Exploring the halo-galaxy connection with probabilistic approaches
Context. The connection between galaxies and their host dark matter halos encompasses a range of intricate and interrelated processes, playing a pivotal role in our understanding of galaxy formation and evolution. Traditionally, this link has been established through physical or empirical models. On...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 698; p. A3 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.06.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | Context. The connection between galaxies and their host dark matter halos encompasses a range of intricate and interrelated processes, playing a pivotal role in our understanding of galaxy formation and evolution. Traditionally, this link has been established through physical or empirical models. On the other hand, machine learning techniques are adaptable tools capable of handling high-dimensional data and grasping associations between numerous attributes. In particular, probabilistic models in machine learning capture the stochasticity inherent to these highly complex processes and relations.
Aims. We compare different probabilistic machine learning methods to model the uncertainty in the halo-galaxy connection and efficiently generate galaxy catalogs that faithfully resemble the reference sample by predicting joint distributions of central galaxy properties, namely stellar mass, color, specific star formation rate, and radius, conditioned to their host halo features.
Methods. The analysis is based on the IllustrisTNG300 magnetohydrodynamical simulation. The machine learning methods model the distributions in different ways. We compare a multilayer perceptron that predicts the parameters of a multivariate Gaussian distribution, a multilayer perceptron classifier, and the method of normalizing flows. The classifier predicts the parameters of a categorical distribution, which are defined in a high-dimensional parameter space through a Voronoi cell-based hierarchical scheme. The results are validated with metrics designed to test probability density distributions and the predictive power of the methods.
Results. We evaluate the model’s performances under various sample selections based on halo properties. The three methods exhibit comparable results, with normalizing flows showing the best performance in most scenarios. The models not only reproduce the main features of galaxy properties distributions with high-fidelity, but can also be used to reproduce the results obtained with traditional, deterministic, estimators. Our results also indicate that different halos and galaxy populations are subject to varying degrees of stochasticity, which has relevant implications for studies of large-scale structure. |
---|---|
AbstractList | Context. The connection between galaxies and their host dark matter halos encompasses a range of intricate and interrelated processes, playing a pivotal role in our understanding of galaxy formation and evolution. Traditionally, this link has been established through physical or empirical models. On the other hand, machine learning techniques are adaptable tools capable of handling high-dimensional data and grasping associations between numerous attributes. In particular, probabilistic models in machine learning capture the stochasticity inherent to these highly complex processes and relations.
Aims. We compare different probabilistic machine learning methods to model the uncertainty in the halo-galaxy connection and efficiently generate galaxy catalogs that faithfully resemble the reference sample by predicting joint distributions of central galaxy properties, namely stellar mass, color, specific star formation rate, and radius, conditioned to their host halo features.
Methods. The analysis is based on the IllustrisTNG300 magnetohydrodynamical simulation. The machine learning methods model the distributions in different ways. We compare a multilayer perceptron that predicts the parameters of a multivariate Gaussian distribution, a multilayer perceptron classifier, and the method of normalizing flows. The classifier predicts the parameters of a categorical distribution, which are defined in a high-dimensional parameter space through a Voronoi cell-based hierarchical scheme. The results are validated with metrics designed to test probability density distributions and the predictive power of the methods.
Results. We evaluate the model’s performances under various sample selections based on halo properties. The three methods exhibit comparable results, with normalizing flows showing the best performance in most scenarios. The models not only reproduce the main features of galaxy properties distributions with high-fidelity, but can also be used to reproduce the results obtained with traditional, deterministic, estimators. Our results also indicate that different halos and galaxy populations are subject to varying degrees of stochasticity, which has relevant implications for studies of large-scale structure. |
Author | Abramo, Raul Rodrigues, Natália V. N. de Santi, Natalí S. M. Montero-Dorta, Antonio D. |
Author_xml | – sequence: 1 givenname: Natália V. N. orcidid: 0000-0002-5988-335X surname: Rodrigues fullname: Rodrigues, Natália V. N. – sequence: 2 givenname: Natalí S. M. orcidid: 0000-0002-4728-6881 surname: de Santi fullname: de Santi, Natalí S. M. – sequence: 3 givenname: Raul orcidid: 0000-0001-8295-7022 surname: Abramo fullname: Abramo, Raul – sequence: 4 givenname: Antonio D. orcidid: 0000-0003-4056-2246 surname: Montero-Dorta fullname: Montero-Dorta, Antonio D. |
BookMark | eNo9kMtqwzAUREVJoUnaL-hGP6Dm6mE5WrYhfUCgm3YtrmQ5VnEtYxma_H1tWjKbYWAYOLMiiy51gZB7Dg8cCr4BAMW01HwjQKhCiq26IkuupGBQKr0gy0vjhqxy_pqi4Fu5JE_7U9-mIXZHOjaBNtgmdsQWT2fqU9cFP8bU0Z84NrQfkkMX25jH6Cn2U0bfhHxLrmtsc7j79zX5fN5_7F7Z4f3lbfd4YF4oPbKi1AoCoAw-GGeAO87RO20M-hrqICUiL0owoCdVHio0AaGWQpegXCXXRP7t-iHlPITa9kP8xuFsOdj5BjtD2hnSXm6Qv4JiUn8 |
Cites_doi | 10.3847/1538-4357/ac9b18 10.1093/mnras/stab3221 10.1038/s41592-019-0686-2 10.1093/mnras/stab3006 10.1038/nature13316 10.1093/mnras/stz2546 10.1093/mnras/staa1624 10.1093/mnras/stac1609 10.1186/s40668-019-0028-x 10.1093/mnras/stx2656 10.1093/mnras/stad1186 10.1093/mnras/staa623 10.3847/1538-4357/abf7ba 10.1093/mnras/sts115 10.1093/mnras/202.3.615 10.3847/1538-4357/ab8464 10.1093/mnras/sty618 10.1086/304888 10.1093/mnras/sty2110 10.1093/mnras/stu1654 10.1093/mnras/225.1.155 10.1093/mnras/stx3040 10.1093/mnras/stae796 10.3390/sym16080942 10.1093/mnras/stab1170 10.1051/0004-6361/201525830 10.1093/mnras/stu1536 10.1093/mnras/stab2556 10.1093/mnras/stab1026 10.1016/j.ascom.2021.100510 10.1093/mnras/staa3776 10.1086/321477 10.1093/mnras/stx3304 10.1093/mnras/stae817 10.3847/1538-4357/ad2b6c 10.1093/mnras/stac1469 10.1051/0004-6361/202449597 10.1146/annurev-astro-081817-051756 10.1086/170483 10.23943/princeton/9780691151687.001.0001 10.3847/1538-4357/ad7bb3 10.3847/1538-4357/aaf4bb 10.1111/j.1365-2966.2009.15715.x 10.1093/mnras/stx3112 10.1111/j.1365-2966.2008.13180.x |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1051/0004-6361/202453284 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | 10_1051_0004_6361_202453284 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AEILP AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 |
ID | FETCH-LOGICAL-c246t-57640e0a3ece9b901b11acb699acf0fe33aa1570906666dc0da9ea0f326704bd3 |
ISSN | 0004-6361 |
IngestDate | Tue Aug 05 12:02:50 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c246t-57640e0a3ece9b901b11acb699acf0fe33aa1570906666dc0da9ea0f326704bd3 |
ORCID | 0000-0001-8295-7022 0000-0002-4728-6881 0000-0003-4056-2246 0000-0002-5988-335X |
OpenAccessLink | https://www.aanda.org/articles/aa/pdf/2025/06/aa53284-24.pdf |
ParticipantIDs | crossref_primary_10_1051_0004_6361_202453284 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2025 |
References | Naiman (R45) 2018; 477 Guo (R27) 2013; 428 Montero-Dorta (R43) 2021; 504 Artale (R4) 2018; 480 Planck Collaboration XIII. (R55) 2016; 594 Shi (R58) 2020; 893 R63 Jespersen (R31) 2022; 941 R62 Nelson (R47) 2018; 475 Wechsler (R68) 2018; 56 Wu (R70) 2024; 976 Gebhardt (R23) 2024; 529 R26 Neyrinck (R49) 2008; 386 R1 R2 R3 Stiskalek (R61) 2022; 514 R5 R7 Lima (R37) 2022; 38 Coccaro (R13) 2024; 16 R30 Villaescusa-Navarro (R64) 2021; 915 R34 R33 R36 Bingham (R6) 2019; 20 R35 Buser (R11) 1978; 62 Jo (R32) 2019; 489 R39 Navarro (R46) 1997; 490 Montero-Dorta (R42) 2020; 496 Montero-Dorta (R41) 2024; 531 Bose (R8) 2019; 490 Genel (R25) 2019; 871 Fasano (R20) 1987; 225 Pillepich (R54) 2018; 473 Lovell (R38) 2021; 509 Genel (R24) 2014; 445 Marinacci (R40) 2018; 480 Contreras (R14) 2021; 504 de Santi (R15) 2022; 514 Favole (R21) 2021; 509 Flamary (R22) 2021; 22 Papamakarios (R51) 2021; 22 Vogelsberger (R67) 2014; 509 Springel (R60) 2018; 475 White (R69) 1991; 379 Vogelsberger (R66) 2014; 444 Nelson (R48) 2019; 6 Branco (R9) 2017; 74 Montero-Dorta (R44) 2021; 508 Virtanen (R65) 2020; 17 Ortega-Martinez (R50) 2024; 689 R56 Chuang (R12) 2024; 965 R16 Hadzhiyska (R28) 2020; 493 R18 R17 Peacock (R52) 1983; 202 Springel (R59) 2010; 401 Bullock (R10) 2001; 555 R19 Hadzhiyska (R29) 2021; 501 Pillepich (R53) 2018; 475 Rodrigues (R57) 2023; 522 |
References_xml | – volume: 941 start-page: 7 year: 2022 ident: R31 publication-title: ApJ doi: 10.3847/1538-4357/ac9b18 – volume: 509 start-page: 5046 year: 2021 ident: R38 publication-title: MNRAS doi: 10.1093/mnras/stab3221 – volume: 17 start-page: 261 year: 2020 ident: R65 publication-title: Nat. Meth. doi: 10.1038/s41592-019-0686-2 – volume: 22 start-page: 1 year: 2021 ident: R51 publication-title: J. Mach. Learn. Res. – ident: R26 – volume: 509 start-page: 1614 year: 2021 ident: R21 publication-title: MNRAS doi: 10.1093/mnras/stab3006 – volume: 480 start-page: 5113 year: 2018 ident: R40 publication-title: MNRAS – volume: 509 start-page: 177 year: 2014 ident: R67 publication-title: Nature doi: 10.1038/nature13316 – ident: R56 – volume: 490 start-page: 5693 year: 2019 ident: R8 publication-title: MNRAS doi: 10.1093/mnras/stz2546 – volume: 496 start-page: 1182 year: 2020 ident: R42 publication-title: MNRAS doi: 10.1093/mnras/staa1624 – volume: 514 start-page: 4026 year: 2022 ident: R61 publication-title: MNRAS doi: 10.1093/mnras/stac1609 – ident: R1 – ident: R16 – volume: 6 start-page: 2 year: 2019 ident: R48 publication-title: Comput. Astrophys. Cosmol. doi: 10.1186/s40668-019-0028-x – ident: R5 – volume: 74 start-page: 36 year: 2017 ident: R9 publication-title: Proc. Mach. Learn. Res. – volume: 473 start-page: 4077 year: 2018 ident: R54 publication-title: MNRAS doi: 10.1093/mnras/stx2656 – volume: 522 start-page: 3236 year: 2023 ident: R57 publication-title: MNRAS doi: 10.1093/mnras/stad1186 – ident: R33 – volume: 22 start-page: 1 year: 2021 ident: R22 publication-title: J. Mach. Learn. Res. – volume: 493 start-page: 5506 year: 2020 ident: R28 publication-title: MNRAS doi: 10.1093/mnras/staa623 – ident: R39 – volume: 915 start-page: 71 year: 2021 ident: R64 publication-title: ApJ doi: 10.3847/1538-4357/abf7ba – volume: 20 start-page: 28:1 year: 2019 ident: R6 publication-title: J. Mach. Learn. Res. – volume: 428 start-page: 1351 year: 2013 ident: R27 publication-title: MNRAS doi: 10.1093/mnras/sts115 – volume: 202 start-page: 615 year: 1983 ident: R52 publication-title: MNRAS doi: 10.1093/mnras/202.3.615 – volume: 893 start-page: 139 year: 2020 ident: R58 publication-title: ApJ doi: 10.3847/1538-4357/ab8464 – ident: R2 – ident: R19 – volume: 477 start-page: 1206 year: 2018 ident: R45 publication-title: MNRAS doi: 10.1093/mnras/sty618 – volume: 490 start-page: 493 year: 1997 ident: R46 publication-title: ApJ doi: 10.1086/304888 – volume: 480 start-page: 3978 year: 2018 ident: R4 publication-title: MNRAS doi: 10.1093/mnras/sty2110 – ident: R36 – volume: 445 start-page: 175 year: 2014 ident: R24 publication-title: MNRAS doi: 10.1093/mnras/stu1654 – volume: 225 start-page: 155 year: 1987 ident: R20 publication-title: MNRAS doi: 10.1093/mnras/225.1.155 – ident: R63 – volume: 475 start-page: 624 year: 2018 ident: R47 publication-title: MNRAS doi: 10.1093/mnras/stx3040 – volume: 531 start-page: 290 year: 2024 ident: R41 publication-title: MNRAS doi: 10.1093/mnras/stae796 – volume: 16 start-page: 942 year: 2024 ident: R13 publication-title: Symmetry doi: 10.3390/sym16080942 – volume: 504 start-page: 5205 year: 2021 ident: R14 publication-title: MNRAS doi: 10.1093/mnras/stab1170 – volume: 594 start-page: A13 year: 2016 ident: R55 publication-title: A&A doi: 10.1051/0004-6361/201525830 – volume: 62 start-page: 411 year: 1978 ident: R11 publication-title: A&A – volume: 444 start-page: 1518 year: 2014 ident: R66 publication-title: MNRAS doi: 10.1093/mnras/stu1536 – volume: 508 start-page: 940 year: 2021 ident: R44 publication-title: MNRAS doi: 10.1093/mnras/stab2556 – volume: 504 start-page: 4568 year: 2021 ident: R43 publication-title: MNRAS doi: 10.1093/mnras/stab1026 – ident: R7 – volume: 489 start-page: 3565 year: 2019 ident: R32 publication-title: MNRAS – volume: 38 start-page: 100510 year: 2022 ident: R37 publication-title: Astron. Comput. doi: 10.1016/j.ascom.2021.100510 – volume: 501 start-page: 1603 year: 2021 ident: R29 publication-title: MNRAS doi: 10.1093/mnras/staa3776 – ident: R3 – volume: 555 start-page: 240 year: 2001 ident: R10 publication-title: ApJ doi: 10.1086/321477 – ident: R35 – volume: 475 start-page: 676 year: 2018 ident: R60 publication-title: MNRAS doi: 10.1093/mnras/stx3304 – volume: 529 start-page: 4896 year: 2024 ident: R23 publication-title: MNRAS doi: 10.1093/mnras/stae817 – volume: 965 start-page: 101 year: 2024 ident: R12 publication-title: ApJ doi: 10.3847/1538-4357/ad2b6c – ident: R18 – volume: 514 start-page: 2463 year: 2022 ident: R15 publication-title: MNRAS doi: 10.1093/mnras/stac1469 – volume: 689 start-page: A66 year: 2024 ident: R50 publication-title: A&A doi: 10.1051/0004-6361/202449597 – ident: R62 – volume: 56 start-page: 435 year: 2018 ident: R68 publication-title: ARA&A doi: 10.1146/annurev-astro-081817-051756 – volume: 379 start-page: 52 year: 1991 ident: R69 publication-title: ApJ doi: 10.1086/170483 – ident: R30 doi: 10.23943/princeton/9780691151687.001.0001 – volume: 976 start-page: 37 year: 2024 ident: R70 publication-title: ApJ doi: 10.3847/1538-4357/ad7bb3 – volume: 871 start-page: 21 year: 2019 ident: R25 publication-title: ApJ doi: 10.3847/1538-4357/aaf4bb – volume: 401 start-page: 791 year: 2010 ident: R59 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15715.x – volume: 475 start-page: 648 year: 2018 ident: R53 publication-title: MNRAS doi: 10.1093/mnras/stx3112 – volume: 386 start-page: 2101 year: 2008 ident: R49 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13180.x – ident: R17 – ident: R34 |
SSID | ssj0002183 |
Score | 2.4773197 |
Snippet | Context. The connection between galaxies and their host dark matter halos encompasses a range of intricate and interrelated processes, playing a pivotal role... |
SourceID | crossref |
SourceType | Index Database |
StartPage | A3 |
Title | Exploring the halo-galaxy connection with probabilistic approaches |
Volume | 698 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-rcnAvcnp3-HFKHsSX2to2Sd0-rq6fcIv4cfi2pG0WhXUr2gX1wf_C_9eZJJtWETl9KW0YUuhvOpmZTH5DyJoqEnQcuF_A2ufDei3gnwNdTtttKVScok-M1Ra95OCcH12Ii1bruVG1NK6yIH9891zJV1CFMcAVT8l-Alk3KQzAPeALV0AYrv-FcV1Ah-7jpRyWPhh8ef-AxeQjZbqA60wr9o3RXLp3mqDVEonb-sEJCe0dpsXLa8PIJPHJ5D10YtbwYjUSBydlAZH92JiZnqz0lns0vJLev8DrBROxQnmngN6VlZJDLdf1TgPvrxPqQMx-rZO2J81KRWTOui39LoYIlukATFDpdYNmsiIWdVGVM8DcT5jhXw-UsbmcYQGszURao5yY3tTWrHbYu9YeDIopjzRz4uEW3Elmsek695pd-82q52oR9S68iHAXnvdxmr6bZIrMxBB9YGOM_cMnt8CjV2miKvPeCZmViDbd2KabpOHwNDyXsx9k1oYctGP0Z4601GieLDi06TrtNLCeJ9-Ozd1Psu0UjIKC0YaC0VrBKCoYfaVgtFawX-R8b_ds58C3TTf8POZJ5UP8yUMVSqZylWbgLWZRJPMsSVOZD8KBYkzKSGyFKQa-SZGHhUyVDAcQBmyFPCvYbzI9KkdqgVCQaytYvzjDb8EjEORhLoUAr19CWLFINiZfpn9juFX6H6Cx9DnxZfK91sA_ZLq6HasVcCCrbFXD-QJWFWaM |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+halo-galaxy+connection+with+probabilistic+approaches&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Rodrigues%2C+Nat%C3%A1lia+V.+N.&rft.au=de+Santi%2C+Natal%C3%AD+S.+M.&rft.au=Abramo%2C+Raul&rft.au=Montero-Dorta%2C+Antonio+D.&rft.date=2025-06-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=698&rft.spage=A3&rft_id=info:doi/10.1051%2F0004-6361%2F202453284&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202453284 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |