Federated Learning-Enhanced Edge Deep Learning Model for EMG-Based Gesture Recognition in Real-Time Human-Robot Interaction
Electromyography (EMG)-based gesture detection plays a crucial role in human-robot interaction (HRI), providing a seamless interface for controlling robotic systems through muscle activity. Despite its potential, EMG systems face significant challenges related to the security and privacy of sensitiv...
Saved in:
Published in | IEEE sensors journal Vol. 25; no. 5; pp. 9139 - 9151 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1530-437X 1558-1748 |
DOI | 10.1109/JSEN.2025.3529841 |
Cover
Abstract | Electromyography (EMG)-based gesture detection plays a crucial role in human-robot interaction (HRI), providing a seamless interface for controlling robotic systems through muscle activity. Despite its potential, EMG systems face significant challenges related to the security and privacy of sensitive biometric data, as well as the computational limitations of deploying deep learning (DL) models on edge devices. To address these issues, we propose a federated learning (FL)-based DL model for EMG gesture recognition, specifically designed for edge devices. Our model utilizes a custom dataset collected using a Mindrove eight-channel EMG armband, capturing eight distinct hand gestures-rest, move left, move right, move down, move up, open fingers, close fist, and twist hand-from ten subjects with seven repetitions each, ensuring diverse and robust data for training. During preprocessing, a bandpass filter (50-450 Hz) was applied to remove noise and enhance signal quality, followed by a short-term frequency transform (STFT) with a 200-ms sample time and 50% overlap to extract relevant features from the EMG signals. The dataset was segmented into training and testing sets with a 70/30 split for evaluation. We evaluate several FL techniques, including FedAvg, FedProx, and FedSGD, demonstrating that FedAvg achieves the highest accuracy of 96.92% without quantization with Scenario 9 (15 epochs, 20 rounds) with minimal communication overhead. Additionally, our model is quantized, resulting in an 89% reduction in size and a high accuracy of 95.99%, representing a minimal loss of 0.93%, making it ideal for edge deployment without compromising performance. A comparative analysis with other DL models, such as multiconvolutional residual networks (MCRNs), multiconvolutional neural networks (MCNNs), temporal convolutional networks (TCNs), and InceptionNet, shows that our approach outperforms these models in both accuracy and efficiency. Experimental results validate the high accuracy of our model in both training/testing and real-time disaster scenario simulations using the Spot robot. The proposed solution provides a secure, efficient, and highly accurate framework for EMG-based gesture recognition on edge devices, ideal for HRI and assistive technologies such as in search and rescue operations. |
---|---|
AbstractList | Electromyography (EMG)-based gesture detection plays a crucial role in human-robot interaction (HRI), providing a seamless interface for controlling robotic systems through muscle activity. Despite its potential, EMG systems face significant challenges related to the security and privacy of sensitive biometric data, as well as the computational limitations of deploying deep learning (DL) models on edge devices. To address these issues, we propose a federated learning (FL)-based DL model for EMG gesture recognition, specifically designed for edge devices. Our model utilizes a custom dataset collected using a Mindrove eight-channel EMG armband, capturing eight distinct hand gestures—rest, move left, move right, move down, move up, open fingers, close fist, and twist hand—from ten subjects with seven repetitions each, ensuring diverse and robust data for training. During preprocessing, a bandpass filter (50–450 Hz) was applied to remove noise and enhance signal quality, followed by a short-term frequency transform (STFT) with a 200-ms sample time and 50% overlap to extract relevant features from the EMG signals. The dataset was segmented into training and testing sets with a 70/30 split for evaluation. We evaluate several FL techniques, including FedAvg, FedProx, and FedSGD, demonstrating that FedAvg achieves the highest accuracy of 96.92% without quantization with Scenario 9 (15 epochs, 20 rounds) with minimal communication overhead. Additionally, our model is quantized, resulting in an 89% reduction in size and a high accuracy of 95.99%, representing a minimal loss of 0.93%, making it ideal for edge deployment without compromising performance. A comparative analysis with other DL models, such as multiconvolutional residual networks (MCRNs), multiconvolutional neural networks (MCNNs), temporal convolutional networks (TCNs), and InceptionNet, shows that our approach outperforms these models in both accuracy and efficiency. Experimental results validate the high accuracy of our model in both training/testing and real-time disaster scenario simulations using the Spot robot. The proposed solution provides a secure, efficient, and highly accurate framework for EMG-based gesture recognition on edge devices, ideal for HRI and assistive technologies such as in search and rescue operations. |
Author | Moosavi, Syed Kumayl Raza Sanfilippo, Filippo Zafar, Muhammad Hamza |
Author_xml | – sequence: 1 givenname: Muhammad Hamza orcidid: 0000-0002-5025-2009 surname: Zafar fullname: Zafar, Muhammad Hamza email: muhammad.h.zafar@uia.no organization: Department of Engineering Sciences, University of Agder, Grimstad, Norway – sequence: 2 givenname: Syed Kumayl Raza orcidid: 0000-0001-7064-255X surname: Moosavi fullname: Moosavi, Syed Kumayl Raza email: syed.k.moosavi@uia.no organization: Department of Engineering Sciences, University of Agder, Grimstad, Norway – sequence: 3 givenname: Filippo orcidid: 0000-0002-1437-8368 surname: Sanfilippo fullname: Sanfilippo, Filippo email: filippo.sanfilippo@uia.no organization: Department of Engineering Sciences, University of Agder, Grimstad, Norway |
BookMark | eNpNkE1PwyAYgInRxG36A0w8kHhmQqGFHnV2H2bTZM7EW0Pp29llg0m7g_HPS7PFeAJenvfr6aNz6ywgdMPokDGa3j-_ZS_DiEbxkMdRqgQ7Qz0Wx4owKdR5d-eUCC4_LlG_aTaUslTGsod-xlCC1y2UeA7a29quSWY_tTUhkpVrwE8A-78_vHAlbHHlPM4WE_Kom4BNoGkPHvASjFvbuq2dxbUNT70lq3oHeHrYaUuWrnAtntk29DMddIUuKr1t4Pp0DtD7OFuNpmT-OpmNHubERCJpiVQCpEmgSiMFUkYJ05yrMiyUClkIVTAdS8qqVMdG66JIE0OFYcJoLqpUcT5Ad8e6e---DmHYfOMO3oaWOQ96mIxpEgWKHSnjXdN4qPK9r3faf-eM5p3jvHOcd47zk-OQc3vMqQHgH6-EDEX5L_fBeX0 |
CODEN | ISJEAZ |
Cites_doi | 10.1682/jrrd.2010.09.0177 10.3390/bios10080085 10.1016/j.engappai.2024.108952 10.1109/TIPTEKNO50054.2020.9299264 10.1109/JBHI.2023.3287979 10.1109/LA-CCI.2017.8285706 10.1109/JSEN.2022.3194678 10.1109/TSP.2019.8768831 10.1016/j.eswa.2017.11.049 10.1109/JSEN.2016.2569072 10.1109/JSEN.2018.2809458 10.1016/S1050-6411(00)00046-8 10.3390/bdcc2030021 10.1109/EMBC44109.2020.9176615 10.3390/app10020541 10.1109/JBHI.2020.3009383 10.1109/GLOBECOM46510.2021.9685679 10.1371/journal.pone.0104280 10.1109/APET56294.2022.10072507 10.1109/TNSRE.2019.2896269 10.1109/MED.2013.6608802 10.1109/ICRA.2019.8794187 10.1109/ACSSC.1998.750880 10.23919/EUSIPCO.2017.8081366 10.1109/JBHI.2021.3118810 10.1016/j.jbi.2018.07.014 10.1016/j.rehab.2018.05.1093 10.1080/01691864.2019.1636714 10.3390/s16010100 10.1109/TSMCA.2011.2116004 10.1109/ANDESCON50619.2020.9271979 10.3390/electronics12071541 10.1016/j.rcim.2024.102769 10.3390/s22051694 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2025.3529841 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 9151 |
ExternalDocumentID | 10_1109_JSEN_2025_3529841 10847750 |
Genre | orig-research |
GrantInformation_xml | – fundername: Artificial Intelligence, Biomechatronics, and Collaborative Robotics Research Group at the Top Research Center Mechatronics (TRCM), University of Agder (UiA), Norway |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c246t-784e7c6ef928e77261a338d530947b48b1a5701f9a5caabb96c04c14ca34f9833 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:02:33 EDT 2025 Tue Jul 01 05:22:44 EDT 2025 Wed Aug 27 01:46:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-784e7c6ef928e77261a338d530947b48b1a5701f9a5caabb96c04c14ca34f9833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7064-255X 0000-0002-1437-8368 0000-0002-5025-2009 |
PQID | 3174175062 |
PQPubID | 75733 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_JSEN_2025_3529841 proquest_journals_3174175062 ieee_primary_10847750 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 Li (ref18) 2020; 10 ref35 ref12 Phinyomark (ref16) 2018; 2 ref15 ref37 ref14 ref36 ref31 ref11 ref33 ref10 McMahan (ref39) 2017 ref2 ref17 ref38 ref19 Zhang (ref20) 2024; 136 Kim (ref6) 2004 ref24 ref23 ref26 Zafar (ref1) 2024; 89 ref22 ref21 ref28 ref27 ref29 ref8 ref7 Ahsan (ref4) 2009; 33 ref9 ref3 ref5 Zhao (ref32) Rubio (ref30) 2020 Kim (ref34) 2023; 12 Su (ref25) 2016; 16 |
References_xml | – ident: ref5 doi: 10.1682/jrrd.2010.09.0177 – ident: ref7 doi: 10.3390/bios10080085 – volume: 136 year: 2024 ident: ref20 article-title: A federated transfer learning approach for surface electromyographic hand gesture recognition with emphasis on privacy preservation publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.108952 – ident: ref36 doi: 10.1109/TIPTEKNO50054.2020.9299264 – volume-title: Identification of hand movements from electromyographic signals using machine learning year: 2020 ident: ref30 – ident: ref38 doi: 10.1109/JBHI.2023.3287979 – ident: ref29 doi: 10.1109/LA-CCI.2017.8285706 – ident: ref33 doi: 10.1109/JSEN.2022.3194678 – ident: ref9 doi: 10.1109/TSP.2019.8768831 – ident: ref22 doi: 10.1016/j.eswa.2017.11.049 – ident: ref8 doi: 10.1109/JSEN.2016.2569072 – ident: ref26 doi: 10.1109/JSEN.2018.2809458 – ident: ref11 doi: 10.1016/S1050-6411(00)00046-8 – volume: 2 start-page: 21 issue: 3 year: 2018 ident: ref16 article-title: EMG pattern recognition in the era of big data and deep learning publication-title: Big Data Cognit. Comput. doi: 10.3390/bdcc2030021 – ident: ref3 doi: 10.1109/EMBC44109.2020.9176615 – volume: 10 start-page: 541 issue: 2 year: 2020 ident: ref18 article-title: Enhancing the security of pattern unlock with surface EMG-based biometrics publication-title: Appl. Sci. doi: 10.3390/app10020541 – ident: ref31 doi: 10.1109/JBHI.2020.3009383 – volume: 33 start-page: 480 issue: 3 year: 2009 ident: ref4 article-title: EMG signal classification for human computer interaction: A review publication-title: Eur. J. Scientific Res. – ident: ref19 doi: 10.1109/GLOBECOM46510.2021.9685679 – ident: ref21 doi: 10.1371/journal.pone.0104280 – start-page: 159 volume-title: Informatik 2004—Informatik Verbindet—Band 1, Beiträge der 34. Jahrestagung der Gesellschaft für Informatik e.V. (GI) year: 2004 ident: ref6 article-title: Emote to win: Affective interactions with a computer game agent – ident: ref35 doi: 10.1109/APET56294.2022.10072507 – ident: ref28 doi: 10.1109/TNSRE.2019.2896269 – ident: ref14 doi: 10.1109/MED.2013.6608802 – ident: ref10 doi: 10.1109/ICRA.2019.8794187 – ident: ref12 doi: 10.1109/ACSSC.1998.750880 – ident: ref24 doi: 10.23919/EUSIPCO.2017.8081366 – ident: ref17 doi: 10.1109/JBHI.2021.3118810 – ident: ref15 doi: 10.1016/j.jbi.2018.07.014 – ident: ref23 doi: 10.1016/j.rehab.2018.05.1093 – ident: ref2 doi: 10.1080/01691864.2019.1636714 – volume: 16 start-page: 100 issue: 1 year: 2016 ident: ref25 article-title: Random forest-based recognition of isolated sign language subwords using data from accelerometers and surface electromyographic sensors publication-title: Sensors doi: 10.3390/s16010100 – ident: ref13 doi: 10.1109/TSMCA.2011.2116004 – ident: ref27 doi: 10.1109/ANDESCON50619.2020.9271979 – start-page: 542 volume-title: Proc. IEEE 3rd Int. Conf. Data Sci. Cyberspace (DSC) ident: ref32 article-title: Hand gesture recognition based on deep learning method – volume: 12 start-page: 1541 issue: 7 year: 2023 ident: ref34 article-title: EMG-based dynamic hand gesture recognition using edge AI for human–robot interaction publication-title: Electronics doi: 10.3390/electronics12071541 – volume: 89 year: 2024 ident: ref1 article-title: Exploring the synergies between collaborative robotics, digital twins, augmentation, and industry 5.0 for smart manufacturing: A state-of-the-art review publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2024.102769 – ident: ref37 doi: 10.3390/s22051694 – start-page: 1273 volume-title: Artificial Intelligence and Statistics year: 2017 ident: ref39 article-title: Communication-efficient learning of deep networks from decentralized data |
SSID | ssj0019757 |
Score | 2.4321966 |
Snippet | Electromyography (EMG)-based gesture detection plays a crucial role in human-robot interaction (HRI), providing a seamless interface for controlling robotic... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 9139 |
SubjectTerms | Accuracy Bandpass filters Datasets Deep learning Deep learning (DL) edge devices Electromyography Feature extraction Federated learning federated learning (FL) Fingers Gesture recognition Hands Human engineering Human-robot interaction human-robot interaction (HRI) Machine learning Muscles Neural networks Noise Real time Rescue operations Robot learning Robots Search and rescue missions Sensors Signal quality |
Title | Federated Learning-Enhanced Edge Deep Learning Model for EMG-Based Gesture Recognition in Real-Time Human-Robot Interaction |
URI | https://ieeexplore.ieee.org/document/10847750 https://www.proquest.com/docview/3174175062 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoF9pDaYGKBVr5wKmSt3HixPGxLVkQEnvgIe0t8mOyi0AJosmh5c937CSIUiFxS5SHbI_H_sYz8w0hh8q4vJJgUZFiYCLVihlnI8ZtLONcCy0DA9_ZPDu5EqeLdDEkq4dcGAAIwWcw9ZfBl-8a2_mjMtRwXEult9Df4Dzrk7UeXQZKBlpP1OCIiUQuBhcmj9S304tijqZgnE4Rbqhc8H82oVBV5b-lOOwvs00yH1vWh5XcTLvWTO2fZ6SNr276B_J-QJr0ez81PpI1qLfIuyf8g1tkYyiBvvq9TR5mnlYCkaejA-fqkhX1KgQI0MItgR4B3D0-o76I2i1FyEuLs2P2AzdDR4-xX9090PMxKqmp6XWNt_qW-VwTGlwG7LwxTUvDWWSfVrFDrmbF5c8TNlRmYDYWWctkLkDaDCoV54D4POMaTV2HQ6-ENCI3XKcy4pXSqdXaGJXZSFgurE5EpfIk-UTW66aGXUIrEzmTO13Z2ApnpeFV5isCWTSeIeVmQr6OoirvegKOMhgukSq9XEsv13KQ64Ts-KF_8mI_6hNyMEq3HHT0V4nISSB4irJ474XP9slb__c-5OyArLf3HXxGDNKaL2Hu_QVipNhG |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6h9lA4QClFbCngAyckL3HWieMjj2yX0t1DaaW9RX5MWkSVVG32AP3zjJ1sVYqQuCVKoiQej-cbz8w3AG-19UWt0JEipchlZjS33iVcuFSlhZFGRQa--SKfncrDZbYcitVjLQwixuQzHIfDGMv3rVuFrTLScFpLVfDQN8nwy6wv17oNGmgViT1JhxMuJ2o5BDFFot8ffisX5Aym2ZgAhy6k-MMMxb4qfy3G0cJMn8Bi_W19YsmP8aqzY_frHm3jf3_8NjwesCb70E-Op_AAmx14dIeBcAe2hibo5z-fwc00EEsQ9vRsYF0942VzHlMEWOnPkH1GvLy9xkIbtQtGoJeV8wP-kcyhZwf0X6srZMfrvKS2Yd8bOjUXPFSbsBg04MetbTsWdyP7wopdOJ2WJ59mfOjNwF0q846rQqJyOdY6LZAQei4MObuehl5LZWVhhclUImptMmeMtTp3iXRCOjORtS4mk-ew0bQNvgBW28TbwpvapU56p6yo89ATyJH7jJmwI3i3FlV12VNwVNF1SXQV5FoFuVaDXEewG4b-zo39qI9gfy3datDS64qwkyT4lOTp3j8eewNbs5P5UXX0ZfH1JTwMb-oT0PZho7ta4StCJJ19Hefhb98C25M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Learning-Enhanced+Edge+Deep+Learning+Model+for+EMG-Based+Gesture+Recognition+in+Real-Time+Human%E2%80%93Robot+Interaction&rft.jtitle=IEEE+sensors+journal&rft.au=Muhammad+Hamza+Zafar&rft.au=Syed+Kumayl+Raza+Moosavi&rft.au=Sanfilippo%2C+Filippo&rft.date=2025-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=5&rft.spage=9139&rft_id=info:doi/10.1109%2FJSEN.2025.3529841&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |