Randomized Stepped Frequency Radar Extended Target HRRP-Velocity Joint Estimation Based on SBL-DGAMP-Net

Randomized stepped frequency radar (RSFR) is suitable for handling tasks in complex electromagnetic environments. Because the target typically occupies a series of range cells in the high-resolution range profiles (HRRPs) synthesized by RSFR, it is referred to as an extended target. However, current...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing letters Vol. 21; pp. 1 - 5
Main Authors Wang, Yiding, Li, Yuanhao, Song, Jiongda, Zhao, Guanghui
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1545-598X
1558-0571
DOI10.1109/LGRS.2024.3407950

Cover

Abstract Randomized stepped frequency radar (RSFR) is suitable for handling tasks in complex electromagnetic environments. Because the target typically occupies a series of range cells in the high-resolution range profiles (HRRPs) synthesized by RSFR, it is referred to as an extended target. However, current joint reconstruction methods based on sparsity theory are still limited by the length of the extended target, resulting in block mismatch and high computational complexity. How to adaptively determine the size of the extended target remains a challenge. In this letter, a novel deep unfolding network is proposed for the reconstruction of the extended target with block-sparse property, called Sparse Bayesian Learning (SBL)-damped generalized approximate message passing (DGAMP)-Net. The network proposed in the letter can learn block sparsity information from data without block partition information. Particularly, in each layer of SBL-DGAMP-Net, we replace the M-step of pattern-coupled SBL (PC-SBL) with a convolutional neural network, thus overcoming the fragility of PC-SBL parameter selection. The E-step of the network is an unfolding of DGAMP, with the damping factor optimized by deep learning. Furthermore, the architecture of SBL-DGAMP-Net can accept measurement matrices as inputs to the network, thus avoiding the need for retraining. The simulation results indicate that this method exhibits superior reconstruction accuracy and computational efficiency compared to existing high-resolution range-velocity joint reconstruction algorithms for RSFR.
AbstractList Randomized stepped frequency radar (RSFR) is suitable for handling tasks in complex electromagnetic environments. Because the target typically occupies a series of range cells in the high-resolution range profiles (HRRPs) synthesized by RSFR, it is referred to as an extended target. However, current joint reconstruction methods based on sparsity theory are still limited by the length of the extended target, resulting in block mismatch and high computational complexity. How to adaptively determine the size of the extended target remains a challenge. In this letter, a novel deep unfolding network is proposed for the reconstruction of the extended target with block-sparse property, called Sparse Bayesian Learning (SBL)-damped generalized approximate message passing (DGAMP)-Net. The network proposed in the letter can learn block sparsity information from data without block partition information. Particularly, in each layer of SBL-DGAMP-Net, we replace the M-step of pattern-coupled SBL (PC-SBL) with a convolutional neural network, thus overcoming the fragility of PC-SBL parameter selection. The E-step of the network is an unfolding of DGAMP, with the damping factor optimized by deep learning. Furthermore, the architecture of SBL-DGAMP-Net can accept measurement matrices as inputs to the network, thus avoiding the need for retraining. The simulation results indicate that this method exhibits superior reconstruction accuracy and computational efficiency compared to existing high-resolution range-velocity joint reconstruction algorithms for RSFR.
Author Song, Jiongda
Wang, Yiding
Zhao, Guanghui
Li, Yuanhao
Author_xml – sequence: 1
  givenname: Yiding
  orcidid: 0009-0006-4936-996X
  surname: Wang
  fullname: Wang, Yiding
  email: yidingwang@stu.xidian.edu.cn
  organization: School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 2
  givenname: Yuanhao
  orcidid: 0009-0009-6822-4629
  surname: Li
  fullname: Li, Yuanhao
  email: 21171213850@stu.xidian.edu.cn
  organization: School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 3
  givenname: Jiongda
  orcidid: 0009-0003-2821-7607
  surname: Song
  fullname: Song, Jiongda
  email: songjiongda@stu.xidian.edu.cn
  organization: School of Artificial Intelligence, Xidian University, Xi'an, China
– sequence: 4
  givenname: Guanghui
  orcidid: 0000-0002-2348-0532
  surname: Zhao
  fullname: Zhao, Guanghui
  email: ghzhao@xidian.edu.cn
  organization: School of Artificial Intelligence, Xidian University, Xi'an, China
BookMark eNpNkMtOwzAQRS1UJErhA5BYRGKdYsd24izb0gcoQJUWxM5ykgmkap3guBLl63HULljNHc2Z171EPV1rQOiG4CEhOL5P5ulqGOCADSnDUczxGeoTzoWPeUR6nWbc57H4uECXbbvBjhQi6qOvVOmi3lW_UHgrC03j4szA9x50fvBSVSjjTX8s6MIV1sp8gvUWabr032Fb55U9eE91pa03bW21U7aqtTdWrWOdWI0T_2E-el76L2Cv0Hmpti1cn-IAvc2m68nCT17nj5NR4ucBC63PcaxikeU4yxiPcMRiLkimeA6FUEWJaRlAqBjPgjjkJHMp5xGwPMcKB5QKOkB3x7mNqd0XrZWbem-0WykpDgWJOMMdRY5Ubuq2NVDKxrj7zUESLDtDZWeo7AyVJ0Ndz-2xpwKAfzxngaCU_gH05XJr
CODEN IGRSBY
Cites_doi 10.1109/TGRS.2006.888865
10.1109/TSP.2018.2876301
10.1049/iet-rsn.2017.0421
10.1109/TSP.2021.3058444
10.1109/RADAR.2012.6212202
10.1109/TSP.2014.2375133
10.1109/TIP.2016.2556582
10.1137/080716542
10.1109/TITS.2020.3009223
10.1109/TIT.2019.2913109
10.3390/rs15153742
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2024.3407950
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 5
ExternalDocumentID 10_1109_LGRS_2024_3407950
10542833
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
RIG
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c246t-509a98bc0bb4570749581ba5ced8adf03f2e6a45b29651b3f2557e4cc0a023383
IEDL.DBID RIE
ISSN 1545-598X
IngestDate Mon Jun 30 10:12:46 EDT 2025
Thu Jul 03 08:27:25 EDT 2025
Wed Aug 27 01:41:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-509a98bc0bb4570749581ba5ced8adf03f2e6a45b29651b3f2557e4cc0a023383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0003-2821-7607
0009-0009-6822-4629
0009-0006-4936-996X
0000-0002-2348-0532
PQID 3068175408
PQPubID 75725
PageCount 5
ParticipantIDs crossref_primary_10_1109_LGRS_2024_3407950
proquest_journals_3068175408
ieee_primary_10542833
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref8
ref7
ref9
ref4
ref3
ref6
ref11
ref5
ref10
ref2
ref1
References_xml – ident: ref3
  doi: 10.1109/TGRS.2006.888865
– ident: ref4
  doi: 10.1109/TSP.2018.2876301
– ident: ref5
  doi: 10.1049/iet-rsn.2017.0421
– ident: ref6
  doi: 10.1109/TSP.2021.3058444
– ident: ref1
  doi: 10.1109/RADAR.2012.6212202
– ident: ref7
  doi: 10.1109/TSP.2014.2375133
– ident: ref8
  doi: 10.1109/TIP.2016.2556582
– ident: ref11
  doi: 10.1137/080716542
– ident: ref10
  doi: 10.1109/TITS.2020.3009223
– ident: ref9
  doi: 10.1109/TIT.2019.2913109
– ident: ref2
  doi: 10.3390/rs15153742
SSID ssj0024887
Score 2.3759286
Snippet Randomized stepped frequency radar (RSFR) is suitable for handling tasks in complex electromagnetic environments. Because the target typically occupies a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Approximate message passing
Artificial neural networks
Bayes methods
Bayesian analysis
Computer applications
Damping
Deep learning
deep unfolding network
Estimation
extended target
Fragility
Frequency modulation
High resolution
joint high-resolution range profile (HRRP)-velocity estimation
Machine learning
Message passing
Neural networks
Probability theory
Radar
randomized stepped frequency radar (RSFR)
Reconstruction
Scattering
sparse Bayesian learning (SBL)
Sparsity
Task complexity
Vectors
Velocity
Title Randomized Stepped Frequency Radar Extended Target HRRP-Velocity Joint Estimation Based on SBL-DGAMP-Net
URI https://ieeexplore.ieee.org/document/10542833
https://www.proquest.com/docview/3068175408
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BEqKXllKqbguVD5wqefEmthMfoexDCFYoPLS3yK8IVDWLttnD8us7drICgSr1FEdyIssz9nyfPQ-AI1FxkTFlaSadpFwyR3WFumx9khmfq9xFZ8zLqZzc8vOZmHXB6jEWxnsfnc98PzTjXb6b22U4KsMVLkJ-sHQTNlHP2mCt58R6eayGFyABFSqfdVeYA6aOL8bFNVLBhPdT5C8qxNi_MEKxqsqbrTjal9EHmK5H1rqV_OovG9O3T6-SNv730HfhfYc0yUmrGh9hw9d7sNMVPb9f7cH2OFb1XX2C-0LXbv774ck7Ety-HvE5WrRO1itSaKcXZNidlpOb6DtOJkVxRe882kLE8eR8_lA3ZIj7RRsKSU7ROjqCjevTC3o2Prm8olPf7MPtaHjzc0K7EgzUJlw2FOGEVrmxzJgg0wzpFOJcLax3uXYVS6vES82FSZQUA4OvQmSeW8s0ggFkv59hq57X_guQVGnpPCJKk4b4eyTxfFAlRgjNZMLStAc_1jIpH9tMG2VkKEyVQYBlEGDZCbAH-2GOX3Rsp7cHB2sxlt1i_FMiK8oRJXGWf_3HZ9_gXfh7e7RyAFvNYukPEWw05ntUsr8nws3r
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD6CITReuIwhCgP8wBOSi5vYTvy4QS-MtpqyDvUt8i3ahJZOXfrQ_XqOnVRMICSe4kiOYvnYPt93fC4AH0XFRcaUpZl0knLJHNUVrmXrk8z4XOUuOmPO5nJywU-XYtkFq8dYGO99dD7z_dCMd_luZTfBVIY7XIT8YOlDeISKn4s2XOt3ar081sMLoIAKlS-7S8wBU5-n4-IcyWDC-ykyGBWi7O-poVhX5a_DOGqY0TOY78bWOpb87G8a07d3f6Rt_O_BP4enHdYkx-3ieAEPfH0A-13Z88vtATwex7q-25dwWejara6v7rwjwfHrBp-jdetmvSWFdnpNhp29nCyi9ziZFMUZ_eFRGyKSJ6erq7ohQzwx2mBIcoL60RFsnJ9M6dfx8eyMzn1zCBej4eLLhHZFGKhNuGwoAgqtcmOZMUGqGRIqRLpaWO9y7SqWVomXmguTKCkGBl-FyDy3lmmEA8h_X8Fevar9ayCp0tJ5xJQmDRH4SOP5oEqMEJrJhKVpDz7tZFLetLk2yshRmCqDAMsgwLITYA8Owxzf69hObw-OdmIsu-14WyIvyhEncZa_-cdnH2B_sphNy-m3-fe38CT8qTW0HMFes974dwg9GvM-LrhfHoXROA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Randomized+Stepped+Frequency+Radar+Extended+Target+HRRP-Velocity+Joint+Estimation+Based+on+SBL-DGAMP-Net&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Wang%2C+Yiding&rft.au=Li%2C+Yuanhao&rft.au=Song%2C+Jiongda&rft.au=Zhao%2C+Guanghui&rft.date=2024&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=21&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FLGRS.2024.3407950&rft.externalDocID=10542833
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon