Temperature Dependence of Laminar Burning Velocity in Ammonia/Dimethyl Ether-air Premixed Flames

The combustion of ammonia (NH 3 ) has attracted wide interest in fuel vehicle engines, marine engines, and power generators to mitigate carbon dioxide emissions. Unfortunately, the relatively low laminar flame speed presents a technical barrier for this renewable fuel to be used in practice. This wo...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal science Vol. 31; no. 1; pp. 189 - 197
Main Authors Cai, Tao, Zhao, Dan
Format Journal Article
LanguageEnglish
Published Heidelberg Science Press 01.01.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The combustion of ammonia (NH 3 ) has attracted wide interest in fuel vehicle engines, marine engines, and power generators to mitigate carbon dioxide emissions. Unfortunately, the relatively low laminar flame speed presents a technical barrier for this renewable fuel to be used in practice. This work is concerned with numerical examining the effects of elevating inlet temperature on the laminar burning velocity of NH 3 /air flames with various contents of dimethyl ether (DME) using 1D freely propagating flame calculations, and to shed light on the flame enhancement mechanism. For this, the mechanism is first validated by comparing the numerical predictions with experimental data. Results show that increasing the inlet temperature has a positive effect on the laminar burning velocity of pure NH 3 /DME/air flames. It is revealed that elevating inlet temperature contributes to a higher adiabatic flame temperature, which is beneficial to the overall chemical reaction rate. Furthermore, the thermal diffusivity of the binary mixture is observed to increase substantially as well. Further kinetic and sensitivities analyses reveal that the inlet temperature has a minimal effect on the reaction pathway, leading to the relative importance of the dominant chain branching over terminating reaction steps to be varied negligibly. The present work confirms that the flame speed enhancement with increasing inlet temperature is primarily the synergetic result of the thermal and diffusion effects, rather than the chemical effect.
AbstractList The combustion of ammonia (NH3) has attracted wide interest in fuel vehicle engines, marine engines, and power generators to mitigate carbon dioxide emissions. Unfortunately, the relatively low laminar flame speed presents a technical barrier for this renewable fuel to be used in practice. This work is concerned with numerical examining the effects of elevating inlet temperature on the laminar burning velocity of NH3/air flames with various contents of dimethyl ether (DME) using 1D freely propagating flame calculations, and to shed light on the flame enhancement mechanism. For this, the mechanism is first validated by comparing the numerical predictions with experimental data. Results show that increasing the inlet temperature has a positive effect on the laminar burning velocity of pure NH3/DME/air flames. It is revealed that elevating inlet temperature contributes to a higher adiabatic flame temperature, which is beneficial to the overall chemical reaction rate. Furthermore, the thermal diffusivity of the binary mixture is observed to increase substantially as well. Further kinetic and sensitivities analyses reveal that the inlet temperature has a minimal effect on the reaction pathway, leading to the relative importance of the dominant chain branching over terminating reaction steps to be varied negligibly. The present work confirms that the flame speed enhancement with increasing inlet temperature is primarily the synergetic result of the thermal and diffusion effects, rather than the chemical effect.
The combustion of ammonia (NH 3 ) has attracted wide interest in fuel vehicle engines, marine engines, and power generators to mitigate carbon dioxide emissions. Unfortunately, the relatively low laminar flame speed presents a technical barrier for this renewable fuel to be used in practice. This work is concerned with numerical examining the effects of elevating inlet temperature on the laminar burning velocity of NH 3 /air flames with various contents of dimethyl ether (DME) using 1D freely propagating flame calculations, and to shed light on the flame enhancement mechanism. For this, the mechanism is first validated by comparing the numerical predictions with experimental data. Results show that increasing the inlet temperature has a positive effect on the laminar burning velocity of pure NH 3 /DME/air flames. It is revealed that elevating inlet temperature contributes to a higher adiabatic flame temperature, which is beneficial to the overall chemical reaction rate. Furthermore, the thermal diffusivity of the binary mixture is observed to increase substantially as well. Further kinetic and sensitivities analyses reveal that the inlet temperature has a minimal effect on the reaction pathway, leading to the relative importance of the dominant chain branching over terminating reaction steps to be varied negligibly. The present work confirms that the flame speed enhancement with increasing inlet temperature is primarily the synergetic result of the thermal and diffusion effects, rather than the chemical effect.
Author Cai, Tao
Zhao, Dan
Author_xml – sequence: 1
  givenname: Tao
  surname: Cai
  fullname: Cai, Tao
  organization: Department of Mechanical Engineering, College of Engineering, University of Canterbury
– sequence: 2
  givenname: Dan
  surname: Zhao
  fullname: Zhao, Dan
  email: dan.zhao@canterbury.ac.nz
  organization: Department of Mechanical Engineering, College of Engineering, University of Canterbury
BookMark eNp9kE1LAzEQhoNUsK3-AG8Bz7H52M9j7YcKBT1U8Raz2dk2ZTdbky3Yf2_KCoKgpxmGeWZenhEa2NYCQteM3jJK04lnLBGUUM4Ji6OcsDM0ZHkuCBXibRB6SgXhLMkv0Mj7HaVJmohoiN7X0OzBqe7gAM9hD7YEqwG3FV6pxljl8N3BWWM3-BXqVpvuiI3F06ZprVGTuWmg2x5rvOi24IgyDj87aMwnlHhZqwb8JTqvVO3h6ruO0ctysZ49kNXT_eNsuiKaR0lHkqKMuYaM0jwuyrIqijLNmGYZLUooFKcRpzFoFuYAaVLEYZBWcaY1xKLMtRijm_7u3rUfB_Cd3LUheHgpecLyLBZcRGGL9Vvatd47qOTemUa5o2RUnkTKXqQMIuVJpGSBSX8xwYLqTGs7p0z9L8l70ocvdgPuJ9Pf0Bd8r4qS
CitedBy_id crossref_primary_10_1016_j_cej_2023_145587
crossref_primary_10_3390_en15031032
crossref_primary_10_1016_j_ijhydene_2023_11_083
crossref_primary_10_1016_j_energy_2023_127025
crossref_primary_10_1016_j_renene_2025_122546
crossref_primary_10_1177_14613484221138556
crossref_primary_10_1007_s11630_024_2001_5
crossref_primary_10_1016_j_energy_2023_128793
crossref_primary_10_1016_j_heliyon_2023_e21367
crossref_primary_10_1007_s11356_023_25579_4
crossref_primary_10_1016_j_energy_2023_127634
crossref_primary_10_1016_j_tsep_2023_102006
crossref_primary_10_1108_HFF_04_2023_0214
crossref_primary_10_1177_14613484221096232
crossref_primary_10_1016_j_energy_2022_125056
crossref_primary_10_1007_s11630_024_2033_x
crossref_primary_10_1016_j_cep_2022_108947
crossref_primary_10_1016_j_applthermaleng_2023_121685
crossref_primary_10_1016_j_apenergy_2023_121736
crossref_primary_10_1016_j_psep_2024_02_085
crossref_primary_10_1016_j_enconman_2024_119160
crossref_primary_10_1016_j_fuel_2024_132100
crossref_primary_10_11159_jffhmt_2025_007
crossref_primary_10_1007_s43979_024_00088_6
crossref_primary_10_1016_j_energy_2022_125090
crossref_primary_10_1016_j_energy_2024_132248
crossref_primary_10_1016_j_enbenv_2024_02_007
crossref_primary_10_1016_j_ijhydene_2025_02_056
crossref_primary_10_3390_polym15193932
crossref_primary_10_1002_ese3_1220
crossref_primary_10_3390_pr10050993
crossref_primary_10_1016_j_fuel_2022_127011
crossref_primary_10_1016_j_fuel_2023_129133
crossref_primary_10_1016_j_jaecs_2023_100242
crossref_primary_10_1016_j_energy_2024_132788
crossref_primary_10_1016_j_fuel_2022_125299
crossref_primary_10_1016_j_energy_2022_125445
crossref_primary_10_1016_j_ijhydene_2024_04_302
crossref_primary_10_1016_j_energy_2022_124111
crossref_primary_10_2514_1_J062764
crossref_primary_10_3390_pr10061178
crossref_primary_10_1007_s11356_023_28405_z
crossref_primary_10_1016_j_fuel_2024_131533
crossref_primary_10_1016_j_combustflame_2023_113098
crossref_primary_10_1016_j_ijhydene_2024_01_234
crossref_primary_10_1016_j_cej_2023_141391
crossref_primary_10_1016_j_fuel_2024_133253
Cites_doi 10.1016/j.proci.2008.06.054
10.1016/j.combustflame.2019.08.033
10.1016/j.rser.2021.111150
10.1080/00102208808947092
10.1016/j.fuproc.2020.106527
10.1016/S0010-2180(01)00249-8
10.1016/j.cej.2020.128033
10.1016/j.fuel.2010.06.008
10.1016/j.fuel.2015.06.070
10.1016/j.fuel.2019.02.085
10.3390/pr9030568
10.1016/j.combustflame.2004.06.009
10.1016/j.fuel.2018.03.030
10.1016/j.energy.2015.10.060
10.1016/j.energy.2017.03.085
10.1016/0010-2180(90)90049-W
10.1016/j.proci.2018.09.029
10.1016/j.combustflame.2005.06.010
10.1016/j.fuel.2018.11.019
10.1016/j.energy.2017.08.077
10.1016/j.combustflame.2020.04.013
10.1016/j.proci.2008.08.002
10.1016/j.fuel.2020.120039
10.1016/j.enconman.2017.09.011
10.1016/j.pecs.2018.07.001
10.1016/j.jhazmat.2011.01.037
10.1016/j.joule.2020.04.004
10.1016/j.combustflame.2021.02.038
10.1016/j.proci.2020.06.337
10.1016/j.combustflame.2019.05.003
10.1016/j.enconman.2017.12.098
10.1016/j.applthermaleng.2020.114984
10.1016/j.proci.2020.06.197
10.1021/acs.energyfuels.7b02733
10.1080/713713111
10.1126/science.aau7489
ContentType Journal Article
Copyright Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022
Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright_xml – notice: Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022.
DBID AAYXX
CITATION
DOI 10.1007/s11630-022-1549-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1993-033X
EndPage 197
ExternalDocumentID 10_1007_s11630_022_1549_1
GroupedDBID -54
-5F
-5G
-BR
-EM
-SC
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
2.D
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5VR
5VS
5XA
5XD
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
CAJEC
CCEZO
CEKLB
CHBEP
COF
CS3
CSCUP
CW9
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
H13
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P9T
PF0
PT4
PT5
Q--
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCL
SCLPG
SDH
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TUC
U1G
U2A
U5M
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z8N
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PB1
PB6
TGP
ABRTQ
ID FETCH-LOGICAL-c246t-6bd52ce80095bddfbbd781c180bdeba204205ec1bbdee76b50427f58cce53d9c3
IEDL.DBID U2A
ISSN 1003-2169
IngestDate Fri Jul 25 11:08:18 EDT 2025
Tue Jul 01 02:36:29 EDT 2025
Thu Apr 24 23:02:41 EDT 2025
Fri Feb 21 02:46:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ammonia
dimethyl ether
laminar burning velocity
temperature dependence
kinetic analyses
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-6bd52ce80095bddfbbd781c180bdeba204205ec1bbdee76b50427f58cce53d9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2619853234
PQPubID 2044453
PageCount 9
ParticipantIDs proquest_journals_2619853234
crossref_primary_10_1007_s11630_022_1549_1
crossref_citationtrail_10_1007_s11630_022_1549_1
springer_journals_10_1007_s11630_022_1549_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Journal of thermal science
PublicationTitleAbbrev J. Therm. Sci
PublicationYear 2022
Publisher Science Press
Springer Nature B.V
Publisher_xml – name: Science Press
– name: Springer Nature B.V
References Mei, Zhang, Ma, Cui, Guo, Cao, Li (CR12) 2019; 210
Xiao, Valera-Medina, Bowen (CR25) 2017; 140
Zhao, Kazakov, Dryer (CR37) 2004; 139
Hayakawa, Goto, Mimoto, Arakawa, Kudo, Kobayashi (CR35) 2015; 159
Issayev, Giri, Elbaz, Shrestha, Mauss, Roberts, Farooq (CR27) 2021; 38
Shrestha, Lhuillier, Barbosa, Brequigny, Contino, Mounaïm-Rousselle, Seidel, Mauss (CR22) 2021; 38
Valera-Medina, Xiao, Owen-Jones, David, Bowen (CR7) 2018; 69
Tan, Chen, Li, Luo, Yang, Cui, Zhang (CR2) 2021; 9
Zhang, Jiaqiang, Chen, Zhu, Zhao, Han, Zuo, Peng, Gong, Yin (CR19) 2019; 239
Goldmann, Dinkelacker (CR11) 2018; 224
Daly, Simmie, Würmel, DjebaÏli, Paillard (CR36) 2001; 125
Cai, Zhao, Sun, Ni, Li, Guan, Wang (CR5) 2021; 145
Li, Huang, Kobayashi, He, Osaka, Zeng (CR13) 2015; 93
Zhang, Jiaqiang, Chen, Zhao, Zhang, Deng, Peng, Yin (CR20) 2020; 169
Shioyoke, Hayashi, Murai, Nakatsuka, Akamatsu (CR18) 2018; 32
Ciccarelli, Jackson, Verreault (CR16) 2006; 144
Li, Huang, Kobayashi, Wang, Yuan (CR24) 2017; 126
Kondo, Takizawa, Takahashi, Tokuhashi (CR17) 2011; 187
Ronney (CR34) 1988; 59
Shrestha, Lhuillier, Barbosa, Brequigny, Contino, Mounaïm-Rousselle, Seidel, Mauss (CR10) 2021; 38
MacFarlane, Cherepanov, Choi, Suryanto, Hodgetts, Bakker, Vallana, Simonov (CR6) 2020; 4
Zhang, Jiaqiang, Deng, Pham, Zuo, Peng, Yin (CR1) 2018; 159
CR4
Zhang, Ye, Tan, Feng, Luo, Tan, Huang (CR3) 2021; 290
Kobayashi, Hayakawa, Somarathne, Okafor (CR8) 2019; 37
CR29
CR28
Mohammad, Juhany (CR38) 2019; 245
Matalon (CR32) 2009; 32
Bongers, De Goey (CR31) 2003; 175
Duynslaegher, Jeanmart, Vandooren (CR15) 2010; 89
Tang, Cai, Deng, Xu, Pan (CR39) 2017; 152
Egolfopoulos, Law (CR30) 1990; 80
Wang, Holley, Ji, Egolfopoulos, Tsotsis, Curran (CR33) 2009; 32
Cai, Becker, Cao, Wang, Tang, Fu, Han, Sun, Zhao (CR9) 2021; 417
Wang, Han, He, Zhu, Zhu, Zhou, Cen (CR26) 2021; 229
Cai, Zhao (CR21) 2020; 209
Han, Wang, He, Liu, Zhu, Konnov (CR14) 2020; 217
Han, Wang, Costa, Sun, He, Cen (CR23) 2019; 206
1549_CR4
C Duynslaegher (1549_CR15) 2010; 89
B Mei (1549_CR12) 2019; 210
A Hayakawa (1549_CR35) 2015; 159
A Mohammad (1549_CR38) 2019; 245
Z Zhang (1549_CR1) 2018; 159
KP Shrestha (1549_CR22) 2021; 38
D Tan (1549_CR2) 2021; 9
X Han (1549_CR23) 2019; 206
1549_CR28
Z Zhang (1549_CR19) 2019; 239
Z Zhang (1549_CR20) 2020; 169
G Ciccarelli (1549_CR16) 2006; 144
1549_CR29
A Shioyoke (1549_CR18) 2018; 32
F Egolfopoulos (1549_CR30) 1990; 80
Z Zhang (1549_CR3) 2021; 290
X Han (1549_CR14) 2020; 217
Z Wang (1549_CR26) 2021; 229
T Cai (1549_CR9) 2021; 417
J Li (1549_CR24) 2017; 126
KP Shrestha (1549_CR10) 2021; 38
T Cai (1549_CR21) 2020; 209
DR MacFarlane (1549_CR6) 2020; 4
J Li (1549_CR13) 2015; 93
H Kobayashi (1549_CR8) 2019; 37
G Issayev (1549_CR27) 2021; 38
Z Zhao (1549_CR37) 2004; 139
YL Wang (1549_CR33) 2009; 32
A Valera-Medina (1549_CR7) 2018; 69
A Tang (1549_CR39) 2017; 152
H Xiao (1549_CR25) 2017; 140
A Goldmann (1549_CR11) 2018; 224
S Kondo (1549_CR17) 2011; 187
PD Ronney (1549_CR34) 1988; 59
T Cai (1549_CR5) 2021; 145
CA Daly (1549_CR36) 2001; 125
H Bongers (1549_CR31) 2003; 175
M Matalon (1549_CR32) 2009; 32
References_xml – volume: 32
  start-page: 1035
  issue: 1
  year: 2009
  end-page: 1042
  ident: CR33
  article-title: Propagation and extinction of premixed dimethyl-ether/air flames
  publication-title: Proceedings of the Combustion Institute
  doi: 10.1016/j.proci.2008.06.054
– volume: 210
  start-page: 236
  year: 2019
  end-page: 246
  ident: CR12
  article-title: Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions
  publication-title: Combustion and Flame
  doi: 10.1016/j.combustflame.2019.08.033
– volume: 145
  start-page: 111150
  year: 2021
  ident: CR5
  article-title: Evaluation of NO emissions characteristics in a CO -Free micro-power system by implementing a perforated plate
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2021.111150
– ident: CR4
– volume: 59
  start-page: 123
  issue: 1–3
  year: 1988
  end-page: 141
  ident: CR34
  article-title: Effect of chemistry and transport properties on near-limit flames at microgravity
  publication-title: Combustion Science and Technology
  doi: 10.1080/00102208808947092
– volume: 209
  start-page: 106527
  year: 2020
  ident: CR21
  article-title: Effects of fuel composition and wall thermal conductivity on thermal and NO emission performances of an ammonia/hydrogen-oxygen micro-power system
  publication-title: Fuel Processing Technology
  doi: 10.1016/j.fuproc.2020.106527
– volume: 125
  start-page: 1329
  year: 2001
  end-page: 1340
  ident: CR36
  article-title: Burning velocities of dimethyl ether and air
  publication-title: Combustion and Flame
  doi: 10.1016/S0010-2180(01)00249-8
– volume: 417
  start-page: 128033
  year: 2021
  ident: CR9
  article-title: NO emission performance assessment on a perforated plate-implemented premixed ammonia-oxygen micro-combustion system
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2020.128033
– volume: 89
  start-page: 3540
  year: 2010
  end-page: 3545
  ident: CR15
  article-title: Ammonia combustion at elevated pressure and temperature conditions
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.06.008
– volume: 159
  start-page: 98
  year: 2015
  end-page: 106
  ident: CR35
  article-title: Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.06.070
– volume: 245
  start-page: 105
  year: 2019
  end-page: 114
  ident: CR38
  article-title: Laminar burning velocity and flame structure of DME/methane+air mixtures at elevated temperatures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.02.085
– volume: 9
  start-page: 568
  issue: 3
  year: 2021
  ident: CR2
  article-title: Effects of swirl and boiling heat transfer on the performance enhancement and emission reduction for a medium diesel engine fueled with biodiesel
  publication-title: Processes
  doi: 10.3390/pr9030568
– ident: CR29
– volume: 139
  start-page: 52
  year: 2004
  end-page: 60
  ident: CR37
  article-title: Measurements of dimethyl ether/air mixture burning velocities by using particle image velocimetry
  publication-title: Combustion and Flame
  doi: 10.1016/j.combustflame.2004.06.009
– volume: 224
  start-page: 366
  year: 2018
  end-page: 378
  ident: CR11
  article-title: Approximation of laminar flame characteristics on premixed ammonia/hydrogen/nitrogen/air mixtures at elevated temperatures and pressures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.03.030
– volume: 93
  start-page: 2053
  year: 2015
  end-page: 2068
  ident: CR13
  article-title: Numerical study on effect of oxygen content in combustion air on ammonia combustion
  publication-title: Energy
  doi: 10.1016/j.energy.2015.10.060
– volume: 126
  start-page: 796
  year: 2017
  end-page: 809
  ident: CR24
  article-title: Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition
  publication-title: Energy
  doi: 10.1016/j.energy.2017.03.085
– volume: 80
  start-page: 7
  year: 1990
  end-page: 16
  ident: CR30
  article-title: Chain mechanisms in the overall reaction orders in laminar flame propagation
  publication-title: Combustion and Flame
  doi: 10.1016/0010-2180(90)90049-W
– volume: 37
  start-page: 109
  issue: 1
  year: 2019
  end-page: 133
  ident: CR8
  article-title: Science and technology of ammonia combustion
  publication-title: Proceedings of the Combustion Institute
  doi: 10.1016/j.proci.2018.09.029
– volume: 144
  start-page: 53
  year: 2006
  end-page: 63
  ident: CR16
  article-title: Flammability limits of NH -H -N -air mixtures at elevated initial temperatures
  publication-title: Combustion and Flame
  doi: 10.1016/j.combustflame.2005.06.010
– volume: 239
  start-page: 245
  year: 2019
  end-page: 262
  ident: CR19
  article-title: Effects of low-level water addition on spray, combustion and emission characteristics of a medium speed diesel engine fueled with biodiesel fuel
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.11.019
– volume: 140
  start-page: 125
  year: 2017
  end-page: 135
  ident: CR25
  article-title: Study on premixed combustion characteristics of co-firing ammonia/methane fuels
  publication-title: Energy
  doi: 10.1016/j.energy.2017.08.077
– volume: 217
  start-page: 314
  year: 2020
  end-page: 320
  ident: CR14
  article-title: The temperature dependence of the laminar burning velocity and superadiabatic flame temperature phenomenon for NH /air flames
  publication-title: Combustion and Flame
  doi: 10.1016/j.combustflame.2020.04.013
– volume: 32
  start-page: 57
  issue: 1
  year: 2009
  end-page: 82
  ident: CR32
  article-title: Flame dynamics
  publication-title: Proceedings of the Combustion Institute
  doi: 10.1016/j.proci.2008.08.002
– volume: 290
  start-page: 120039
  year: 2021
  ident: CR3
  article-title: The effects of Fe O based DOC and SCR catalyst on the combustion and emission characteristics of a diesel engine fueled with biodiesel
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.120039
– volume: 152
  start-page: 65
  year: 2017
  end-page: 71
  ident: CR39
  article-title: Experimental investigation on combustion characteristics of premixed propane/air in a micro-planar heat recirculation combustor
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2017.09.011
– volume: 69
  start-page: 63
  year: 2018
  end-page: 102
  ident: CR7
  article-title: Ammonia for power
  publication-title: Progress in Energy and Combustion Science
  doi: 10.1016/j.pecs.2018.07.001
– volume: 187
  start-page: 585
  issue: 1–3
  year: 2011
  end-page: 590
  ident: CR17
  article-title: On the temperature dependence of flammability limits of gases
  publication-title: Journal of Hazardous Materials
  doi: 10.1016/j.jhazmat.2011.01.037
– volume: 4
  start-page: 1186
  issue: 6
  year: 2020
  end-page: 1205
  ident: CR6
  article-title: A roadmap to the ammonia economy
  publication-title: Joule
  doi: 10.1016/j.joule.2020.04.004
– volume: 229
  start-page: 111392
  year: 2021
  ident: CR26
  article-title: Experimental and kinetic study on the laminar burning velocities of NH mixing with CH OH and C H OH in premixed flames
  publication-title: Combustion and Flame
  doi: 10.1016/j.combustflame.2021.02.038
– volume: 38
  start-page: 499
  issue: 1
  year: 2021
  end-page: 506
  ident: CR27
  article-title: Combustion behavior of ammonia blended with diethyl ether
  publication-title: Proceedings of the Combustion Institute
  doi: 10.1016/j.proci.2020.06.337
– volume: 206
  start-page: 214
  year: 2019
  end-page: 226
  ident: CR23
  article-title: Experimental and kinetic modeling study of laminar burning velocities of NH /air, NH /H /air, NH /CO/air and NH /CH /air premixed flames
  publication-title: Combustion and Flame
  doi: 10.1016/j.combustflame.2019.05.003
– volume: 159
  start-page: 244
  year: 2018
  end-page: 253
  ident: CR1
  article-title: Effects of fatty acid methyl esters proportion on combustion and emission characteristics of a biodiesel fueled marine diesel engine
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2017.12.098
– volume: 169
  start-page: 114984
  year: 2020
  ident: CR20
  article-title: Effects of boiling heat transfer on the performance enhancement of a medium speed diesel engine fueled with diesel and rapeseed methyl ester
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2020.114984
– volume: 38
  start-page: 2163
  issue: 2
  year: 2021
  end-page: 2174
  ident: CR10
  article-title: An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature
  publication-title: Proceedings of the Combustion Institute
  doi: 10.1016/j.proci.2020.06.197
– volume: 32
  start-page: 3824
  issue: 3
  year: 2018
  end-page: 3832
  ident: CR18
  article-title: Numerical investigation on effects of nonequilibrium plasma on laminar burning velocity of ammonia flame
  publication-title: Energy & Fuels
  doi: 10.1021/acs.energyfuels.7b02733
– volume: 175
  start-page: 1915
  issue: 10
  year: 2003
  end-page: 1928
  ident: CR31
  article-title: The effect of simplified transport modeling on the burning velocity of laminar premixed flames
  publication-title: Combustion Science and Technology
  doi: 10.1080/713713111
– volume: 38
  start-page: 2163
  issue: 2
  year: 2021
  end-page: 2174
  ident: CR22
  article-title: An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature
  publication-title: Proceedings of the Combustion Institute
  doi: 10.1016/j.proci.2020.06.197
– ident: CR28
– volume: 139
  start-page: 52
  year: 2004
  ident: 1549_CR37
  publication-title: Combustion and Flame
  doi: 10.1016/j.combustflame.2004.06.009
– volume: 224
  start-page: 366
  year: 2018
  ident: 1549_CR11
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.03.030
– volume: 290
  start-page: 120039
  year: 2021
  ident: 1549_CR3
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.120039
– volume: 125
  start-page: 1329
  year: 2001
  ident: 1549_CR36
  publication-title: Combustion and Flame
  doi: 10.1016/S0010-2180(01)00249-8
– volume: 144
  start-page: 53
  year: 2006
  ident: 1549_CR16
  publication-title: Combustion and Flame
  doi: 10.1016/j.combustflame.2005.06.010
– ident: 1549_CR29
– volume: 126
  start-page: 796
  year: 2017
  ident: 1549_CR24
  publication-title: Energy
  doi: 10.1016/j.energy.2017.03.085
– volume: 4
  start-page: 1186
  issue: 6
  year: 2020
  ident: 1549_CR6
  publication-title: Joule
  doi: 10.1016/j.joule.2020.04.004
– volume: 187
  start-page: 585
  issue: 1–3
  year: 2011
  ident: 1549_CR17
  publication-title: Journal of Hazardous Materials
  doi: 10.1016/j.jhazmat.2011.01.037
– volume: 32
  start-page: 57
  issue: 1
  year: 2009
  ident: 1549_CR32
  publication-title: Proceedings of the Combustion Institute
  doi: 10.1016/j.proci.2008.08.002
– volume: 159
  start-page: 98
  year: 2015
  ident: 1549_CR35
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.06.070
– volume: 38
  start-page: 499
  issue: 1
  year: 2021
  ident: 1549_CR27
  publication-title: Proceedings of the Combustion Institute
  doi: 10.1016/j.proci.2020.06.337
– volume: 239
  start-page: 245
  year: 2019
  ident: 1549_CR19
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.11.019
– ident: 1549_CR28
– volume: 9
  start-page: 568
  issue: 3
  year: 2021
  ident: 1549_CR2
  publication-title: Processes
  doi: 10.3390/pr9030568
– volume: 210
  start-page: 236
  year: 2019
  ident: 1549_CR12
  publication-title: Combustion and Flame
  doi: 10.1016/j.combustflame.2019.08.033
– volume: 206
  start-page: 214
  year: 2019
  ident: 1549_CR23
  publication-title: Combustion and Flame
  doi: 10.1016/j.combustflame.2019.05.003
– volume: 245
  start-page: 105
  year: 2019
  ident: 1549_CR38
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.02.085
– volume: 89
  start-page: 3540
  year: 2010
  ident: 1549_CR15
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.06.008
– volume: 169
  start-page: 114984
  year: 2020
  ident: 1549_CR20
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2020.114984
– volume: 159
  start-page: 244
  year: 2018
  ident: 1549_CR1
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2017.12.098
– volume: 38
  start-page: 2163
  issue: 2
  year: 2021
  ident: 1549_CR10
  publication-title: Proceedings of the Combustion Institute
  doi: 10.1016/j.proci.2020.06.197
– volume: 145
  start-page: 111150
  year: 2021
  ident: 1549_CR5
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2021.111150
– volume: 175
  start-page: 1915
  issue: 10
  year: 2003
  ident: 1549_CR31
  publication-title: Combustion Science and Technology
  doi: 10.1080/713713111
– volume: 229
  start-page: 111392
  year: 2021
  ident: 1549_CR26
  publication-title: Combustion and Flame
  doi: 10.1016/j.combustflame.2021.02.038
– volume: 140
  start-page: 125
  year: 2017
  ident: 1549_CR25
  publication-title: Energy
  doi: 10.1016/j.energy.2017.08.077
– volume: 38
  start-page: 2163
  issue: 2
  year: 2021
  ident: 1549_CR22
  publication-title: Proceedings of the Combustion Institute
  doi: 10.1016/j.proci.2020.06.197
– volume: 217
  start-page: 314
  year: 2020
  ident: 1549_CR14
  publication-title: Combustion and Flame
  doi: 10.1016/j.combustflame.2020.04.013
– volume: 152
  start-page: 65
  year: 2017
  ident: 1549_CR39
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2017.09.011
– volume: 209
  start-page: 106527
  year: 2020
  ident: 1549_CR21
  publication-title: Fuel Processing Technology
  doi: 10.1016/j.fuproc.2020.106527
– volume: 80
  start-page: 7
  year: 1990
  ident: 1549_CR30
  publication-title: Combustion and Flame
  doi: 10.1016/0010-2180(90)90049-W
– volume: 59
  start-page: 123
  issue: 1–3
  year: 1988
  ident: 1549_CR34
  publication-title: Combustion Science and Technology
  doi: 10.1080/00102208808947092
– volume: 32
  start-page: 1035
  issue: 1
  year: 2009
  ident: 1549_CR33
  publication-title: Proceedings of the Combustion Institute
  doi: 10.1016/j.proci.2008.06.054
– volume: 37
  start-page: 109
  issue: 1
  year: 2019
  ident: 1549_CR8
  publication-title: Proceedings of the Combustion Institute
  doi: 10.1016/j.proci.2018.09.029
– volume: 93
  start-page: 2053
  year: 2015
  ident: 1549_CR13
  publication-title: Energy
  doi: 10.1016/j.energy.2015.10.060
– ident: 1549_CR4
  doi: 10.1126/science.aau7489
– volume: 417
  start-page: 128033
  year: 2021
  ident: 1549_CR9
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2020.128033
– volume: 69
  start-page: 63
  year: 2018
  ident: 1549_CR7
  publication-title: Progress in Energy and Combustion Science
  doi: 10.1016/j.pecs.2018.07.001
– volume: 32
  start-page: 3824
  issue: 3
  year: 2018
  ident: 1549_CR18
  publication-title: Energy & Fuels
  doi: 10.1021/acs.energyfuels.7b02733
SSID ssj0067634
Score 2.4265425
Snippet The combustion of ammonia (NH 3 ) has attracted wide interest in fuel vehicle engines, marine engines, and power generators to mitigate carbon dioxide...
The combustion of ammonia (NH3) has attracted wide interest in fuel vehicle engines, marine engines, and power generators to mitigate carbon dioxide emissions....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 189
SubjectTerms Ammonia
Binary mixtures
Carbon dioxide
Chain branching
Chemical reactions
Classical and Continuum Physics
Combustion
Diffusion effects
Dimethyl ether
Engineering Fluid Dynamics
Engineering Thermodynamics
Flame speed
Flame temperature
Flames
Fuels
Heat and Mass Transfer
Inlet temperature
Marine engines
Numerical prediction
Physics
Physics and Astronomy
Premixed flames
Temperature dependence
Thermal diffusivity
Velocity
Title Temperature Dependence of Laminar Burning Velocity in Ammonia/Dimethyl Ether-air Premixed Flames
URI https://link.springer.com/article/10.1007/s11630-022-1549-1
https://www.proquest.com/docview/2619853234
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kRfAiPrFayx48KYvJNpsmx9a2Fh_FQyv1FLO7EwjUVvoA_ffOpIlFUcFTINnMYWZn59udb2cYO5MY1WystQgTqYXXcEDEVilhEN4ngZESJF1Ovu_7vaF3M1Kj_B73vGC7FynJbKVeX3ZD6OAIYp9TWTGBW56ywq078biGslksvz46TJZKJtKVdP2wSGX-JOJrMFojzG9J0SzWdHfYdg4SeXNl1V22AZM9tpmRNc18nz0PAMHuqhgyb-ddbA3wacLvYqK2zHhrmR148EfAYIVAm6cT3qQpl8aX7ZTaRr-PeYfAn4jTGX-YwUv6BpZ3x8SaPWDDbmdw1RN5pwTUqecvhK-tkgYCAkza2kRr2whc4waOtqBjiZ7pKDAuvgdo-FpRh41EBcaAqtvQ1A9ZaTKdwBHj2gljFGUR1tQ9a3WQxA2ESY7UvobAMxXmFCqLTF5GnLpZjKN1AWTScoRajkjLkVth55-_vK5qaPw1uFrYIcrdaR7RNg9xhax7FXZR2Gb9-Vdhx_8afcK2JM2N7IClykqL2RJOEXIsdI2Vm91Wq0_P66fbTi2bch8pstC3
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT8MwDIAjNITggniKwYAcOIEi2vSx9jjYpgHbxGFDu5UmcaVKY0N7SPDvsbuWCgRIXNskB8eJv8SOzdiFRKtmYqVEmEgl3LoFIjaeJzTifRJoKUHS4-Re3-8M3fuRN8rfcc-LaPfCJZnt1OVjN0QHS1D0OaUVE3jkWUcWCEiVh7JRbL8-LpjMlUxBV9L2w8KV-dMQX41RSZjfnKKZrWnvsO0cEnljNau7bA0me2wjC9bU8332PACE3VUyZN7Mq9hq4NOEd2MKbZnxm2V24cGfAI0VgjZPJ7xBKpfG182Uyka_j3mL4E_E6Yw_zuAlfQPD22OKmj1gw3ZrcNsReaUElKnrL4SvjCc1BARMyphEKVMPbG0HljKgYokr0_JA2_gdoO4rjypsJF6gNXiOCbVzyCqT6QSOGFdWGONQBrHGcY1RQRLXEZMsqXwFgaurzCpEFuk8jThVsxhHZQJkknKEUo5IypFdZZefXV5XOTT-alwr5iHKl9M8omMecoV03Cq7Kuam_P3rYMf_an3ONjuDXjfq3vUfTtiWJD3JLltqrLKYLeEU8WOhzjJ1-wARMdCa
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QEIgL4ikGA3LgBIrWpo91x8E2DRjTDhvarTSJK1Ua3bSHBP8eu2uZQIDEtU19cOz6S2x_ZuxKYlQzkVKiHksl3JoFIjKeJzTC-zjQUoKk5uSnnt8Zug8jb5TPOZ0X1e5FSnLV00AsTemiOjVxdd34hjDCElSJThRjAo8_my41A6NBD2Wj-BX76DxZWpkKsKTt14u05k8ivgamNdr8liDN4k57j-3mgJE3Vju8zzYgPWBbWeGmnh-ylwEg8F0RI_NmPtFWA5_EvBtRmcuM3y6zyw_-DBi4EHTzJOUNMr8kqjYTGiH9PuYtAoIiSma8P4PX5A0Mb4-pgvaIDdutwV1H5FMTUL-uvxC-Mp7UEBB4UsbESplaYGs7sJQBFUn0UssDbeNzgJqvPJq2EXuB1uA5pq6dY1ZKJymcMK6seoSiDEIcxzVGBXFUQ8hkSeUrCFxdZlahslDnlOI02WIcrsmQScshajkkLYd2mV1_fjJd8Wn8tbhS7EOYu9Y8pCMfYgzpuGV2U-zN-vWvwk7_tfqSbfeb7bB733s8YzuSzCS7d6mw0mK2hHNEIgt1kVnbBzSz1M0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+Dependence+of+Laminar+Burning+Velocity+in+Ammonia%2FDimethyl+Ether-air+Premixed+Flames&rft.jtitle=Journal+of+thermal+science&rft.au=Cai%2C+Tao&rft.au=Zhao%2C+Dan&rft.date=2022-01-01&rft.issn=1003-2169&rft.eissn=1993-033X&rft.volume=31&rft.issue=1&rft.spage=189&rft.epage=197&rft_id=info:doi/10.1007%2Fs11630-022-1549-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11630_022_1549_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1003-2169&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1003-2169&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1003-2169&client=summon