Cites_doi | 10.1109/TVT.2022.3172863 10.1109/LCOMM.2023.3260953 10.3390/s19020424 10.1016/j.eswa.2023.122298 10.1109/JSEN.2022.3232479 10.1109/JSSC.2005.852421 10.1080/10095020.2023.2178334 10.1109/LCOMM.2022.3220506 10.1109/LCOMM.2020.3009659 10.3390/s24061959 10.1109/LCOMM.2023.3340248 10.1109/TCOMM.2012.042712.110035 10.1109/LWC.2020.3046531 10.1109/JIOT.2020.3030174 10.1109/MILCOM.1993.408628 10.1109/TIM.2020.2967114 10.1109/GLOBECOM46510.2021.9685213 10.1109/LCOMM.2020.2999904 10.1109/JPROC.2020.3004555 10.1109/JSEN.2023.3323564 10.1016/j.compag.2022.107573 10.3390/electronics9101714 10.1109/TII.2023.3329655 10.1007/s11277-021-08425-z 10.1007/s12243-021-00884-6 10.1007/s40747-023-01156-7 10.1016/j.jocs.2022.101654 10.1109/TII.2016.2554522 10.1109/MIM.2024.10623162 10.5555/2946645.2946704 10.3390/s24051703 10.3390/ijgi9110627 10.1109/PIMRC.2007.4394238 10.1016/j.measurement.2022.111191 10.1109/JIOT.2023.3299319 10.1109/LCOMM.2023.3249834 10.1109/TCSI.2007.895378 10.1109/jsen.2022.3156971 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2024.3491178 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 23325 |
ExternalDocumentID | 10_1109_JSEN_2024_3491178 10750171 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Hainan Province; Natural Science Foundation of Hunan Province of China grantid: 2025JJ50270 funderid: 10.13039/501100004761 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c246t-855bc70b44bdd5c322cb1808242d15c16e30ebd88ea8f3bb0c949fcdc230c4663 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Thu Aug 28 18:03:43 EDT 2025 Thu Jul 10 09:59:52 EDT 2025 Wed Aug 27 02:12:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-855bc70b44bdd5c322cb1808242d15c16e30ebd88ea8f3bb0c949fcdc230c4663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3828-4996 0000-0001-9033-1564 0009-0007-1409-2881 0009-0005-8609-622X 0000-0002-0458-5523 0000-0002-1290-1450 0009-0007-9629-745X |
PQID | 3227090568 |
PQPubID | 75733 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3227090568 crossref_primary_10_1109_JSEN_2024_3491178 ieee_primary_10750171 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 Snoek (ref39); 25 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref23 doi: 10.1109/TVT.2022.3172863 – ident: ref22 doi: 10.1109/LCOMM.2023.3260953 – ident: ref3 doi: 10.3390/s19020424 – ident: ref4 doi: 10.1016/j.eswa.2023.122298 – ident: ref19 doi: 10.1109/JSEN.2022.3232479 – ident: ref36 doi: 10.1109/JSSC.2005.852421 – ident: ref6 doi: 10.1080/10095020.2023.2178334 – ident: ref31 doi: 10.1109/LCOMM.2022.3220506 – ident: ref12 doi: 10.1109/LCOMM.2020.3009659 – ident: ref27 doi: 10.3390/s24061959 – ident: ref7 doi: 10.1109/LCOMM.2023.3340248 – ident: ref8 doi: 10.1109/TCOMM.2012.042712.110035 – ident: ref26 doi: 10.1109/LWC.2020.3046531 – ident: ref1 doi: 10.1109/JIOT.2020.3030174 – ident: ref34 doi: 10.1109/MILCOM.1993.408628 – ident: ref5 doi: 10.1109/TIM.2020.2967114 – ident: ref38 doi: 10.1109/GLOBECOM46510.2021.9685213 – ident: ref10 doi: 10.1109/LCOMM.2020.2999904 – ident: ref13 doi: 10.1109/JPROC.2020.3004555 – ident: ref17 doi: 10.1109/JSEN.2023.3323564 – ident: ref29 doi: 10.1016/j.compag.2022.107573 – ident: ref32 doi: 10.3390/electronics9101714 – ident: ref15 doi: 10.1109/TII.2023.3329655 – ident: ref16 doi: 10.1007/s11277-021-08425-z – ident: ref20 doi: 10.1007/s12243-021-00884-6 – volume: 25 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref39 article-title: Practical Bayesian optimization of machine learning algorithms – ident: ref28 doi: 10.1007/s40747-023-01156-7 – ident: ref30 doi: 10.1016/j.jocs.2022.101654 – ident: ref18 doi: 10.1109/TII.2016.2554522 – ident: ref11 doi: 10.1109/MIM.2024.10623162 – ident: ref37 doi: 10.5555/2946645.2946704 – ident: ref21 doi: 10.3390/s24051703 – ident: ref2 doi: 10.3390/ijgi9110627 – ident: ref35 doi: 10.1109/PIMRC.2007.4394238 – ident: ref25 doi: 10.1016/j.measurement.2022.111191 – ident: ref14 doi: 10.1109/JIOT.2023.3299319 – ident: ref9 doi: 10.1109/LCOMM.2023.3249834 – ident: ref33 doi: 10.1109/TCSI.2007.895378 – ident: ref24 doi: 10.1109/jsen.2022.3156971 |
SSID | ssj0019757 |
Score | 2.4368782 |
Snippet | Ultrawideband (UWB) radio frequency positioning technology has found extensive applications in indoor and outdoor localization due to its strong... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 23312 |
SubjectTerms | Accuracy Adversarial neural network Barriers Channel impulse response Classification Data mining Distance measurement domain adaption Feature extraction Impulse response Location awareness Machine learning Neural networks nonline-of-sight (NLOS) identification Occlusion Sensors Testing Training Transfer learning transfer learning (TL) Ultrawideband ultrawideband (UWB) |
Title | Domain-Adversarial Learning for UWB NLOS Identification in Dynamic Obstacle Environments |
URI | https://ieeexplore.ieee.org/document/10750171 https://www.proquest.com/docview/3227090568 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWgCzDwUYooFOSBCSnFSZzaHoEWVRVqh1LRLYo_AhUiRTQd4NdzdlxUgZDYMiTKyefzvbP97iF0ofOExzohsPqJLKCCZ4FkUgSJYYwLoyNVdfscdvoTOpgmU09Wd1wYY4y7fGba9tGd5eu5WtqtMohwyG-hZYxvQuVWkbW-jwwEc209IYJJQGM29UeYIRFXg3FvCKVgRNsxheC2kmprScipqvxail1-udtDw5Vl1bWSl_aylG31-aNp479N30e7Hmni62pqHKANU9TRzlr_wTra8hLozx-HaNqdv2azInAKzYvMzkvsm68-YUC2ePJ4g4f3ozGuuL253-zDswJ3K1l7PJKANeFnuLdGn2ugyV3v4bYfeNmFQEW0UwY8SaRiRFIqtU4URLySIQeoQCMdJirsmJgYqTk3Gc9jKYkSVORKK6hmFAUEc4Rqxbwwxwgb2YlJRqSj4OaARVmsGRVUxkZB4Sqa6HLlh_St6q6RuqqEiNQ6LbVOS73Tmqhhx3XtxWpIm6i1cl3qA3CRgtWMCEB3_OSPz07RdmS1fN3V2xaqle9LcwYAo5TnbmJ9AeDOy0k |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOACH0vIQW2jrAyekLE5ir-0jj0ULLOEAK_YWxY-0CDWLYPdQfj1jx1utiipxyyFRRh6P5xvb33wAB7bmMrec4uqnqoQpWSVaaJVwJ4RUzmam7fZZ9AYjdjnm40hWD1wY51y4fOa6_jGc5duJmfmtMoxwzG-pZ4yvcM_Gbelafw8NlAiNPTGGacJyMY6HmClVR5e3_QKLwYx1c4bh7UXVFtJQ0FV5txiHDHO-AcXctvZiyWN3NtVd8_pP28YPG_8ZPkWsSY7byfEFllyzCesLHQg3YTWKoP_6swXjs8nv6qFJgkbzS-VnJontV38SxLZkdH9CiuHNLWnZvXXc7iMPDTlrhe3JjUa0iT8j_QUC3TaMzvt3p4MkCi8kJmO9aSI510ZQzZi2lhuMeaNTiWCBZTblJu25nDptpXSVrHOtqVFM1cYarGcMQwyzA8vNpHG7QJzu5bSiOpBwa0SjIreCKaZzZ7B0VR04nPuhfGr7a5ShLqGq9E4rvdPK6LQObPtxXXixHdIO7M9dV8YQfCnRakEV4jv59T-f_YDVwd31sBxeFFd7sJZ5Zd9wEXcflqfPM_cN4cZUfw-T7A2m2M6R |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain-Adversarial+Learning+for+UWB+NLOS+Identification+in+Dynamic+Obstacle+Environments&rft.jtitle=IEEE+sensors+journal&rft.au=Wang%2C+Qiu&rft.au=Ming-Song%2C+Chen&rft.au=Yan%2C+Xin&rft.au=Yong-Cheng%2C+Lin&rft.date=2025-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=11&rft.spage=23312&rft.epage=23325&rft_id=info:doi/10.1109%2FJSEN.2024.3491178&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |