EXVul: Toward Effective and Explainable Vulnerability Detection for IoT Devices
As with anything connected to the Internet, Internet of Things (IoT) devices are also subject to severe cybersecurity threats because an adversary could exploit vulnerabilities in their internal software to perform malicious attacks. Despite the promising results of deep learning (DL)-based approach...
Saved in:
Published in | IEEE internet of things journal Vol. 11; no. 12; pp. 22385 - 22398 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
15.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As with anything connected to the Internet, Internet of Things (IoT) devices are also subject to severe cybersecurity threats because an adversary could exploit vulnerabilities in their internal software to perform malicious attacks. Despite the promising results of deep learning (DL)-based approaches, the lack of well-labeled IoT vulnerability samples available for training and explainability pose a critical challenge to deploy them in practice. In this article, we propose EXVUL, a novel DL-based approach for Effective and eXplainable IoT VULnerability detection. Specifically, inspired by recent advances of self-supervised learning in label-expensive tasks, we propose a new combinatorial contrastive loss to combine the strengths of large-scale unlabeled code corpus and limited IoT vulnerability samples. Then, given a binary detection result, EXVUL provides a set of faithful and stable code statements positively contributing to the model's predictions as understandable explanations. Experimental results indicate that EXVUL outperforms state-of-the-art baselines by 33.44%-72.91% and 19.52%-98.78% with respect to the accuracy and F1 score metrics, respectively. For vulnerability explanation, EXVUL improves over the best-performing baseline explainer PGExplainer by 22.97% in mean statement precision, 49.55% in mean statement recall, and 48.40% in mean intersection over union, demonstrating that the explanations provided by EXVUL can correctly point out the vulnerable statements relevant to the detected vulnerabilities. |
---|---|
AbstractList | As with anything connected to the Internet, Internet of Things (IoT) devices are also subject to severe cybersecurity threats because an adversary could exploit vulnerabilities in their internal software to perform malicious attacks. Despite the promising results of deep learning (DL)-based approaches, the lack of well-labeled IoT vulnerability samples available for training and explainability pose a critical challenge to deploy them in practice. In this article, we propose EXVUL, a novel DL-based approach for Effective and eXplainable IoT VULnerability detection. Specifically, inspired by recent advances of self-supervised learning in label-expensive tasks, we propose a new combinatorial contrastive loss to combine the strengths of large-scale unlabeled code corpus and limited IoT vulnerability samples. Then, given a binary detection result, EXVUL provides a set of faithful and stable code statements positively contributing to the model’s predictions as understandable explanations. Experimental results indicate that EXVUL outperforms state-of-the-art baselines by 33.44%-72.91% and 19.52%-98.78% with respect to the accuracy and F1 score metrics, respectively. For vulnerability explanation, EXVUL improves over the best-performing baseline explainer PGExplainer by 22.97% in mean statement precision, 49.55% in mean statement recall, and 48.40% in mean intersection over union, demonstrating that the explanations provided by EXVUL can correctly point out the vulnerable statements relevant to the detected vulnerabilities. |
Author | Luan, Tom H. Liu, Wei Li, Yan Gao, Longxiang Zhang, Jiale Sun, Xiaobing Wu, Di Cao, Sicong |
Author_xml | – sequence: 1 givenname: Sicong orcidid: 0000-0003-3688-4437 surname: Cao fullname: Cao, Sicong email: dx120210088@yzu.edu.cn organization: School of Information Engineering, Yangzhou University, Yangzhou, China – sequence: 2 givenname: Xiaobing orcidid: 0000-0001-5165-5080 surname: Sun fullname: Sun, Xiaobing email: xbsun@yzu.edu.cn organization: School of Information Engineering, Yangzhou University, Yangzhou, China – sequence: 3 givenname: Wei orcidid: 0000-0001-8503-4063 surname: Liu fullname: Liu, Wei email: weiliu@yzu.edu.cn organization: School of Information Engineering, Yangzhou University, Yangzhou, China – sequence: 4 givenname: Di orcidid: 0000-0002-4753-8161 surname: Wu fullname: Wu, Di email: di.wu@unisq.edu.au organization: School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, QLD, Australia – sequence: 5 givenname: Jiale orcidid: 0000-0002-2143-5666 surname: Zhang fullname: Zhang, Jiale email: jialezhang@yzu.edu.cn organization: School of Information Engineering, Yangzhou University, Yangzhou, China – sequence: 6 givenname: Yan orcidid: 0000-0002-4694-4926 surname: Li fullname: Li, Yan email: yan.li@unisq.edu.au organization: School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, QLD, Australia – sequence: 7 givenname: Tom H. orcidid: 0000-0002-5215-7443 surname: Luan fullname: Luan, Tom H. email: tom.luan@xidian.edu.cn organization: School of Cyber Engineering, Xidian University, Xi'an, China – sequence: 8 givenname: Longxiang orcidid: 0000-0002-3026-7537 surname: Gao fullname: Gao, Longxiang email: gaolx@sdas.org organization: School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, QLD, Australia |
BookMark | eNpNkMtKw0AUhgepYK19AMFFwHXq3JO4k1q1UugmirthMjkDU2KmTtJq394J7aKrc-H7z4HvGo1a3wJCtwTPCMHFw_tyXc4opnzGWE4kJxdoTBnNUi4lHZ31V2jadRuMcYwJUsgxWi--PnfNY1L6Xx3qZGEtmN7tIdFtnP62jXatrhpIItVC0JVrXH9InqEfON8m1odk6cu42TsD3Q26tLrpYHqqE_Txsijnb-lq_bqcP61SQ7nsU2GKmmnMKlHVmuiMVbXUhaE1t4znwGuoqCSM6JxZEyduZSaEyZkAa8ByNkH3x7vb4H920PVq43ehjS8Vw1JwKWSWR4ocKRN81wWwahvctw4HRbAa1KlBnRrUqZO6mLk7ZhwAnPE8K4jI2T-DRWwl |
CODEN | IITJAU |
Cites_doi | 10.1145/3379597.3387501 10.1145/3524842.3528452 10.1145/3510003.3510219 10.1109/TDSC.2022.3199769 10.1016/j.knosys.2023.110841 10.1109/ICSE48619.2023.00022 10.1109/TSE.2021.3087402 10.1145/3597926.3598145 10.1109/TSE.2018.2881961 10.1145/3468264.3468545 10.1016/j.infsof.2021.106576 10.1109/TSE.2023.3305244 10.1109/ICSE48619.2023.00044 10.1109/TSE.2023.3285910 10.1109/icse48619.2023.00188 10.1109/TASLP.2023.3297964 10.1109/ICSE48619.2023.00089 10.1109/TDSC.2021.3051525 10.1109/32.988498 10.1016/j.jisa.2023.103467 10.1109/TR.2023.3319318 10.1109/TPAMI.2021.3115452 10.1145/3624744 10.1145/2939672.2939754 10.1109/SP46215.2023.10179377 10.1109/TDSC.2022.3192419 10.1109/TNNLS.2020.2978386 10.5555/3524938.3525087 10.1016/j.cosrev.2021.100389 10.1109/TIFS.2020.3044773 10.1145/3436877 10.1109/EuroSP48549.2020.00018 10.1145/3540250.3549162 10.1109/JIOT.2021.3106898 10.1145/3611643.3616358 10.18653/v1/2021.emnlp-main.482 10.48550/arXiv.1310.4546 10.14722/ndss.2018.23158 10.1145/3468264.3468597 10.1109/SP.2014.44 10.1145/3524842.3527949 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/JIOT.2024.3381641 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2327-4662 |
EndPage | 22398 |
ExternalDocumentID | 10_1109_JIOT_2024_3381641 10479158 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62206238 funderid: 10.13039/501100001809 – fundername: Postgraduate Research and Practice Innovation Program of Jiangsu Province grantid: KYCX22_3502 – fundername: Jiangsu “333” Project and Yangzhou University Top-Level Talents Support Program (2019) – fundername: Six Talent Peaks Project in Jiangsu Province grantid: RJFW-053 funderid: 10.13039/501100010014 – fundername: China Postdoctoral Science Foundation grantid: 2023M732985 funderid: 10.13039/501100002858 – fundername: China Scholarship Council Foundation grantid: 202308320436 funderid: 10.13039/501100004543 – fundername: State Key Laboratory of Massive Personalized Customization System and Technology grantid: H&C-MPC-2023-02-05 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20220562 funderid: 10.13039/501100004608 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c246t-5c9d3a03b5bda1a73bd6a9c2d4f348e4deb26131a83fc4de4f6755c835efcef43 |
IEDL.DBID | RIE |
ISSN | 2327-4662 |
IngestDate | Sun Jun 29 12:36:14 EDT 2025 Tue Jul 01 00:38:06 EDT 2025 Wed Aug 27 01:53:53 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-5c9d3a03b5bda1a73bd6a9c2d4f348e4deb26131a83fc4de4f6755c835efcef43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3688-4437 0000-0002-5215-7443 0000-0001-5165-5080 0000-0001-8503-4063 0000-0002-3026-7537 0000-0002-4753-8161 0000-0002-4694-4926 0000-0002-2143-5666 |
PQID | 3065465678 |
PQPubID | 2040421 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3065465678 crossref_primary_10_1109_JIOT_2024_3381641 ieee_primary_10479158 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-15 |
PublicationDateYYYYMMDD | 2024-06-15 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE internet of things journal |
PublicationTitleAbbrev | JIoT |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref56 ref15 Cao (ref18) 2024 ref14 ref53 ref52 ref11 ref55 ref54 (ref2) 2023 (ref10) 2023 ref16 Zhou (ref12) Fout (ref25) Luo (ref28) ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref49 ref7 ref4 ref3 Khosla (ref35) (ref1) 2023 ref6 Velickovic (ref34) ref5 ref40 Husain (ref43) 2019 ref37 ref36 ref31 ref30 ref33 ref32 ref39 Li (ref38) Dam (ref17) (ref8) 2023 ref24 ref23 ref26 ref20 ref22 ref21 ref27 ref29 Ying (ref19) (ref9) 2023 |
References_xml | – ident: ref37 doi: 10.1145/3379597.3387501 – ident: ref53 doi: 10.1145/3524842.3528452 – ident: ref47 doi: 10.1145/3510003.3510219 – ident: ref54 doi: 10.1109/TDSC.2022.3199769 – ident: ref26 doi: 10.1016/j.knosys.2023.110841 – ident: ref15 doi: 10.1109/ICSE48619.2023.00022 – ident: ref13 doi: 10.1109/TSE.2021.3087402 – start-page: 9240 volume-title: Proc. 33rd Annu. Conf. Neural Inf. Process. Syst. ident: ref19 article-title: GNNexplainer: Generating explanations for graph neural networks – ident: ref20 doi: 10.1145/3597926.3598145 – ident: ref6 doi: 10.1109/TSE.2018.2881961 – ident: ref55 doi: 10.1145/3468264.3468545 – start-page: 10197 volume-title: Proc. 33rd Annu. Conf. Neural Inf. Process. Syst. (NeurIPS) ident: ref12 article-title: Devign: Effective vulnerability identification by learning comprehensive program semantics via graph neural networks – ident: ref7 doi: 10.1016/j.infsof.2021.106576 – ident: ref44 doi: 10.1109/TSE.2023.3305244 – start-page: 53 volume-title: Proc. 40th Int. Conf. Softw. Eng., New Ideas Emerg. Results ident: ref17 article-title: Explainable software analytics – ident: ref49 doi: 10.1109/ICSE48619.2023.00044 – volume-title: State of IoT—Spring 2023 year: 2023 ident: ref1 – start-page: 19620 volume-title: Proc. 34th Annu. Conf. Neural Inf. Process. Syst. ident: ref28 article-title: Parameterized explainer for graph neural network – volume-title: Checkmarx year: 2023 ident: ref9 – ident: ref31 doi: 10.1109/TSE.2023.3285910 – year: 2024 ident: ref18 article-title: A systematic literature review on explainability for machine/deep learning-based software engineering research publication-title: arXiv:2401.14617 – ident: ref16 doi: 10.1109/icse48619.2023.00188 – ident: ref22 doi: 10.1109/TASLP.2023.3297964 – start-page: 1 volume-title: Proc. 4th Int. Conf. Learn. Represent. (ICLR) ident: ref38 article-title: Gated graph sequence neural networks – start-page: 1 volume-title: Proc. 34th Annu. Conf. Neural Inf. Process. Syst. ident: ref35 article-title: Supervised contrastive learning – ident: ref45 doi: 10.1109/ICSE48619.2023.00089 – ident: ref5 doi: 10.1109/TDSC.2021.3051525 – ident: ref56 doi: 10.1109/32.988498 – ident: ref36 doi: 10.1016/j.jisa.2023.103467 – volume-title: Infer year: 2023 ident: ref10 – ident: ref27 doi: 10.1109/TR.2023.3319318 – ident: ref40 doi: 10.1109/TPAMI.2021.3115452 – year: 2019 ident: ref43 article-title: CodeSearchNet challenge: Evaluating the state of semantic code search publication-title: arXiv:1909.09436 – ident: ref51 doi: 10.1145/3624744 – start-page: 1 volume-title: Proc. 6th Int. Conf. Learn. Represent. (ICLR) ident: ref34 article-title: Graph attention networks – ident: ref33 doi: 10.1145/2939672.2939754 – ident: ref48 doi: 10.1109/SP46215.2023.10179377 – ident: ref41 doi: 10.1109/TDSC.2022.3192419 – ident: ref24 doi: 10.1109/TNNLS.2020.2978386 – ident: ref21 doi: 10.5555/3524938.3525087 – ident: ref3 doi: 10.1016/j.cosrev.2021.100389 – ident: ref11 doi: 10.1109/TIFS.2020.3044773 – start-page: 6533 volume-title: Proc. 31st Annu. Conf. Neural Inf. Process. Syst. ident: ref25 article-title: Protein interface prediction using graph convolutional networks – ident: ref50 doi: 10.1145/3436877 – ident: ref42 doi: 10.1109/EuroSP48549.2020.00018 – ident: ref29 doi: 10.1145/3540250.3549162 – ident: ref39 doi: 10.1109/JIOT.2021.3106898 – ident: ref46 doi: 10.1145/3611643.3616358 – volume-title: Internet of Things (IoT) security: Challenges and best practices year: 2023 ident: ref2 – ident: ref23 doi: 10.18653/v1/2021.emnlp-main.482 – volume-title: Flawfinder year: 2023 ident: ref8 – ident: ref32 doi: 10.48550/arXiv.1310.4546 – ident: ref4 doi: 10.14722/ndss.2018.23158 – ident: ref14 doi: 10.1145/3468264.3468597 – ident: ref30 doi: 10.1109/SP.2014.44 – ident: ref52 doi: 10.1145/3524842.3527949 |
SSID | ssj0001105196 |
Score | 2.3224535 |
Snippet | As with anything connected to the Internet, Internet of Things (IoT) devices are also subject to severe cybersecurity threats because an adversary could... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 22385 |
SubjectTerms | Codes Combinatorial analysis Contrastive learning Contrastive learning (CL) Cybersecurity Deep learning Detection algorithms explainability Internet of Things Internet of Things (IoT) Multiprotocol label switching Reactive power Self-supervised learning stability Stability analysis Training |
Title | EXVul: Toward Effective and Explainable Vulnerability Detection for IoT Devices |
URI | https://ieeexplore.ieee.org/document/10479158 https://www.proquest.com/docview/3065465678 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxbKo4hCQR6YkJLGtZ3EbAhatZVolxR1i_zKAkoRJAP8emzHES8hscWRnVh3tu_O990dAJeSM06kYEEciTQgscABx4kMmDTrichISRfHfb-MZ2uy2NCND1Z3sTBaawc-06F9dL58tZW1vSob2bQCDNG0AzrGcmuCtT4vVJDVRmLvuUQRGy3mq8xYgGMSYuseI-ib7HHFVH6dwE6sTHtg2U6oQZM8hnUlQvn-I1fjv2e8D_a8gglvmhVxAHZ0eQh6bfEG6PfyEVhNNg_10zXMHG4WNlmMzdEHeWla5lc-rAqaXjYztQPRvsE7XTnwVgmNtgvn28y8cYdNH6ynk-x2FvjqCoEck7gKqGQK8wgLKhRHPMFCxZzJsSIFJqkmytjcRtYjnuJCmhYpjG1BpdHYdCF1QfAx6JbbUp8AqCSmiqR0bDFvLMUccxELlHDr4-WJGICrlu75c5NEI3fGR8Ryy6TcMin3TBqAvqXjl44NCQdg2LIq9_vsNcdNNXcjcU__GHYGdu3XLboL0SHoVi-1Pjd6RCUu3Pr5APNCxgk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTttAEB5ROLQXQluqpgTYQ3up5GB7dx1vJQ6IECWQhIupcnP3z5cipyqOKngXXoVn6-zaoRTEMRI321rb2p1Ps9_s_AF81lJIppUIklClAUsUDSTt6UBoxBPTodE-j3syTYYX7HTGZ2twe58LY631wWe26y69L9_M9cIdlR24sgIi4mkTQ3lmr_-ghXZ1OOqjOL_E8eAkOx4GTROBQMcsqQKuhaEypIorIyPZo8okUujYsIKy1DKDpiVuaZFMaaHxjhVIoblGYmILbQtG8buvYAOJBo_r9LB_RziR4z9J4yuNQnFwOjrP0OaMWZc6hxyL_tvtfPuWJzrfb2SDFtwtl6COX_nZXVSqq28eVYd8sWu0BZsNhSZHNebfwpot30Fr2Z6CNNrqPZyfzL4vLr-RzEcGk7pOMyp3Iku8w6k1iWMER7na2z5M-Jr0beXD00qCfJ6M5hk-8ep0Gy5WMq0PsF7OS_sRiNGUG5by2EX1iZRKKlWiop50XmzZU234upRz_qsuE5J78yoUuQNF7kCRN6Bow7aT24OBtcja0FlCI280yVVO6371yCk-PfPaPrweZpNxPh5Nz3bgjfuTi2WLeAfWq98Lu4usqVJ7HrsEfqwaCH8B3Ncmmg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EXVul%3A+Toward+Effective+and+Explainable+Vulnerability+Detection+for+IoT+Devices&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Cao%2C+Sicong&rft.au=Sun%2C+Xiaobing&rft.au=Liu%2C+Wei&rft.au=Wu%2C+Di&rft.date=2024-06-15&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=11&rft.issue=12&rft.spage=22385&rft.epage=22398&rft_id=info:doi/10.1109%2FJIOT.2024.3381641&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2024_3381641 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |