Federated Learning-Enhanced Edge Deep Learning Model for EMG-Based Gesture Recognition in Real-Time Human-Robot Interaction

Electromyography (EMG)-based gesture detection plays a crucial role in human-robot interaction (HRI), providing a seamless interface for controlling robotic systems through muscle activity. Despite its potential, EMG systems face significant challenges related to the security and privacy of sensitiv...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 25; no. 5; pp. 9139 - 9151
Main Authors Zafar, Muhammad Hamza, Moosavi, Syed Kumayl Raza, Sanfilippo, Filippo
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2025.3529841

Cover

Abstract Electromyography (EMG)-based gesture detection plays a crucial role in human-robot interaction (HRI), providing a seamless interface for controlling robotic systems through muscle activity. Despite its potential, EMG systems face significant challenges related to the security and privacy of sensitive biometric data, as well as the computational limitations of deploying deep learning (DL) models on edge devices. To address these issues, we propose a federated learning (FL)-based DL model for EMG gesture recognition, specifically designed for edge devices. Our model utilizes a custom dataset collected using a Mindrove eight-channel EMG armband, capturing eight distinct hand gestures-rest, move left, move right, move down, move up, open fingers, close fist, and twist hand-from ten subjects with seven repetitions each, ensuring diverse and robust data for training. During preprocessing, a bandpass filter (50-450 Hz) was applied to remove noise and enhance signal quality, followed by a short-term frequency transform (STFT) with a 200-ms sample time and 50% overlap to extract relevant features from the EMG signals. The dataset was segmented into training and testing sets with a 70/30 split for evaluation. We evaluate several FL techniques, including FedAvg, FedProx, and FedSGD, demonstrating that FedAvg achieves the highest accuracy of 96.92% without quantization with Scenario 9 (15 epochs, 20 rounds) with minimal communication overhead. Additionally, our model is quantized, resulting in an 89% reduction in size and a high accuracy of 95.99%, representing a minimal loss of 0.93%, making it ideal for edge deployment without compromising performance. A comparative analysis with other DL models, such as multiconvolutional residual networks (MCRNs), multiconvolutional neural networks (MCNNs), temporal convolutional networks (TCNs), and InceptionNet, shows that our approach outperforms these models in both accuracy and efficiency. Experimental results validate the high accuracy of our model in both training/testing and real-time disaster scenario simulations using the Spot robot. The proposed solution provides a secure, efficient, and highly accurate framework for EMG-based gesture recognition on edge devices, ideal for HRI and assistive technologies such as in search and rescue operations.
AbstractList Electromyography (EMG)-based gesture detection plays a crucial role in human-robot interaction (HRI), providing a seamless interface for controlling robotic systems through muscle activity. Despite its potential, EMG systems face significant challenges related to the security and privacy of sensitive biometric data, as well as the computational limitations of deploying deep learning (DL) models on edge devices. To address these issues, we propose a federated learning (FL)-based DL model for EMG gesture recognition, specifically designed for edge devices. Our model utilizes a custom dataset collected using a Mindrove eight-channel EMG armband, capturing eight distinct hand gestures—rest, move left, move right, move down, move up, open fingers, close fist, and twist hand—from ten subjects with seven repetitions each, ensuring diverse and robust data for training. During preprocessing, a bandpass filter (50–450 Hz) was applied to remove noise and enhance signal quality, followed by a short-term frequency transform (STFT) with a 200-ms sample time and 50% overlap to extract relevant features from the EMG signals. The dataset was segmented into training and testing sets with a 70/30 split for evaluation. We evaluate several FL techniques, including FedAvg, FedProx, and FedSGD, demonstrating that FedAvg achieves the highest accuracy of 96.92% without quantization with Scenario 9 (15 epochs, 20 rounds) with minimal communication overhead. Additionally, our model is quantized, resulting in an 89% reduction in size and a high accuracy of 95.99%, representing a minimal loss of 0.93%, making it ideal for edge deployment without compromising performance. A comparative analysis with other DL models, such as multiconvolutional residual networks (MCRNs), multiconvolutional neural networks (MCNNs), temporal convolutional networks (TCNs), and InceptionNet, shows that our approach outperforms these models in both accuracy and efficiency. Experimental results validate the high accuracy of our model in both training/testing and real-time disaster scenario simulations using the Spot robot. The proposed solution provides a secure, efficient, and highly accurate framework for EMG-based gesture recognition on edge devices, ideal for HRI and assistive technologies such as in search and rescue operations.
Author Moosavi, Syed Kumayl Raza
Sanfilippo, Filippo
Zafar, Muhammad Hamza
Author_xml – sequence: 1
  givenname: Muhammad Hamza
  orcidid: 0000-0002-5025-2009
  surname: Zafar
  fullname: Zafar, Muhammad Hamza
  email: muhammad.h.zafar@uia.no
  organization: Department of Engineering Sciences, University of Agder, Grimstad, Norway
– sequence: 2
  givenname: Syed Kumayl Raza
  orcidid: 0000-0001-7064-255X
  surname: Moosavi
  fullname: Moosavi, Syed Kumayl Raza
  email: syed.k.moosavi@uia.no
  organization: Department of Engineering Sciences, University of Agder, Grimstad, Norway
– sequence: 3
  givenname: Filippo
  orcidid: 0000-0002-1437-8368
  surname: Sanfilippo
  fullname: Sanfilippo, Filippo
  email: filippo.sanfilippo@uia.no
  organization: Department of Engineering Sciences, University of Agder, Grimstad, Norway
BookMark eNpNkE1PwyAYgInRxG36A0w8kHhmQqGFHnV2H2bTZM7EW0Pp29llg0m7g_HPS7PFeAJenvfr6aNz6ywgdMPokDGa3j-_ZS_DiEbxkMdRqgQ7Qz0Wx4owKdR5d-eUCC4_LlG_aTaUslTGsod-xlCC1y2UeA7a29quSWY_tTUhkpVrwE8A-78_vHAlbHHlPM4WE_Kom4BNoGkPHvASjFvbuq2dxbUNT70lq3oHeHrYaUuWrnAtntk29DMddIUuKr1t4Pp0DtD7OFuNpmT-OpmNHubERCJpiVQCpEmgSiMFUkYJ05yrMiyUClkIVTAdS8qqVMdG66JIE0OFYcJoLqpUcT5Ad8e6e---DmHYfOMO3oaWOQ96mIxpEgWKHSnjXdN4qPK9r3faf-eM5p3jvHOcd47zk-OQc3vMqQHgH6-EDEX5L_fBeX0
CODEN ISJEAZ
Cites_doi 10.1682/jrrd.2010.09.0177
10.3390/bios10080085
10.1016/j.engappai.2024.108952
10.1109/TIPTEKNO50054.2020.9299264
10.1109/JBHI.2023.3287979
10.1109/LA-CCI.2017.8285706
10.1109/JSEN.2022.3194678
10.1109/TSP.2019.8768831
10.1016/j.eswa.2017.11.049
10.1109/JSEN.2016.2569072
10.1109/JSEN.2018.2809458
10.1016/S1050-6411(00)00046-8
10.3390/bdcc2030021
10.1109/EMBC44109.2020.9176615
10.3390/app10020541
10.1109/JBHI.2020.3009383
10.1109/GLOBECOM46510.2021.9685679
10.1371/journal.pone.0104280
10.1109/APET56294.2022.10072507
10.1109/TNSRE.2019.2896269
10.1109/MED.2013.6608802
10.1109/ICRA.2019.8794187
10.1109/ACSSC.1998.750880
10.23919/EUSIPCO.2017.8081366
10.1109/JBHI.2021.3118810
10.1016/j.jbi.2018.07.014
10.1016/j.rehab.2018.05.1093
10.1080/01691864.2019.1636714
10.3390/s16010100
10.1109/TSMCA.2011.2116004
10.1109/ANDESCON50619.2020.9271979
10.3390/electronics12071541
10.1016/j.rcim.2024.102769
10.3390/s22051694
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2025.3529841
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 9151
ExternalDocumentID 10_1109_JSEN_2025_3529841
10847750
Genre orig-research
GrantInformation_xml – fundername: Artificial Intelligence, Biomechatronics, and Collaborative Robotics Research Group at the Top Research Center Mechatronics (TRCM), University of Agder (UiA), Norway
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c246t-784e7c6ef928e77261a338d530947b48b1a5701f9a5caabb96c04c14ca34f9833
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:02:33 EDT 2025
Tue Jul 01 05:22:44 EDT 2025
Wed Aug 27 01:46:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-784e7c6ef928e77261a338d530947b48b1a5701f9a5caabb96c04c14ca34f9833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7064-255X
0000-0002-1437-8368
0000-0002-5025-2009
PQID 3174175062
PQPubID 75733
PageCount 13
ParticipantIDs crossref_primary_10_1109_JSEN_2025_3529841
proquest_journals_3174175062
ieee_primary_10847750
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Li (ref18) 2020; 10
ref35
ref12
Phinyomark (ref16) 2018; 2
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
McMahan (ref39) 2017
ref2
ref17
ref38
ref19
Zhang (ref20) 2024; 136
Kim (ref6) 2004
ref24
ref23
ref26
Zafar (ref1) 2024; 89
ref22
ref21
ref28
ref27
ref29
ref8
ref7
Ahsan (ref4) 2009; 33
ref9
ref3
ref5
Zhao (ref32)
Rubio (ref30) 2020
Kim (ref34) 2023; 12
Su (ref25) 2016; 16
References_xml – ident: ref5
  doi: 10.1682/jrrd.2010.09.0177
– ident: ref7
  doi: 10.3390/bios10080085
– volume: 136
  year: 2024
  ident: ref20
  article-title: A federated transfer learning approach for surface electromyographic hand gesture recognition with emphasis on privacy preservation
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.108952
– ident: ref36
  doi: 10.1109/TIPTEKNO50054.2020.9299264
– volume-title: Identification of hand movements from electromyographic signals using machine learning
  year: 2020
  ident: ref30
– ident: ref38
  doi: 10.1109/JBHI.2023.3287979
– ident: ref29
  doi: 10.1109/LA-CCI.2017.8285706
– ident: ref33
  doi: 10.1109/JSEN.2022.3194678
– ident: ref9
  doi: 10.1109/TSP.2019.8768831
– ident: ref22
  doi: 10.1016/j.eswa.2017.11.049
– ident: ref8
  doi: 10.1109/JSEN.2016.2569072
– ident: ref26
  doi: 10.1109/JSEN.2018.2809458
– ident: ref11
  doi: 10.1016/S1050-6411(00)00046-8
– volume: 2
  start-page: 21
  issue: 3
  year: 2018
  ident: ref16
  article-title: EMG pattern recognition in the era of big data and deep learning
  publication-title: Big Data Cognit. Comput.
  doi: 10.3390/bdcc2030021
– ident: ref3
  doi: 10.1109/EMBC44109.2020.9176615
– volume: 10
  start-page: 541
  issue: 2
  year: 2020
  ident: ref18
  article-title: Enhancing the security of pattern unlock with surface EMG-based biometrics
  publication-title: Appl. Sci.
  doi: 10.3390/app10020541
– ident: ref31
  doi: 10.1109/JBHI.2020.3009383
– volume: 33
  start-page: 480
  issue: 3
  year: 2009
  ident: ref4
  article-title: EMG signal classification for human computer interaction: A review
  publication-title: Eur. J. Scientific Res.
– ident: ref19
  doi: 10.1109/GLOBECOM46510.2021.9685679
– ident: ref21
  doi: 10.1371/journal.pone.0104280
– start-page: 159
  volume-title: Informatik 2004—Informatik Verbindet—Band 1, Beiträge der 34. Jahrestagung der Gesellschaft für Informatik e.V. (GI)
  year: 2004
  ident: ref6
  article-title: Emote to win: Affective interactions with a computer game agent
– ident: ref35
  doi: 10.1109/APET56294.2022.10072507
– ident: ref28
  doi: 10.1109/TNSRE.2019.2896269
– ident: ref14
  doi: 10.1109/MED.2013.6608802
– ident: ref10
  doi: 10.1109/ICRA.2019.8794187
– ident: ref12
  doi: 10.1109/ACSSC.1998.750880
– ident: ref24
  doi: 10.23919/EUSIPCO.2017.8081366
– ident: ref17
  doi: 10.1109/JBHI.2021.3118810
– ident: ref15
  doi: 10.1016/j.jbi.2018.07.014
– ident: ref23
  doi: 10.1016/j.rehab.2018.05.1093
– ident: ref2
  doi: 10.1080/01691864.2019.1636714
– volume: 16
  start-page: 100
  issue: 1
  year: 2016
  ident: ref25
  article-title: Random forest-based recognition of isolated sign language subwords using data from accelerometers and surface electromyographic sensors
  publication-title: Sensors
  doi: 10.3390/s16010100
– ident: ref13
  doi: 10.1109/TSMCA.2011.2116004
– ident: ref27
  doi: 10.1109/ANDESCON50619.2020.9271979
– start-page: 542
  volume-title: Proc. IEEE 3rd Int. Conf. Data Sci. Cyberspace (DSC)
  ident: ref32
  article-title: Hand gesture recognition based on deep learning method
– volume: 12
  start-page: 1541
  issue: 7
  year: 2023
  ident: ref34
  article-title: EMG-based dynamic hand gesture recognition using edge AI for human–robot interaction
  publication-title: Electronics
  doi: 10.3390/electronics12071541
– volume: 89
  year: 2024
  ident: ref1
  article-title: Exploring the synergies between collaborative robotics, digital twins, augmentation, and industry 5.0 for smart manufacturing: A state-of-the-art review
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2024.102769
– ident: ref37
  doi: 10.3390/s22051694
– start-page: 1273
  volume-title: Artificial Intelligence and Statistics
  year: 2017
  ident: ref39
  article-title: Communication-efficient learning of deep networks from decentralized data
SSID ssj0019757
Score 2.4321966
Snippet Electromyography (EMG)-based gesture detection plays a crucial role in human-robot interaction (HRI), providing a seamless interface for controlling robotic...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 9139
SubjectTerms Accuracy
Bandpass filters
Datasets
Deep learning
Deep learning (DL)
edge devices
Electromyography
Feature extraction
Federated learning
federated learning (FL)
Fingers
Gesture recognition
Hands
Human engineering
Human-robot interaction
human-robot interaction (HRI)
Machine learning
Muscles
Neural networks
Noise
Real time
Rescue operations
Robot learning
Robots
Search and rescue missions
Sensors
Signal quality
Title Federated Learning-Enhanced Edge Deep Learning Model for EMG-Based Gesture Recognition in Real-Time Human-Robot Interaction
URI https://ieeexplore.ieee.org/document/10847750
https://www.proquest.com/docview/3174175062
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoF9pDaYGKBVr5wKmSt3HixPGxLVkQEnvgIe0t8mOyi0AJosmh5c937CSIUiFxS5SHbI_H_sYz8w0hh8q4vJJgUZFiYCLVihlnI8ZtLONcCy0DA9_ZPDu5EqeLdDEkq4dcGAAIwWcw9ZfBl-8a2_mjMtRwXEult9Df4Dzrk7UeXQZKBlpP1OCIiUQuBhcmj9S304tijqZgnE4Rbqhc8H82oVBV5b-lOOwvs00yH1vWh5XcTLvWTO2fZ6SNr276B_J-QJr0ez81PpI1qLfIuyf8g1tkYyiBvvq9TR5mnlYCkaejA-fqkhX1KgQI0MItgR4B3D0-o76I2i1FyEuLs2P2AzdDR4-xX9090PMxKqmp6XWNt_qW-VwTGlwG7LwxTUvDWWSfVrFDrmbF5c8TNlRmYDYWWctkLkDaDCoV54D4POMaTV2HQ6-ENCI3XKcy4pXSqdXaGJXZSFgurE5EpfIk-UTW66aGXUIrEzmTO13Z2ApnpeFV5isCWTSeIeVmQr6OoirvegKOMhgukSq9XEsv13KQ64Ts-KF_8mI_6hNyMEq3HHT0V4nISSB4irJ474XP9slb__c-5OyArLf3HXxGDNKaL2Hu_QVipNhG
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6h9lA4QClFbCngAyckL3HWieMjj2yX0t1DaaW9RX5MWkSVVG32AP3zjJ1sVYqQuCVKoiQej-cbz8w3AG-19UWt0JEipchlZjS33iVcuFSlhZFGRQa--SKfncrDZbYcitVjLQwixuQzHIfDGMv3rVuFrTLScFpLVfDQN8nwy6wv17oNGmgViT1JhxMuJ2o5BDFFot8ffisX5Aym2ZgAhy6k-MMMxb4qfy3G0cJMn8Bi_W19YsmP8aqzY_frHm3jf3_8NjwesCb70E-Op_AAmx14dIeBcAe2hibo5z-fwc00EEsQ9vRsYF0942VzHlMEWOnPkH1GvLy9xkIbtQtGoJeV8wP-kcyhZwf0X6srZMfrvKS2Yd8bOjUXPFSbsBg04MetbTsWdyP7wopdOJ2WJ59mfOjNwF0q846rQqJyOdY6LZAQei4MObuehl5LZWVhhclUImptMmeMtTp3iXRCOjORtS4mk-ew0bQNvgBW28TbwpvapU56p6yo89ATyJH7jJmwI3i3FlV12VNwVNF1SXQV5FoFuVaDXEewG4b-zo39qI9gfy3datDS64qwkyT4lOTp3j8eewNbs5P5UXX0ZfH1JTwMb-oT0PZho7ta4StCJJ19Hefhb98C25M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Learning-Enhanced+Edge+Deep+Learning+Model+for+EMG-Based+Gesture+Recognition+in+Real-Time+Human%E2%80%93Robot+Interaction&rft.jtitle=IEEE+sensors+journal&rft.au=Muhammad+Hamza+Zafar&rft.au=Syed+Kumayl+Raza+Moosavi&rft.au=Sanfilippo%2C+Filippo&rft.date=2025-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=5&rft.spage=9139&rft_id=info:doi/10.1109%2FJSEN.2025.3529841&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon