Randomized Stepped Frequency Radar Extended Target HRRP-Velocity Joint Estimation Based on SBL-DGAMP-Net
Randomized stepped frequency radar (RSFR) is suitable for handling tasks in complex electromagnetic environments. Because the target typically occupies a series of range cells in the high-resolution range profiles (HRRPs) synthesized by RSFR, it is referred to as an extended target. However, current...
Saved in:
Published in | IEEE geoscience and remote sensing letters Vol. 21; pp. 1 - 5 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1545-598X 1558-0571 |
DOI | 10.1109/LGRS.2024.3407950 |
Cover
Abstract | Randomized stepped frequency radar (RSFR) is suitable for handling tasks in complex electromagnetic environments. Because the target typically occupies a series of range cells in the high-resolution range profiles (HRRPs) synthesized by RSFR, it is referred to as an extended target. However, current joint reconstruction methods based on sparsity theory are still limited by the length of the extended target, resulting in block mismatch and high computational complexity. How to adaptively determine the size of the extended target remains a challenge. In this letter, a novel deep unfolding network is proposed for the reconstruction of the extended target with block-sparse property, called Sparse Bayesian Learning (SBL)-damped generalized approximate message passing (DGAMP)-Net. The network proposed in the letter can learn block sparsity information from data without block partition information. Particularly, in each layer of SBL-DGAMP-Net, we replace the M-step of pattern-coupled SBL (PC-SBL) with a convolutional neural network, thus overcoming the fragility of PC-SBL parameter selection. The E-step of the network is an unfolding of DGAMP, with the damping factor optimized by deep learning. Furthermore, the architecture of SBL-DGAMP-Net can accept measurement matrices as inputs to the network, thus avoiding the need for retraining. The simulation results indicate that this method exhibits superior reconstruction accuracy and computational efficiency compared to existing high-resolution range-velocity joint reconstruction algorithms for RSFR. |
---|---|
AbstractList | Randomized stepped frequency radar (RSFR) is suitable for handling tasks in complex electromagnetic environments. Because the target typically occupies a series of range cells in the high-resolution range profiles (HRRPs) synthesized by RSFR, it is referred to as an extended target. However, current joint reconstruction methods based on sparsity theory are still limited by the length of the extended target, resulting in block mismatch and high computational complexity. How to adaptively determine the size of the extended target remains a challenge. In this letter, a novel deep unfolding network is proposed for the reconstruction of the extended target with block-sparse property, called Sparse Bayesian Learning (SBL)-damped generalized approximate message passing (DGAMP)-Net. The network proposed in the letter can learn block sparsity information from data without block partition information. Particularly, in each layer of SBL-DGAMP-Net, we replace the M-step of pattern-coupled SBL (PC-SBL) with a convolutional neural network, thus overcoming the fragility of PC-SBL parameter selection. The E-step of the network is an unfolding of DGAMP, with the damping factor optimized by deep learning. Furthermore, the architecture of SBL-DGAMP-Net can accept measurement matrices as inputs to the network, thus avoiding the need for retraining. The simulation results indicate that this method exhibits superior reconstruction accuracy and computational efficiency compared to existing high-resolution range-velocity joint reconstruction algorithms for RSFR. |
Author | Song, Jiongda Wang, Yiding Zhao, Guanghui Li, Yuanhao |
Author_xml | – sequence: 1 givenname: Yiding orcidid: 0009-0006-4936-996X surname: Wang fullname: Wang, Yiding email: yidingwang@stu.xidian.edu.cn organization: School of Artificial Intelligence, Xidian University, Xi'an, China – sequence: 2 givenname: Yuanhao orcidid: 0009-0009-6822-4629 surname: Li fullname: Li, Yuanhao email: 21171213850@stu.xidian.edu.cn organization: School of Artificial Intelligence, Xidian University, Xi'an, China – sequence: 3 givenname: Jiongda orcidid: 0009-0003-2821-7607 surname: Song fullname: Song, Jiongda email: songjiongda@stu.xidian.edu.cn organization: School of Artificial Intelligence, Xidian University, Xi'an, China – sequence: 4 givenname: Guanghui orcidid: 0000-0002-2348-0532 surname: Zhao fullname: Zhao, Guanghui email: ghzhao@xidian.edu.cn organization: School of Artificial Intelligence, Xidian University, Xi'an, China |
BookMark | eNpNkMtOwzAQRS1UJErhA5BYRGKdYsd24izb0gcoQJUWxM5ykgmkap3guBLl63HULljNHc2Z171EPV1rQOiG4CEhOL5P5ulqGOCADSnDUczxGeoTzoWPeUR6nWbc57H4uECXbbvBjhQi6qOvVOmi3lW_UHgrC03j4szA9x50fvBSVSjjTX8s6MIV1sp8gvUWabr032Fb55U9eE91pa03bW21U7aqtTdWrWOdWI0T_2E-el76L2Cv0Hmpti1cn-IAvc2m68nCT17nj5NR4ucBC63PcaxikeU4yxiPcMRiLkimeA6FUEWJaRlAqBjPgjjkJHMp5xGwPMcKB5QKOkB3x7mNqd0XrZWbem-0WykpDgWJOMMdRY5Ubuq2NVDKxrj7zUESLDtDZWeo7AyVJ0Ndz-2xpwKAfzxngaCU_gH05XJr |
CODEN | IGRSBY |
Cites_doi | 10.1109/TGRS.2006.888865 10.1109/TSP.2018.2876301 10.1049/iet-rsn.2017.0421 10.1109/TSP.2021.3058444 10.1109/RADAR.2012.6212202 10.1109/TSP.2014.2375133 10.1109/TIP.2016.2556582 10.1137/080716542 10.1109/TITS.2020.3009223 10.1109/TIT.2019.2913109 10.3390/rs15153742 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
DOI | 10.1109/LGRS.2024.3407950 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 1558-0571 |
EndPage | 5 |
ExternalDocumentID | 10_1109_LGRS_2024_3407950 10542833 |
Genre | orig-research |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION RIG 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
ID | FETCH-LOGICAL-c246t-509a98bc0bb4570749581ba5ced8adf03f2e6a45b29651b3f2557e4cc0a023383 |
IEDL.DBID | RIE |
ISSN | 1545-598X |
IngestDate | Mon Jun 30 10:12:46 EDT 2025 Thu Jul 03 08:27:25 EDT 2025 Wed Aug 27 01:41:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-509a98bc0bb4570749581ba5ced8adf03f2e6a45b29651b3f2557e4cc0a023383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0003-2821-7607 0009-0009-6822-4629 0009-0006-4936-996X 0000-0002-2348-0532 |
PQID | 3068175408 |
PQPubID | 75725 |
PageCount | 5 |
ParticipantIDs | crossref_primary_10_1109_LGRS_2024_3407950 proquest_journals_3068175408 ieee_primary_10542833 |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE geoscience and remote sensing letters |
PublicationTitleAbbrev | LGRS |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref8 ref7 ref9 ref4 ref3 ref6 ref11 ref5 ref10 ref2 ref1 |
References_xml | – ident: ref3 doi: 10.1109/TGRS.2006.888865 – ident: ref4 doi: 10.1109/TSP.2018.2876301 – ident: ref5 doi: 10.1049/iet-rsn.2017.0421 – ident: ref6 doi: 10.1109/TSP.2021.3058444 – ident: ref1 doi: 10.1109/RADAR.2012.6212202 – ident: ref7 doi: 10.1109/TSP.2014.2375133 – ident: ref8 doi: 10.1109/TIP.2016.2556582 – ident: ref11 doi: 10.1137/080716542 – ident: ref10 doi: 10.1109/TITS.2020.3009223 – ident: ref9 doi: 10.1109/TIT.2019.2913109 – ident: ref2 doi: 10.3390/rs15153742 |
SSID | ssj0024887 |
Score | 2.3759286 |
Snippet | Randomized stepped frequency radar (RSFR) is suitable for handling tasks in complex electromagnetic environments. Because the target typically occupies a... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Approximate message passing Artificial neural networks Bayes methods Bayesian analysis Computer applications Damping Deep learning deep unfolding network Estimation extended target Fragility Frequency modulation High resolution joint high-resolution range profile (HRRP)-velocity estimation Machine learning Message passing Neural networks Probability theory Radar randomized stepped frequency radar (RSFR) Reconstruction Scattering sparse Bayesian learning (SBL) Sparsity Task complexity Vectors Velocity |
Title | Randomized Stepped Frequency Radar Extended Target HRRP-Velocity Joint Estimation Based on SBL-DGAMP-Net |
URI | https://ieeexplore.ieee.org/document/10542833 https://www.proquest.com/docview/3068175408 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BEqKXllKqbguVD5wqefEmthMfoexDCFYoPLS3yK8IVDWLttnD8us7drICgSr1FEdyIssz9nyfPQ-AI1FxkTFlaSadpFwyR3WFumx9khmfq9xFZ8zLqZzc8vOZmHXB6jEWxnsfnc98PzTjXb6b22U4KsMVLkJ-sHQTNlHP2mCt58R6eayGFyABFSqfdVeYA6aOL8bFNVLBhPdT5C8qxNi_MEKxqsqbrTjal9EHmK5H1rqV_OovG9O3T6-SNv730HfhfYc0yUmrGh9hw9d7sNMVPb9f7cH2OFb1XX2C-0LXbv774ck7Ety-HvE5WrRO1itSaKcXZNidlpOb6DtOJkVxRe882kLE8eR8_lA3ZIj7RRsKSU7ROjqCjevTC3o2Prm8olPf7MPtaHjzc0K7EgzUJlw2FOGEVrmxzJgg0wzpFOJcLax3uXYVS6vES82FSZQUA4OvQmSeW8s0ggFkv59hq57X_guQVGnpPCJKk4b4eyTxfFAlRgjNZMLStAc_1jIpH9tMG2VkKEyVQYBlEGDZCbAH-2GOX3Rsp7cHB2sxlt1i_FMiK8oRJXGWf_3HZ9_gXfh7e7RyAFvNYukPEWw05ntUsr8nws3r |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD6CITReuIwhCgP8wBOSi5vYTvy4QS-MtpqyDvUt8i3ahJZOXfrQ_XqOnVRMICSe4kiOYvnYPt93fC4AH0XFRcaUpZl0knLJHNUVrmXrk8z4XOUuOmPO5nJywU-XYtkFq8dYGO99dD7z_dCMd_luZTfBVIY7XIT8YOlDeISKn4s2XOt3ar081sMLoIAKlS-7S8wBU5-n4-IcyWDC-ykyGBWi7O-poVhX5a_DOGqY0TOY78bWOpb87G8a07d3f6Rt_O_BP4enHdYkx-3ieAEPfH0A-13Z88vtATwex7q-25dwWejara6v7rwjwfHrBp-jdetmvSWFdnpNhp29nCyi9ziZFMUZ_eFRGyKSJ6erq7ohQzwx2mBIcoL60RFsnJ9M6dfx8eyMzn1zCBej4eLLhHZFGKhNuGwoAgqtcmOZMUGqGRIqRLpaWO9y7SqWVomXmguTKCkGBl-FyDy3lmmEA8h_X8Fevar9ayCp0tJ5xJQmDRH4SOP5oEqMEJrJhKVpDz7tZFLetLk2yshRmCqDAMsgwLITYA8Owxzf69hObw-OdmIsu-14WyIvyhEncZa_-cdnH2B_sphNy-m3-fe38CT8qTW0HMFes974dwg9GvM-LrhfHoXROA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Randomized+Stepped+Frequency+Radar+Extended+Target+HRRP-Velocity+Joint+Estimation+Based+on+SBL-DGAMP-Net&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Wang%2C+Yiding&rft.au=Li%2C+Yuanhao&rft.au=Song%2C+Jiongda&rft.au=Zhao%2C+Guanghui&rft.date=2024&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=21&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2024.3407950&rft.externalDocID=10542833 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |