Reliable Source-Free Domain Adaptation for Cross-User Myoelectric Pattern Recognition

Surface electromyographic (sEMG) signals are widely used for human-machine interaction (HMI) control, providing information about user movement intent. However, interindividual differences in muscle anatomy pose a challenge for cross-user myoelectric pattern recognition (MPR) algorithms. Existing cr...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 24; no. 23; pp. 39363 - 39372
Main Authors Zhang, Xuan, Wu, Le, Zhang, Xu, Chen, Xiang, Li, Chang, Chen, Xun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Surface electromyographic (sEMG) signals are widely used for human-machine interaction (HMI) control, providing information about user movement intent. However, interindividual differences in muscle anatomy pose a challenge for cross-user myoelectric pattern recognition (MPR) algorithms. Existing cross-user MPR algorithms rely on domain adaptation (DA) using data from source and target users for model updating. However, using historical user data in commercial HMI devices risks disclosing user health information and biometric privacy. Therefore, enabling MPR algorithms to update models quickly and solely based on target user data in a source-free manner is crucial. With this aim, this article proposes a reliable source-free DA (RSFDA) framework that enables rapid cross-user application of myoelectric algorithms. Specifically, the proposed FSFDA framework employs a teacher-student framework. Both the teacher and student models are initialized with the source model. During the update of model parameters, the teacher framework utilizes historical network parameters to prevent knowledge forgetting, while the student model continuously updates parameters while ensuring consistency with the teacher model output. As a result, the final student model demonstrates increased stability and reliability in classifying gestures from new users. The experimental results demonstrate that the proposed RSFDA approach achieves a recognition accuracy of <inline-formula> <tex-math notation="LaTeX">94.44\%~\pm ~5.68\% </tex-math></inline-formula>, which outperforms the state-of-the-art methods on a high-density sEMG dataset using only five samples per gesture. Furthermore, this framework is effective even when only one sample is provided or when gesture categories are missing. This study provides a faster and safer strategy for cross-user MPR, enabling multiuser control.
AbstractList Surface electromyographic (sEMG) signals are widely used for human-machine interaction (HMI) control, providing information about user movement intent. However, interindividual differences in muscle anatomy pose a challenge for cross-user myoelectric pattern recognition (MPR) algorithms. Existing cross-user MPR algorithms rely on domain adaptation (DA) using data from source and target users for model updating. However, using historical user data in commercial HMI devices risks disclosing user health information and biometric privacy. Therefore, enabling MPR algorithms to update models quickly and solely based on target user data in a source-free manner is crucial. With this aim, this article proposes a reliable source-free DA (RSFDA) framework that enables rapid cross-user application of myoelectric algorithms. Specifically, the proposed FSFDA framework employs a teacher-student framework. Both the teacher and student models are initialized with the source model. During the update of model parameters, the teacher framework utilizes historical network parameters to prevent knowledge forgetting, while the student model continuously updates parameters while ensuring consistency with the teacher model output. As a result, the final student model demonstrates increased stability and reliability in classifying gestures from new users. The experimental results demonstrate that the proposed RSFDA approach achieves a recognition accuracy of <inline-formula> <tex-math notation="LaTeX">94.44\%~\pm ~5.68\% </tex-math></inline-formula>, which outperforms the state-of-the-art methods on a high-density sEMG dataset using only five samples per gesture. Furthermore, this framework is effective even when only one sample is provided or when gesture categories are missing. This study provides a faster and safer strategy for cross-user MPR, enabling multiuser control.
Surface electromyographic (sEMG) signals are widely used for human-machine interaction (HMI) control, providing information about user movement intent. However, interindividual differences in muscle anatomy pose a challenge for cross-user myoelectric pattern recognition (MPR) algorithms. Existing cross-user MPR algorithms rely on domain adaptation (DA) using data from source and target users for model updating. However, using historical user data in commercial HMI devices risks disclosing user health information and biometric privacy. Therefore, enabling MPR algorithms to update models quickly and solely based on target user data in a source-free manner is crucial. With this aim, this article proposes a reliable source-free DA (RSFDA) framework that enables rapid cross-user application of myoelectric algorithms. Specifically, the proposed FSFDA framework employs a teacher-student framework. Both the teacher and student models are initialized with the source model. During the update of model parameters, the teacher framework utilizes historical network parameters to prevent knowledge forgetting, while the student model continuously updates parameters while ensuring consistency with the teacher model output. As a result, the final student model demonstrates increased stability and reliability in classifying gestures from new users. The experimental results demonstrate that the proposed RSFDA approach achieves a recognition accuracy of [Formula Omitted], which outperforms the state-of-the-art methods on a high-density sEMG dataset using only five samples per gesture. Furthermore, this framework is effective even when only one sample is provided or when gesture categories are missing. This study provides a faster and safer strategy for cross-user MPR, enabling multiuser control.
Author Wu, Le
Zhang, Xuan
Chen, Xun
Li, Chang
Zhang, Xu
Chen, Xiang
Author_xml – sequence: 1
  givenname: Xuan
  orcidid: 0000-0003-0626-9599
  surname: Zhang
  fullname: Zhang, Xuan
  organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, China
– sequence: 2
  givenname: Le
  orcidid: 0000-0002-8565-9626
  surname: Wu
  fullname: Wu, Le
  email: lewu@ustc.edu.cn
  organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, China
– sequence: 3
  givenname: Xu
  orcidid: 0000-0002-1533-4340
  surname: Zhang
  fullname: Zhang, Xu
  email: xuzhang90@ustc.edu.cn
  organization: School of Microelectronics, University of Science and Technology of China, Hefei, China
– sequence: 4
  givenname: Xiang
  orcidid: 0000-0001-8259-4815
  surname: Chen
  fullname: Chen, Xiang
  organization: School of Microelectronics, University of Science and Technology of China, Hefei, China
– sequence: 5
  givenname: Chang
  orcidid: 0000-0003-0195-1003
  surname: Li
  fullname: Li, Chang
  email: changli@hfut.edu.cn
  organization: Department of Biomedical Engineering, Hefei University of Technology, Hefei, China
– sequence: 6
  givenname: Xun
  orcidid: 0000-0002-4922-8116
  surname: Chen
  fullname: Chen, Xun
  organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, China
BookMark eNpNkMtuwjAQRa2KSgXaD6jUhaWuk3piJ46XiEIfog9BkbqzjDOpgkJMnbDg7-sIFl3N1ejM494RGTSuQUJugcUATD28rmbvccISEXMh0xzyCzKENM0jkCIf9JqzSHD5fUVGbbtlDJRM5ZCsl1hXZlMjXbmDtxjNPSJ9dDtTNXRSmH1nuso1tHSeTr1r22jdoqdvR4c12s5Xln6arkPf0CVa99NUPX5NLktTt3hzrmOyns--ps_R4uPpZTpZRDYRWRdJk4siK4IWG8WkEEykKIUtC2sNy0oUBahSldwoA5DZ8LQJWkBeJCkL_TG5P-3de_d7wLbT2-CiCSc1B86FklKxQMGJsr0Bj6Xe-2pn_FED0316uk9P9-npc3ph5u40UyHiP15CljLO_wCYlm0l
CODEN ISJEAZ
Cites_doi 10.1109/TNSRE.2014.2304470
10.1016/j.bspc.2012.08.005
10.1109/TNSRE.2015.2492619
10.1109/TBME.2008.2005485
10.1109/TBME.2013.2250502
10.3389/fbioe.2020.00058
10.5555/3045118.3045167
10.1016/j.knosys.2021.107165
10.1109/TNSRE.2009.2023282
10.1109/JBHI.2020.3009383
10.2174/1574362413666180604100542
10.1109/ICCV48922.2021.00885
10.1109/TBME.2005.856295
10.1109/TNSRE.2012.2196711
10.1145/1357054.1357138
10.1109/GlobalSIP45357.2019.8969237
10.1109/JSEN.2023.3305619
10.1109/ICCV48922.2021.00696
10.1109/CVPR52688.2022.00706
10.1088/1741-2552/acb7a0
10.1016/j.compbiomed.2009.02.001
10.1109/TBME.2003.813539
10.1109/EMBC.2019.8857199
10.1109/MSP.2012.2203480
10.1109/5.726791
10.1109/TNSRE.2011.2108667
10.1109/TNSRE.2016.2560906
10.1001/jama.2009.116
10.3390/s17030458
10.1109/JBHI.2020.3027389
10.1016/j.compbiomed.2020.104188
10.1016/j.eswa.2016.05.031
10.1109/TNSRE.2022.3173946
10.1186/1743-0003-6-41
10.1109/TNSRE.2023.3253683
10.1109/JSEN.2022.3231925
10.1109/TNSRE.2020.3030931
10.1109/TNSRE.2023.3237181
10.1016/j.bspc.2014.05.001
10.1109/10.204774
10.1109/TNSRE.2015.2445634
10.1109/WACV48630.2021.00052
10.1109/TNSRE.2019.2959449
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3475818
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 39372
ExternalDocumentID 10_1109_JSEN_2024_3475818
10716503
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62301523
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2023YFC3603600
– fundername: Fundamental Research Funds for the Central Universities
  grantid: KY2100000123
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c246t-7a84d6d2464b90744045e74cfdcca06fe4d19f9f3a9a116c019a3a9418d2509f3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:11:50 EDT 2025
Thu Aug 21 00:38:47 EDT 2025
Wed Aug 27 07:40:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-7a84d6d2464b90744045e74cfdcca06fe4d19f9f3a9a116c019a3a9418d2509f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0195-1003
0000-0002-4922-8116
0000-0002-8565-9626
0000-0003-0626-9599
0000-0001-8259-4815
0000-0002-1533-4340
PQID 3133497790
PQPubID 75733
PageCount 10
ParticipantIDs proquest_journals_3133497790
ieee_primary_10716503
crossref_primary_10_1109_JSEN_2024_3475818
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
Tarvainen (ref41); 30
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Liang (ref37)
ref24
ref46
ref23
ref45
ref26
ref25
ref47
ref20
ref22
ref44
ref21
ref43
Sun (ref42)
ref28
ref27
ref29
ref8
ref7
ref9
ref4
Giacomini (ref32) 2006; 9
ref3
ref6
ref5
ref40
References_xml – ident: ref29
  doi: 10.1109/TNSRE.2014.2304470
– ident: ref10
  doi: 10.1016/j.bspc.2012.08.005
– ident: ref11
  doi: 10.1109/TNSRE.2015.2492619
– ident: ref4
  doi: 10.1109/TBME.2008.2005485
– ident: ref28
  doi: 10.1109/TBME.2013.2250502
– ident: ref33
  doi: 10.3389/fbioe.2020.00058
– ident: ref45
  doi: 10.5555/3045118.3045167
– ident: ref17
  doi: 10.1016/j.knosys.2021.107165
– ident: ref25
  doi: 10.1109/TNSRE.2009.2023282
– ident: ref47
  doi: 10.1109/JBHI.2020.3009383
– ident: ref34
  doi: 10.2174/1574362413666180604100542
– ident: ref38
  doi: 10.1109/ICCV48922.2021.00885
– ident: ref5
  doi: 10.1109/TBME.2005.856295
– ident: ref12
  doi: 10.1109/TNSRE.2012.2196711
– ident: ref9
  doi: 10.1145/1357054.1357138
– ident: ref30
  doi: 10.1109/GlobalSIP45357.2019.8969237
– ident: ref3
  doi: 10.1109/JSEN.2023.3305619
– ident: ref40
  doi: 10.1109/ICCV48922.2021.00696
– ident: ref36
  doi: 10.1109/CVPR52688.2022.00706
– ident: ref26
  doi: 10.1088/1741-2552/acb7a0
– ident: ref7
  doi: 10.1016/j.compbiomed.2009.02.001
– ident: ref46
  doi: 10.1109/TBME.2003.813539
– ident: ref16
  doi: 10.1109/EMBC.2019.8857199
– ident: ref18
  doi: 10.1109/MSP.2012.2203480
– ident: ref44
  doi: 10.1109/5.726791
– ident: ref8
  doi: 10.1109/TNSRE.2011.2108667
– ident: ref13
  doi: 10.1109/TNSRE.2016.2560906
– ident: ref2
  doi: 10.1001/jama.2009.116
– volume: 9
  start-page: 173
  issue: 2
  year: 2006
  ident: ref32
  article-title: Electromyography and neuromuscular disorders: Clinical electrophysiologic correlations
  publication-title: McGill J. Med.
– volume: 30
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref41
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
– ident: ref24
  doi: 10.3390/s17030458
– ident: ref35
  doi: 10.1109/JBHI.2020.3027389
– start-page: 9229
  volume-title: Proc. Int. Conf. Mach. Learning (PMLR)
  ident: ref42
  article-title: Test-time training with self-supervision for generalization under distribution shifts
– ident: ref22
  doi: 10.1016/j.compbiomed.2020.104188
– ident: ref20
  doi: 10.1016/j.eswa.2016.05.031
– ident: ref23
  doi: 10.1109/TNSRE.2022.3173946
– ident: ref6
  doi: 10.1186/1743-0003-6-41
– ident: ref31
  doi: 10.1109/TNSRE.2023.3253683
– ident: ref1
  doi: 10.1109/JSEN.2022.3231925
– ident: ref15
  doi: 10.1109/TNSRE.2020.3030931
– ident: ref27
  doi: 10.1109/TNSRE.2023.3237181
– ident: ref19
  doi: 10.1016/j.bspc.2014.05.001
– ident: ref43
  doi: 10.1109/10.204774
– ident: ref21
  doi: 10.1109/TNSRE.2015.2445634
– ident: ref39
  doi: 10.1109/WACV48630.2021.00052
– ident: ref14
  doi: 10.1109/TNSRE.2019.2959449
– start-page: 6028
  volume-title: Proc. Int. Conf. Mach. Learn. (PMLR)
  ident: ref37
  article-title: Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation
SSID ssj0019757
Score 2.4197156
Snippet Surface electromyographic (sEMG) signals are widely used for human-machine interaction (HMI) control, providing information about user movement intent....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 39363
SubjectTerms Adaptation
Adaptation models
Algorithms
Cross-subject
Data models
Electrodes
Electromyography
EMG control
Fingers
Human motion
Model updating
Muscles
Myoelectricity
Parameters
Pattern recognition
Reliability
Sensors
Solid modeling
source-free domain adaptation (SFDA)
Teachers
transfer learning
Title Reliable Source-Free Domain Adaptation for Cross-User Myoelectric Pattern Recognition
URI https://ieeexplore.ieee.org/document/10716503
https://www.proquest.com/docview/3133497790
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA66F_XBH3PidEoefBJS2-baro9jbozBhjgLeyttk-IQ2zG7h_nXe0k6GYrgWyhtSHOX5Lvc3XeE3OEJmYL0XJagMqCBEgDrysxloavIuDxupzo9ejL1RxGM5968TlbXuTBSSh18Ji3V1L58UWZrdVWGKxzRvae4PffRcjPJWt8ugzDQtJ6qfwY8mNcuTMcOH8azwRRNQRcsDoiPVYGPnUNIV1X5tRXr82V4QqbbkZmwkjdrXaVW9vmDtPHfQz8lxzXSpD2jGmdkTxZNcrTDP9gkB3UJ9NfNOYlUcLLKo6IzfZ_Phisp6WP5niwK2hPJ0vjsKYJc2ld_xSLUXjrZlKaSziKjT5qrs6DP26CksmiRaDh46Y9YXXOBZS74FQuSLghfYBtSZTcDQj4ZQJYLFLXt5xKEE-ZhzpMwcRw_w3lPsA1OVyCYwucXpFGUhbwkNPAggFSmNvAcVMyVwL3F4YGToFnsSN4m91shxEtDrRFrk8QOYyWxWEksriXWJi01qTsvmvlsk85WbnG9-j5ijoY3hIpJ8eqPz67JoerdxKV0SKNareUNoosqvdVa9QXa_smF
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4YPaAHH4gRRd2DJ5PFPqYtPRKEIEJjhCbcmj62kRhbgnDAX-_sthiiMfG2adrsdmZ2Z2Zn5huAW9KQEQrL4CEJAzkoDvKWiA3uGhKMyzK1SJVHjzy77-Ngak3LYnVVCyOEUMlnoimHKpaf5PFKXpXRDifr3pLYnnuk-C2jKNf6Dhq4jgL2lDNwNJ1pGcTUNfd-MO565Awa2DSRLGTZ4mNLDam-Kr8OY6VhekfgbdZWJJa8NVfLqBl__oBt_Pfij-GwtDVZuxCOE9gRWRUOthAIq1Apm6C_rk_Bl-nJspKKjdWNPu8thGAP-Xs4y1g7CedF1J6Rmcs68q-4T_LLRuu86KUzi9mzQuvM2MsmLSnPauD3upNOn5ddF3hsoL3kTtjCxE5ojJH0nJGMPuFgnCbEbM1OBSa6m7qpGbqhrtsx0T2kMeqthMwpen4Gu1meiXNgjoUORiLS0ExRZl0ldLropqOH5BjrwqzD3YYJwbwA1wiUU6K5geRYIDkWlByrQ00SdevFgp51aGz4FpT77yMwyfVGV2IpXvzx2Q1U-pPRMBg-ek-XsC9nKrJUGrC7XKzEFdkay-haSdgXjbDMzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliable+Source-Free+Domain+Adaptation+for+Cross-User+Myoelectric+Pattern+Recognition&rft.jtitle=IEEE+sensors+journal&rft.au=Zhang%2C+Xuan&rft.au=Wu%2C+Le&rft.au=Zhang%2C+Xu&rft.au=Chen%2C+Xiang&rft.date=2024-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=23&rft.spage=39363&rft_id=info:doi/10.1109%2FJSEN.2024.3475818&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon