Exploring the halo-galaxy connection with probabilistic approaches

Context. The connection between galaxies and their host dark matter halos encompasses a range of intricate and interrelated processes, playing a pivotal role in our understanding of galaxy formation and evolution. Traditionally, this link has been established through physical or empirical models. On...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 698; p. A3
Main Authors Rodrigues, Natália V. N., de Santi, Natalí S. M., Abramo, Raul, Montero-Dorta, Antonio D.
Format Journal Article
LanguageEnglish
Published 01.06.2025
Online AccessGet full text

Cover

Loading…
Abstract Context. The connection between galaxies and their host dark matter halos encompasses a range of intricate and interrelated processes, playing a pivotal role in our understanding of galaxy formation and evolution. Traditionally, this link has been established through physical or empirical models. On the other hand, machine learning techniques are adaptable tools capable of handling high-dimensional data and grasping associations between numerous attributes. In particular, probabilistic models in machine learning capture the stochasticity inherent to these highly complex processes and relations. Aims. We compare different probabilistic machine learning methods to model the uncertainty in the halo-galaxy connection and efficiently generate galaxy catalogs that faithfully resemble the reference sample by predicting joint distributions of central galaxy properties, namely stellar mass, color, specific star formation rate, and radius, conditioned to their host halo features. Methods. The analysis is based on the IllustrisTNG300 magnetohydrodynamical simulation. The machine learning methods model the distributions in different ways. We compare a multilayer perceptron that predicts the parameters of a multivariate Gaussian distribution, a multilayer perceptron classifier, and the method of normalizing flows. The classifier predicts the parameters of a categorical distribution, which are defined in a high-dimensional parameter space through a Voronoi cell-based hierarchical scheme. The results are validated with metrics designed to test probability density distributions and the predictive power of the methods. Results. We evaluate the model’s performances under various sample selections based on halo properties. The three methods exhibit comparable results, with normalizing flows showing the best performance in most scenarios. The models not only reproduce the main features of galaxy properties distributions with high-fidelity, but can also be used to reproduce the results obtained with traditional, deterministic, estimators. Our results also indicate that different halos and galaxy populations are subject to varying degrees of stochasticity, which has relevant implications for studies of large-scale structure.
AbstractList Context. The connection between galaxies and their host dark matter halos encompasses a range of intricate and interrelated processes, playing a pivotal role in our understanding of galaxy formation and evolution. Traditionally, this link has been established through physical or empirical models. On the other hand, machine learning techniques are adaptable tools capable of handling high-dimensional data and grasping associations between numerous attributes. In particular, probabilistic models in machine learning capture the stochasticity inherent to these highly complex processes and relations. Aims. We compare different probabilistic machine learning methods to model the uncertainty in the halo-galaxy connection and efficiently generate galaxy catalogs that faithfully resemble the reference sample by predicting joint distributions of central galaxy properties, namely stellar mass, color, specific star formation rate, and radius, conditioned to their host halo features. Methods. The analysis is based on the IllustrisTNG300 magnetohydrodynamical simulation. The machine learning methods model the distributions in different ways. We compare a multilayer perceptron that predicts the parameters of a multivariate Gaussian distribution, a multilayer perceptron classifier, and the method of normalizing flows. The classifier predicts the parameters of a categorical distribution, which are defined in a high-dimensional parameter space through a Voronoi cell-based hierarchical scheme. The results are validated with metrics designed to test probability density distributions and the predictive power of the methods. Results. We evaluate the model’s performances under various sample selections based on halo properties. The three methods exhibit comparable results, with normalizing flows showing the best performance in most scenarios. The models not only reproduce the main features of galaxy properties distributions with high-fidelity, but can also be used to reproduce the results obtained with traditional, deterministic, estimators. Our results also indicate that different halos and galaxy populations are subject to varying degrees of stochasticity, which has relevant implications for studies of large-scale structure.
Author Abramo, Raul
Rodrigues, Natália V. N.
de Santi, Natalí S. M.
Montero-Dorta, Antonio D.
Author_xml – sequence: 1
  givenname: Natália V. N.
  orcidid: 0000-0002-5988-335X
  surname: Rodrigues
  fullname: Rodrigues, Natália V. N.
– sequence: 2
  givenname: Natalí S. M.
  orcidid: 0000-0002-4728-6881
  surname: de Santi
  fullname: de Santi, Natalí S. M.
– sequence: 3
  givenname: Raul
  orcidid: 0000-0001-8295-7022
  surname: Abramo
  fullname: Abramo, Raul
– sequence: 4
  givenname: Antonio D.
  orcidid: 0000-0003-4056-2246
  surname: Montero-Dorta
  fullname: Montero-Dorta, Antonio D.
BookMark eNo9kMtqwzAUREVJoUnaL-hGP6Dm6mE5WrYhfUCgm3YtrmQ5VnEtYxma_H1tWjKbYWAYOLMiiy51gZB7Dg8cCr4BAMW01HwjQKhCiq26IkuupGBQKr0gy0vjhqxy_pqi4Fu5JE_7U9-mIXZHOjaBNtgmdsQWT2fqU9cFP8bU0Z84NrQfkkMX25jH6Cn2U0bfhHxLrmtsc7j79zX5fN5_7F7Z4f3lbfd4YF4oPbKi1AoCoAw-GGeAO87RO20M-hrqICUiL0owoCdVHio0AaGWQpegXCXXRP7t-iHlPITa9kP8xuFsOdj5BjtD2hnSXm6Qv4JiUn8
Cites_doi 10.3847/1538-4357/ac9b18
10.1093/mnras/stab3221
10.1038/s41592-019-0686-2
10.1093/mnras/stab3006
10.1038/nature13316
10.1093/mnras/stz2546
10.1093/mnras/staa1624
10.1093/mnras/stac1609
10.1186/s40668-019-0028-x
10.1093/mnras/stx2656
10.1093/mnras/stad1186
10.1093/mnras/staa623
10.3847/1538-4357/abf7ba
10.1093/mnras/sts115
10.1093/mnras/202.3.615
10.3847/1538-4357/ab8464
10.1093/mnras/sty618
10.1086/304888
10.1093/mnras/sty2110
10.1093/mnras/stu1654
10.1093/mnras/225.1.155
10.1093/mnras/stx3040
10.1093/mnras/stae796
10.3390/sym16080942
10.1093/mnras/stab1170
10.1051/0004-6361/201525830
10.1093/mnras/stu1536
10.1093/mnras/stab2556
10.1093/mnras/stab1026
10.1016/j.ascom.2021.100510
10.1093/mnras/staa3776
10.1086/321477
10.1093/mnras/stx3304
10.1093/mnras/stae817
10.3847/1538-4357/ad2b6c
10.1093/mnras/stac1469
10.1051/0004-6361/202449597
10.1146/annurev-astro-081817-051756
10.1086/170483
10.23943/princeton/9780691151687.001.0001
10.3847/1538-4357/ad7bb3
10.3847/1538-4357/aaf4bb
10.1111/j.1365-2966.2009.15715.x
10.1093/mnras/stx3112
10.1111/j.1365-2966.2008.13180.x
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1051/0004-6361/202453284
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 10_1051_0004_6361_202453284
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AEILP
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
ID FETCH-LOGICAL-c246t-57640e0a3ece9b901b11acb699acf0fe33aa1570906666dc0da9ea0f326704bd3
ISSN 0004-6361
IngestDate Tue Aug 05 12:02:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c246t-57640e0a3ece9b901b11acb699acf0fe33aa1570906666dc0da9ea0f326704bd3
ORCID 0000-0001-8295-7022
0000-0002-4728-6881
0000-0003-4056-2246
0000-0002-5988-335X
OpenAccessLink https://www.aanda.org/articles/aa/pdf/2025/06/aa53284-24.pdf
ParticipantIDs crossref_primary_10_1051_0004_6361_202453284
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2025
References Naiman (R45) 2018; 477
Guo (R27) 2013; 428
Montero-Dorta (R43) 2021; 504
Artale (R4) 2018; 480
Planck Collaboration XIII. (R55) 2016; 594
Shi (R58) 2020; 893
R63
Jespersen (R31) 2022; 941
R62
Nelson (R47) 2018; 475
Wechsler (R68) 2018; 56
Wu (R70) 2024; 976
Gebhardt (R23) 2024; 529
R26
Neyrinck (R49) 2008; 386
R1
R2
R3
Stiskalek (R61) 2022; 514
R5
R7
Lima (R37) 2022; 38
Coccaro (R13) 2024; 16
R30
Villaescusa-Navarro (R64) 2021; 915
R34
R33
R36
Bingham (R6) 2019; 20
R35
Buser (R11) 1978; 62
Jo (R32) 2019; 489
R39
Navarro (R46) 1997; 490
Montero-Dorta (R42) 2020; 496
Montero-Dorta (R41) 2024; 531
Bose (R8) 2019; 490
Genel (R25) 2019; 871
Fasano (R20) 1987; 225
Pillepich (R54) 2018; 473
Lovell (R38) 2021; 509
Genel (R24) 2014; 445
Marinacci (R40) 2018; 480
Contreras (R14) 2021; 504
de Santi (R15) 2022; 514
Favole (R21) 2021; 509
Flamary (R22) 2021; 22
Papamakarios (R51) 2021; 22
Vogelsberger (R67) 2014; 509
Springel (R60) 2018; 475
White (R69) 1991; 379
Vogelsberger (R66) 2014; 444
Nelson (R48) 2019; 6
Branco (R9) 2017; 74
Montero-Dorta (R44) 2021; 508
Virtanen (R65) 2020; 17
Ortega-Martinez (R50) 2024; 689
R56
Chuang (R12) 2024; 965
R16
Hadzhiyska (R28) 2020; 493
R18
R17
Peacock (R52) 1983; 202
Springel (R59) 2010; 401
Bullock (R10) 2001; 555
R19
Hadzhiyska (R29) 2021; 501
Pillepich (R53) 2018; 475
Rodrigues (R57) 2023; 522
References_xml – volume: 941
  start-page: 7
  year: 2022
  ident: R31
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac9b18
– volume: 509
  start-page: 5046
  year: 2021
  ident: R38
  publication-title: MNRAS
  doi: 10.1093/mnras/stab3221
– volume: 17
  start-page: 261
  year: 2020
  ident: R65
  publication-title: Nat. Meth.
  doi: 10.1038/s41592-019-0686-2
– volume: 22
  start-page: 1
  year: 2021
  ident: R51
  publication-title: J. Mach. Learn. Res.
– ident: R26
– volume: 509
  start-page: 1614
  year: 2021
  ident: R21
  publication-title: MNRAS
  doi: 10.1093/mnras/stab3006
– volume: 480
  start-page: 5113
  year: 2018
  ident: R40
  publication-title: MNRAS
– volume: 509
  start-page: 177
  year: 2014
  ident: R67
  publication-title: Nature
  doi: 10.1038/nature13316
– ident: R56
– volume: 490
  start-page: 5693
  year: 2019
  ident: R8
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2546
– volume: 496
  start-page: 1182
  year: 2020
  ident: R42
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1624
– volume: 514
  start-page: 4026
  year: 2022
  ident: R61
  publication-title: MNRAS
  doi: 10.1093/mnras/stac1609
– ident: R1
– ident: R16
– volume: 6
  start-page: 2
  year: 2019
  ident: R48
  publication-title: Comput. Astrophys. Cosmol.
  doi: 10.1186/s40668-019-0028-x
– ident: R5
– volume: 74
  start-page: 36
  year: 2017
  ident: R9
  publication-title: Proc. Mach. Learn. Res.
– volume: 473
  start-page: 4077
  year: 2018
  ident: R54
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2656
– volume: 522
  start-page: 3236
  year: 2023
  ident: R57
  publication-title: MNRAS
  doi: 10.1093/mnras/stad1186
– ident: R33
– volume: 22
  start-page: 1
  year: 2021
  ident: R22
  publication-title: J. Mach. Learn. Res.
– volume: 493
  start-page: 5506
  year: 2020
  ident: R28
  publication-title: MNRAS
  doi: 10.1093/mnras/staa623
– ident: R39
– volume: 915
  start-page: 71
  year: 2021
  ident: R64
  publication-title: ApJ
  doi: 10.3847/1538-4357/abf7ba
– volume: 20
  start-page: 28:1
  year: 2019
  ident: R6
  publication-title: J. Mach. Learn. Res.
– volume: 428
  start-page: 1351
  year: 2013
  ident: R27
  publication-title: MNRAS
  doi: 10.1093/mnras/sts115
– volume: 202
  start-page: 615
  year: 1983
  ident: R52
  publication-title: MNRAS
  doi: 10.1093/mnras/202.3.615
– volume: 893
  start-page: 139
  year: 2020
  ident: R58
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab8464
– ident: R2
– ident: R19
– volume: 477
  start-page: 1206
  year: 2018
  ident: R45
  publication-title: MNRAS
  doi: 10.1093/mnras/sty618
– volume: 490
  start-page: 493
  year: 1997
  ident: R46
  publication-title: ApJ
  doi: 10.1086/304888
– volume: 480
  start-page: 3978
  year: 2018
  ident: R4
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2110
– ident: R36
– volume: 445
  start-page: 175
  year: 2014
  ident: R24
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1654
– volume: 225
  start-page: 155
  year: 1987
  ident: R20
  publication-title: MNRAS
  doi: 10.1093/mnras/225.1.155
– ident: R63
– volume: 475
  start-page: 624
  year: 2018
  ident: R47
  publication-title: MNRAS
  doi: 10.1093/mnras/stx3040
– volume: 531
  start-page: 290
  year: 2024
  ident: R41
  publication-title: MNRAS
  doi: 10.1093/mnras/stae796
– volume: 16
  start-page: 942
  year: 2024
  ident: R13
  publication-title: Symmetry
  doi: 10.3390/sym16080942
– volume: 504
  start-page: 5205
  year: 2021
  ident: R14
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1170
– volume: 594
  start-page: A13
  year: 2016
  ident: R55
  publication-title: A&A
  doi: 10.1051/0004-6361/201525830
– volume: 62
  start-page: 411
  year: 1978
  ident: R11
  publication-title: A&A
– volume: 444
  start-page: 1518
  year: 2014
  ident: R66
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1536
– volume: 508
  start-page: 940
  year: 2021
  ident: R44
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2556
– volume: 504
  start-page: 4568
  year: 2021
  ident: R43
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1026
– ident: R7
– volume: 489
  start-page: 3565
  year: 2019
  ident: R32
  publication-title: MNRAS
– volume: 38
  start-page: 100510
  year: 2022
  ident: R37
  publication-title: Astron. Comput.
  doi: 10.1016/j.ascom.2021.100510
– volume: 501
  start-page: 1603
  year: 2021
  ident: R29
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3776
– ident: R3
– volume: 555
  start-page: 240
  year: 2001
  ident: R10
  publication-title: ApJ
  doi: 10.1086/321477
– ident: R35
– volume: 475
  start-page: 676
  year: 2018
  ident: R60
  publication-title: MNRAS
  doi: 10.1093/mnras/stx3304
– volume: 529
  start-page: 4896
  year: 2024
  ident: R23
  publication-title: MNRAS
  doi: 10.1093/mnras/stae817
– volume: 965
  start-page: 101
  year: 2024
  ident: R12
  publication-title: ApJ
  doi: 10.3847/1538-4357/ad2b6c
– ident: R18
– volume: 514
  start-page: 2463
  year: 2022
  ident: R15
  publication-title: MNRAS
  doi: 10.1093/mnras/stac1469
– volume: 689
  start-page: A66
  year: 2024
  ident: R50
  publication-title: A&A
  doi: 10.1051/0004-6361/202449597
– ident: R62
– volume: 56
  start-page: 435
  year: 2018
  ident: R68
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081817-051756
– volume: 379
  start-page: 52
  year: 1991
  ident: R69
  publication-title: ApJ
  doi: 10.1086/170483
– ident: R30
  doi: 10.23943/princeton/9780691151687.001.0001
– volume: 976
  start-page: 37
  year: 2024
  ident: R70
  publication-title: ApJ
  doi: 10.3847/1538-4357/ad7bb3
– volume: 871
  start-page: 21
  year: 2019
  ident: R25
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaf4bb
– volume: 401
  start-page: 791
  year: 2010
  ident: R59
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15715.x
– volume: 475
  start-page: 648
  year: 2018
  ident: R53
  publication-title: MNRAS
  doi: 10.1093/mnras/stx3112
– volume: 386
  start-page: 2101
  year: 2008
  ident: R49
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13180.x
– ident: R17
– ident: R34
SSID ssj0002183
Score 2.4773197
Snippet Context. The connection between galaxies and their host dark matter halos encompasses a range of intricate and interrelated processes, playing a pivotal role...
SourceID crossref
SourceType Index Database
StartPage A3
Title Exploring the halo-galaxy connection with probabilistic approaches
Volume 698
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-rcnAvcnp3-HFKHsSX2to2Sd0-rq6fcIv4cfi2pG0WhXUr2gX1wf_C_9eZJJtWETl9KW0YUuhvOpmZTH5DyJoqEnQcuF_A2ufDei3gnwNdTtttKVScok-M1Ra95OCcH12Ii1bruVG1NK6yIH9891zJV1CFMcAVT8l-Alk3KQzAPeALV0AYrv-FcV1Ah-7jpRyWPhh8ef-AxeQjZbqA60wr9o3RXLp3mqDVEonb-sEJCe0dpsXLa8PIJPHJ5D10YtbwYjUSBydlAZH92JiZnqz0lns0vJLev8DrBROxQnmngN6VlZJDLdf1TgPvrxPqQMx-rZO2J81KRWTOui39LoYIlukATFDpdYNmsiIWdVGVM8DcT5jhXw-UsbmcYQGszURao5yY3tTWrHbYu9YeDIopjzRz4uEW3Elmsek695pd-82q52oR9S68iHAXnvdxmr6bZIrMxBB9YGOM_cMnt8CjV2miKvPeCZmViDbd2KabpOHwNDyXsx9k1oYctGP0Z4601GieLDi06TrtNLCeJ9-Ozd1Psu0UjIKC0YaC0VrBKCoYfaVgtFawX-R8b_ds58C3TTf8POZJ5UP8yUMVSqZylWbgLWZRJPMsSVOZD8KBYkzKSGyFKQa-SZGHhUyVDAcQBmyFPCvYbzI9KkdqgVCQaytYvzjDb8EjEORhLoUAr19CWLFINiZfpn9juFX6H6Cx9DnxZfK91sA_ZLq6HasVcCCrbFXD-QJWFWaM
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+halo-galaxy+connection+with+probabilistic+approaches&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Rodrigues%2C+Nat%C3%A1lia+V.+N.&rft.au=de+Santi%2C+Natal%C3%AD+S.+M.&rft.au=Abramo%2C+Raul&rft.au=Montero-Dorta%2C+Antonio+D.&rft.date=2025-06-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=698&rft.spage=A3&rft_id=info:doi/10.1051%2F0004-6361%2F202453284&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202453284
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon