Reliable Source-Free Domain Adaptation for Cross-User Myoelectric Pattern Recognition
Surface electromyographic (sEMG) signals are widely used for human-machine interaction (HMI) control, providing information about user movement intent. However, interindividual differences in muscle anatomy pose a challenge for cross-user myoelectric pattern recognition (MPR) algorithms. Existing cr...
Saved in:
Published in | IEEE sensors journal Vol. 24; no. 23; pp. 39363 - 39372 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surface electromyographic (sEMG) signals are widely used for human-machine interaction (HMI) control, providing information about user movement intent. However, interindividual differences in muscle anatomy pose a challenge for cross-user myoelectric pattern recognition (MPR) algorithms. Existing cross-user MPR algorithms rely on domain adaptation (DA) using data from source and target users for model updating. However, using historical user data in commercial HMI devices risks disclosing user health information and biometric privacy. Therefore, enabling MPR algorithms to update models quickly and solely based on target user data in a source-free manner is crucial. With this aim, this article proposes a reliable source-free DA (RSFDA) framework that enables rapid cross-user application of myoelectric algorithms. Specifically, the proposed FSFDA framework employs a teacher-student framework. Both the teacher and student models are initialized with the source model. During the update of model parameters, the teacher framework utilizes historical network parameters to prevent knowledge forgetting, while the student model continuously updates parameters while ensuring consistency with the teacher model output. As a result, the final student model demonstrates increased stability and reliability in classifying gestures from new users. The experimental results demonstrate that the proposed RSFDA approach achieves a recognition accuracy of <inline-formula> <tex-math notation="LaTeX">94.44\%~\pm ~5.68\% </tex-math></inline-formula>, which outperforms the state-of-the-art methods on a high-density sEMG dataset using only five samples per gesture. Furthermore, this framework is effective even when only one sample is provided or when gesture categories are missing. This study provides a faster and safer strategy for cross-user MPR, enabling multiuser control. |
---|---|
AbstractList | Surface electromyographic (sEMG) signals are widely used for human-machine interaction (HMI) control, providing information about user movement intent. However, interindividual differences in muscle anatomy pose a challenge for cross-user myoelectric pattern recognition (MPR) algorithms. Existing cross-user MPR algorithms rely on domain adaptation (DA) using data from source and target users for model updating. However, using historical user data in commercial HMI devices risks disclosing user health information and biometric privacy. Therefore, enabling MPR algorithms to update models quickly and solely based on target user data in a source-free manner is crucial. With this aim, this article proposes a reliable source-free DA (RSFDA) framework that enables rapid cross-user application of myoelectric algorithms. Specifically, the proposed FSFDA framework employs a teacher-student framework. Both the teacher and student models are initialized with the source model. During the update of model parameters, the teacher framework utilizes historical network parameters to prevent knowledge forgetting, while the student model continuously updates parameters while ensuring consistency with the teacher model output. As a result, the final student model demonstrates increased stability and reliability in classifying gestures from new users. The experimental results demonstrate that the proposed RSFDA approach achieves a recognition accuracy of <inline-formula> <tex-math notation="LaTeX">94.44\%~\pm ~5.68\% </tex-math></inline-formula>, which outperforms the state-of-the-art methods on a high-density sEMG dataset using only five samples per gesture. Furthermore, this framework is effective even when only one sample is provided or when gesture categories are missing. This study provides a faster and safer strategy for cross-user MPR, enabling multiuser control. Surface electromyographic (sEMG) signals are widely used for human-machine interaction (HMI) control, providing information about user movement intent. However, interindividual differences in muscle anatomy pose a challenge for cross-user myoelectric pattern recognition (MPR) algorithms. Existing cross-user MPR algorithms rely on domain adaptation (DA) using data from source and target users for model updating. However, using historical user data in commercial HMI devices risks disclosing user health information and biometric privacy. Therefore, enabling MPR algorithms to update models quickly and solely based on target user data in a source-free manner is crucial. With this aim, this article proposes a reliable source-free DA (RSFDA) framework that enables rapid cross-user application of myoelectric algorithms. Specifically, the proposed FSFDA framework employs a teacher-student framework. Both the teacher and student models are initialized with the source model. During the update of model parameters, the teacher framework utilizes historical network parameters to prevent knowledge forgetting, while the student model continuously updates parameters while ensuring consistency with the teacher model output. As a result, the final student model demonstrates increased stability and reliability in classifying gestures from new users. The experimental results demonstrate that the proposed RSFDA approach achieves a recognition accuracy of [Formula Omitted], which outperforms the state-of-the-art methods on a high-density sEMG dataset using only five samples per gesture. Furthermore, this framework is effective even when only one sample is provided or when gesture categories are missing. This study provides a faster and safer strategy for cross-user MPR, enabling multiuser control. |
Author | Wu, Le Zhang, Xuan Chen, Xun Li, Chang Zhang, Xu Chen, Xiang |
Author_xml | – sequence: 1 givenname: Xuan orcidid: 0000-0003-0626-9599 surname: Zhang fullname: Zhang, Xuan organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, China – sequence: 2 givenname: Le orcidid: 0000-0002-8565-9626 surname: Wu fullname: Wu, Le email: lewu@ustc.edu.cn organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, China – sequence: 3 givenname: Xu orcidid: 0000-0002-1533-4340 surname: Zhang fullname: Zhang, Xu email: xuzhang90@ustc.edu.cn organization: School of Microelectronics, University of Science and Technology of China, Hefei, China – sequence: 4 givenname: Xiang orcidid: 0000-0001-8259-4815 surname: Chen fullname: Chen, Xiang organization: School of Microelectronics, University of Science and Technology of China, Hefei, China – sequence: 5 givenname: Chang orcidid: 0000-0003-0195-1003 surname: Li fullname: Li, Chang email: changli@hfut.edu.cn organization: Department of Biomedical Engineering, Hefei University of Technology, Hefei, China – sequence: 6 givenname: Xun orcidid: 0000-0002-4922-8116 surname: Chen fullname: Chen, Xun organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, China |
BookMark | eNpNkMtuwjAQRa2KSgXaD6jUhaWuk3piJ46XiEIfog9BkbqzjDOpgkJMnbDg7-sIFl3N1ejM494RGTSuQUJugcUATD28rmbvccISEXMh0xzyCzKENM0jkCIf9JqzSHD5fUVGbbtlDJRM5ZCsl1hXZlMjXbmDtxjNPSJ9dDtTNXRSmH1nuso1tHSeTr1r22jdoqdvR4c12s5Xln6arkPf0CVa99NUPX5NLktTt3hzrmOyns--ps_R4uPpZTpZRDYRWRdJk4siK4IWG8WkEEykKIUtC2sNy0oUBahSldwoA5DZ8LQJWkBeJCkL_TG5P-3de_d7wLbT2-CiCSc1B86FklKxQMGJsr0Bj6Xe-2pn_FED0316uk9P9-npc3ph5u40UyHiP15CljLO_wCYlm0l |
CODEN | ISJEAZ |
Cites_doi | 10.1109/TNSRE.2014.2304470 10.1016/j.bspc.2012.08.005 10.1109/TNSRE.2015.2492619 10.1109/TBME.2008.2005485 10.1109/TBME.2013.2250502 10.3389/fbioe.2020.00058 10.5555/3045118.3045167 10.1016/j.knosys.2021.107165 10.1109/TNSRE.2009.2023282 10.1109/JBHI.2020.3009383 10.2174/1574362413666180604100542 10.1109/ICCV48922.2021.00885 10.1109/TBME.2005.856295 10.1109/TNSRE.2012.2196711 10.1145/1357054.1357138 10.1109/GlobalSIP45357.2019.8969237 10.1109/JSEN.2023.3305619 10.1109/ICCV48922.2021.00696 10.1109/CVPR52688.2022.00706 10.1088/1741-2552/acb7a0 10.1016/j.compbiomed.2009.02.001 10.1109/TBME.2003.813539 10.1109/EMBC.2019.8857199 10.1109/MSP.2012.2203480 10.1109/5.726791 10.1109/TNSRE.2011.2108667 10.1109/TNSRE.2016.2560906 10.1001/jama.2009.116 10.3390/s17030458 10.1109/JBHI.2020.3027389 10.1016/j.compbiomed.2020.104188 10.1016/j.eswa.2016.05.031 10.1109/TNSRE.2022.3173946 10.1186/1743-0003-6-41 10.1109/TNSRE.2023.3253683 10.1109/JSEN.2022.3231925 10.1109/TNSRE.2020.3030931 10.1109/TNSRE.2023.3237181 10.1016/j.bspc.2014.05.001 10.1109/10.204774 10.1109/TNSRE.2015.2445634 10.1109/WACV48630.2021.00052 10.1109/TNSRE.2019.2959449 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2024.3475818 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 39372 |
ExternalDocumentID | 10_1109_JSEN_2024_3475818 10716503 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62301523 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2023YFC3603600 – fundername: Fundamental Research Funds for the Central Universities grantid: KY2100000123 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c246t-7a84d6d2464b90744045e74cfdcca06fe4d19f9f3a9a116c019a3a9418d2509f3 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:11:50 EDT 2025 Thu Aug 21 00:38:47 EDT 2025 Wed Aug 27 07:40:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-7a84d6d2464b90744045e74cfdcca06fe4d19f9f3a9a116c019a3a9418d2509f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0195-1003 0000-0002-4922-8116 0000-0002-8565-9626 0000-0003-0626-9599 0000-0001-8259-4815 0000-0002-1533-4340 |
PQID | 3133497790 |
PQPubID | 75733 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3133497790 ieee_primary_10716503 crossref_primary_10_1109_JSEN_2024_3475818 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 Tarvainen (ref41); 30 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Liang (ref37) ref24 ref46 ref23 ref45 ref26 ref25 ref47 ref20 ref22 ref44 ref21 ref43 Sun (ref42) ref28 ref27 ref29 ref8 ref7 ref9 ref4 Giacomini (ref32) 2006; 9 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref29 doi: 10.1109/TNSRE.2014.2304470 – ident: ref10 doi: 10.1016/j.bspc.2012.08.005 – ident: ref11 doi: 10.1109/TNSRE.2015.2492619 – ident: ref4 doi: 10.1109/TBME.2008.2005485 – ident: ref28 doi: 10.1109/TBME.2013.2250502 – ident: ref33 doi: 10.3389/fbioe.2020.00058 – ident: ref45 doi: 10.5555/3045118.3045167 – ident: ref17 doi: 10.1016/j.knosys.2021.107165 – ident: ref25 doi: 10.1109/TNSRE.2009.2023282 – ident: ref47 doi: 10.1109/JBHI.2020.3009383 – ident: ref34 doi: 10.2174/1574362413666180604100542 – ident: ref38 doi: 10.1109/ICCV48922.2021.00885 – ident: ref5 doi: 10.1109/TBME.2005.856295 – ident: ref12 doi: 10.1109/TNSRE.2012.2196711 – ident: ref9 doi: 10.1145/1357054.1357138 – ident: ref30 doi: 10.1109/GlobalSIP45357.2019.8969237 – ident: ref3 doi: 10.1109/JSEN.2023.3305619 – ident: ref40 doi: 10.1109/ICCV48922.2021.00696 – ident: ref36 doi: 10.1109/CVPR52688.2022.00706 – ident: ref26 doi: 10.1088/1741-2552/acb7a0 – ident: ref7 doi: 10.1016/j.compbiomed.2009.02.001 – ident: ref46 doi: 10.1109/TBME.2003.813539 – ident: ref16 doi: 10.1109/EMBC.2019.8857199 – ident: ref18 doi: 10.1109/MSP.2012.2203480 – ident: ref44 doi: 10.1109/5.726791 – ident: ref8 doi: 10.1109/TNSRE.2011.2108667 – ident: ref13 doi: 10.1109/TNSRE.2016.2560906 – ident: ref2 doi: 10.1001/jama.2009.116 – volume: 9 start-page: 173 issue: 2 year: 2006 ident: ref32 article-title: Electromyography and neuromuscular disorders: Clinical electrophysiologic correlations publication-title: McGill J. Med. – volume: 30 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref41 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results – ident: ref24 doi: 10.3390/s17030458 – ident: ref35 doi: 10.1109/JBHI.2020.3027389 – start-page: 9229 volume-title: Proc. Int. Conf. Mach. Learning (PMLR) ident: ref42 article-title: Test-time training with self-supervision for generalization under distribution shifts – ident: ref22 doi: 10.1016/j.compbiomed.2020.104188 – ident: ref20 doi: 10.1016/j.eswa.2016.05.031 – ident: ref23 doi: 10.1109/TNSRE.2022.3173946 – ident: ref6 doi: 10.1186/1743-0003-6-41 – ident: ref31 doi: 10.1109/TNSRE.2023.3253683 – ident: ref1 doi: 10.1109/JSEN.2022.3231925 – ident: ref15 doi: 10.1109/TNSRE.2020.3030931 – ident: ref27 doi: 10.1109/TNSRE.2023.3237181 – ident: ref19 doi: 10.1016/j.bspc.2014.05.001 – ident: ref43 doi: 10.1109/10.204774 – ident: ref21 doi: 10.1109/TNSRE.2015.2445634 – ident: ref39 doi: 10.1109/WACV48630.2021.00052 – ident: ref14 doi: 10.1109/TNSRE.2019.2959449 – start-page: 6028 volume-title: Proc. Int. Conf. Mach. Learn. (PMLR) ident: ref37 article-title: Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation |
SSID | ssj0019757 |
Score | 2.4197156 |
Snippet | Surface electromyographic (sEMG) signals are widely used for human-machine interaction (HMI) control, providing information about user movement intent.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 39363 |
SubjectTerms | Adaptation Adaptation models Algorithms Cross-subject Data models Electrodes Electromyography EMG control Fingers Human motion Model updating Muscles Myoelectricity Parameters Pattern recognition Reliability Sensors Solid modeling source-free domain adaptation (SFDA) Teachers transfer learning |
Title | Reliable Source-Free Domain Adaptation for Cross-User Myoelectric Pattern Recognition |
URI | https://ieeexplore.ieee.org/document/10716503 https://www.proquest.com/docview/3133497790 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA66F_XBH3PidEoefBJS2-baro9jbozBhjgLeyttk-IQ2zG7h_nXe0k6GYrgWyhtSHOX5Lvc3XeE3OEJmYL0XJagMqCBEgDrysxloavIuDxupzo9ejL1RxGM5968TlbXuTBSSh18Ji3V1L58UWZrdVWGKxzRvae4PffRcjPJWt8ugzDQtJ6qfwY8mNcuTMcOH8azwRRNQRcsDoiPVYGPnUNIV1X5tRXr82V4QqbbkZmwkjdrXaVW9vmDtPHfQz8lxzXSpD2jGmdkTxZNcrTDP9gkB3UJ9NfNOYlUcLLKo6IzfZ_Phisp6WP5niwK2hPJ0vjsKYJc2ld_xSLUXjrZlKaSziKjT5qrs6DP26CksmiRaDh46Y9YXXOBZS74FQuSLghfYBtSZTcDQj4ZQJYLFLXt5xKEE-ZhzpMwcRw_w3lPsA1OVyCYwucXpFGUhbwkNPAggFSmNvAcVMyVwL3F4YGToFnsSN4m91shxEtDrRFrk8QOYyWxWEksriXWJi01qTsvmvlsk85WbnG9-j5ijoY3hIpJ8eqPz67JoerdxKV0SKNareUNoosqvdVa9QXa_smF |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4YPaAHH4gRRd2DJ5PFPqYtPRKEIEJjhCbcmj62kRhbgnDAX-_sthiiMfG2adrsdmZ2Z2Zn5huAW9KQEQrL4CEJAzkoDvKWiA3uGhKMyzK1SJVHjzy77-Ngak3LYnVVCyOEUMlnoimHKpaf5PFKXpXRDifr3pLYnnuk-C2jKNf6Dhq4jgL2lDNwNJ1pGcTUNfd-MO565Awa2DSRLGTZ4mNLDam-Kr8OY6VhekfgbdZWJJa8NVfLqBl__oBt_Pfij-GwtDVZuxCOE9gRWRUOthAIq1Apm6C_rk_Bl-nJspKKjdWNPu8thGAP-Xs4y1g7CedF1J6Rmcs68q-4T_LLRuu86KUzi9mzQuvM2MsmLSnPauD3upNOn5ddF3hsoL3kTtjCxE5ojJH0nJGMPuFgnCbEbM1OBSa6m7qpGbqhrtsx0T2kMeqthMwpen4Gu1meiXNgjoUORiLS0ExRZl0ldLropqOH5BjrwqzD3YYJwbwA1wiUU6K5geRYIDkWlByrQ00SdevFgp51aGz4FpT77yMwyfVGV2IpXvzx2Q1U-pPRMBg-ek-XsC9nKrJUGrC7XKzEFdkay-haSdgXjbDMzw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliable+Source-Free+Domain+Adaptation+for+Cross-User+Myoelectric+Pattern+Recognition&rft.jtitle=IEEE+sensors+journal&rft.au=Zhang%2C+Xuan&rft.au=Wu%2C+Le&rft.au=Zhang%2C+Xu&rft.au=Chen%2C+Xiang&rft.date=2024-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=24&rft.issue=23&rft.spage=39363&rft_id=info:doi/10.1109%2FJSEN.2024.3475818&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |