HIFR-Net: A HRRP-Infrared Fusion Recognition Network Capable of Handling Modality Missing and Multisource Data Misalignment
Radar (RR) and infrared (IR) sensors have different characteristics and applications. Combining these two sensors in complex environments can yield complementary advantages, enhancing the reliability, robustness, and accuracy of detection systems. Some related studies have combined RR's high-re...
Saved in:
Published in | IEEE sensors journal Vol. 25; no. 3; pp. 5769 - 5781 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1530-437X 1558-1748 |
DOI | 10.1109/JSEN.2024.3515204 |
Cover
Abstract | Radar (RR) and infrared (IR) sensors have different characteristics and applications. Combining these two sensors in complex environments can yield complementary advantages, enhancing the reliability, robustness, and accuracy of detection systems. Some related studies have combined RR's high-resolution range profile (HRRP) data with IR images for target recognition. However, existing recognition frameworks primarily focus on improving recognition accuracy while neglecting practical issues that may arise, such as modality data absence or spatiotemporal misalignment of multisource data, thereby limiting their applicability. To address these challenges, we propose a multimodal fusion recognition network based on HRRP data and IR images, named HIFR-Net, which can effectively handle modality missing and multisource data misalignment. Additionally, we explore a device-cloud distributed collaborative inference approach for deploying HIFR-Net. The design of the modality gating mechanism and cross-modal interaction strategy in HIFR-Net enhances its robustness to modality missing and spatiotemporal differences in multisource data. We evaluate HIFR-Net on a constructed air target dataset containing HRRP data and IR images. Results from multiple experiments demonstrate that HIFR-Net exhibits excellent comprehensive recognition capability, achieving a recognition accuracy of 98.65%, and shows strong robustness and applicability in handling modality missing, multisource data misalignment, and interference such as noise. |
---|---|
AbstractList | Radar (RR) and infrared (IR) sensors have different characteristics and applications. Combining these two sensors in complex environments can yield complementary advantages, enhancing the reliability, robustness, and accuracy of detection systems. Some related studies have combined RR’s high-resolution range profile (HRRP) data with IR images for target recognition. However, existing recognition frameworks primarily focus on improving recognition accuracy while neglecting practical issues that may arise, such as modality data absence or spatiotemporal misalignment of multisource data, thereby limiting their applicability. To address these challenges, we propose a multimodal fusion recognition network based on HRRP data and IR images, named HIFR-Net, which can effectively handle modality missing and multisource data misalignment. Additionally, we explore a device-cloud distributed collaborative inference approach for deploying HIFR-Net. The design of the modality gating mechanism and cross-modal interaction strategy in HIFR-Net enhances its robustness to modality missing and spatiotemporal differences in multisource data. We evaluate HIFR-Net on a constructed air target dataset containing HRRP data and IR images. Results from multiple experiments demonstrate that HIFR-Net exhibits excellent comprehensive recognition capability, achieving a recognition accuracy of 98.65%, and shows strong robustness and applicability in handling modality missing, multisource data misalignment, and interference such as noise. |
Author | Xu, Yuelei Bi, Xiaoye Zhang, Fan Zhang, Zhaoxiang |
Author_xml | – sequence: 1 givenname: Fan orcidid: 0000-0002-7618-2846 surname: Zhang fullname: Zhang, Fan email: zf13977118754@163.com organization: National Key Laboratory of Unmanned Aerial Vehicle Technology, Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Xiaoye orcidid: 0009-0004-7471-7191 surname: Bi fullname: Bi, Xiaoye email: 48811574@qq.com organization: National Key Laboratory of Unmanned Aerial Vehicle Technology, Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Zhaoxiang orcidid: 0000-0002-1469-1469 surname: Zhang fullname: Zhang, Zhaoxiang email: zhangzhaoxiang666@outlook.com organization: National Key Laboratory of Unmanned Aerial Vehicle Technology, Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Yuelei orcidid: 0000-0002-9868-7693 surname: Xu fullname: Xu, Yuelei email: xuyuelei@nwpu.edu.cn organization: National Key Laboratory of Unmanned Aerial Vehicle Technology, Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, China |
BookMark | eNpNkE1PwkAQhjcGExH9ASYeNvFc3O1-tPVGECwG0KAm3pptOyXFsou7JYb4590GDp5mMu8zX-8l6mmjAaEbSoaUkuT--W2yHIYk5EMmqAgJP0N9KkQc0IjHvS5nJOAs-rxAl85tCKFJJKI--k1n01WwhPYBj3C6Wr0GM11ZZaHE072rjcYrKMxa122Xe-7H2C88VjuVN4BNhVOly6bWa7wwpWrq9oAXtXNdwQt4sW_a2pm9LQA_qlZ1oqfWegu6vULnlWocXJ_iAH1MJ-_jNJi_PM3Go3lQhFy2AQ9pVaowIaRgUPBEQVIViiQs5lICSChYnMcCIKryUjKQhPnvcq8IzmPJ2ADdHefurPneg2uzjb9I-5UZo5IJyZngnqJHqrDGOQtVtrP1VtlDRknWeZx1Hmedx9nJY99ze-ypAeAfHxPJY8r-AClUehg |
CODEN | ISJEAZ |
Cites_doi | 10.1109/TSP.2021.3065847 10.1016/j.inffus.2023.102181 10.1109/TSP.2007.892708 10.3390/rs16152710 10.5555/3045118.3045167 10.1109/LSP.2023.3341397 10.1109/TAES.2022.3182303 10.1117/12.2520589 10.3390/s17071675 10.1109/TGRS.2021.3117131 10.1016/j.infrared.2021.103659 10.1109/TAES.2002.1145746 10.1117/12.3026382 10.1007/978-3-642-35289-8_25 10.1109/CVPR52688.2022.01223 10.1109/ICCWorkshops49005.2020.9145068 10.1016/j.patcog.2010.03.011 10.23919/JSEE.2022.000100 10.1109/TGRS.2021.3055061 10.3390/s18072148 10.3390/electronics8050535 10.1016/j.sigpro.2022.108497 10.1016/j.sigpro.2018.09.041 10.1109/CVPR.2007.383452 10.1117/12.541454 10.3115/v1/D14-1179 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2024.3515204 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 5781 |
ExternalDocumentID | 10_1109_JSEN_2024_3515204 10806481 |
Genre | orig-research |
GrantInformation_xml | – fundername: Young Scientists Fund of the National Natural Science Foundation of China grantid: 52302506 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c246t-421fda2900c3ec49ae9fca0938466ee6ec38b85ee7fbd63e603019bee65448633 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:07:44 EDT 2025 Tue Jul 01 03:03:05 EDT 2025 Wed Aug 27 01:53:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-421fda2900c3ec49ae9fca0938466ee6ec38b85ee7fbd63e603019bee65448633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7618-2846 0009-0004-7471-7191 0000-0002-1469-1469 0000-0002-9868-7693 |
PQID | 3163564354 |
PQPubID | 75733 |
PageCount | 13 |
ParticipantIDs | proquest_journals_3163564354 crossref_primary_10_1109_JSEN_2024_3515204 ieee_primary_10806481 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 Xu (ref22) 2015 ref14 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 Srivastava (ref23) 2014; 15 ref24 ref25 ref20 Van der Maaten (ref31) 2008; 9 ref21 Zhang (ref28); 13086 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 Paszke (ref26); 32 ref5 |
References_xml | – ident: ref8 doi: 10.1109/TSP.2021.3065847 – ident: ref29 doi: 10.1016/j.inffus.2023.102181 – ident: ref5 doi: 10.1109/TSP.2007.892708 – ident: ref30 doi: 10.3390/rs16152710 – ident: ref21 doi: 10.5555/3045118.3045167 – ident: ref15 doi: 10.1109/LSP.2023.3341397 – ident: ref27 doi: 10.1109/TAES.2022.3182303 – ident: ref25 doi: 10.1117/12.2520589 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: ref23 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: ref6 doi: 10.3390/s17071675 – volume: 9 start-page: 1 issue: 11 year: 2008 ident: ref31 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref14 doi: 10.1109/TGRS.2021.3117131 – ident: ref13 doi: 10.1016/j.infrared.2021.103659 – ident: ref4 doi: 10.1109/TAES.2002.1145746 – ident: ref17 doi: 10.1117/12.3026382 – ident: ref24 doi: 10.1007/978-3-642-35289-8_25 – volume: 32 start-page: 8024 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref26 article-title: Pytorch: Animperative style, high-performance deep learning library – ident: ref19 doi: 10.1109/CVPR52688.2022.01223 – ident: ref18 doi: 10.1109/ICCWorkshops49005.2020.9145068 – ident: ref11 doi: 10.1016/j.patcog.2010.03.011 – ident: ref16 doi: 10.23919/JSEE.2022.000100 – ident: ref10 doi: 10.1109/TGRS.2021.3055061 – ident: ref1 doi: 10.3390/s18072148 – ident: ref2 doi: 10.3390/electronics8050535 – ident: ref9 doi: 10.1016/j.sigpro.2022.108497 – ident: ref7 doi: 10.1016/j.sigpro.2018.09.041 – volume: 13086 start-page: 152 volume-title: Proc. SPIE ident: ref28 article-title: Deep fusion network based on two-stream CNN for radar target recognition – ident: ref12 doi: 10.1109/CVPR.2007.383452 – ident: ref3 doi: 10.1117/12.541454 – ident: ref20 doi: 10.3115/v1/D14-1179 – year: 2015 ident: ref22 article-title: Empirical evaluation of rectified activations in convolutional network publication-title: arXiv:1505.00853 |
SSID | ssj0019757 |
Score | 2.4243252 |
Snippet | Radar (RR) and infrared (IR) sensors have different characteristics and applications. Combining these two sensors in complex environments can yield... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 5769 |
SubjectTerms | Accuracy Data mining Data models Feature extraction High-resolution range profile (HRRP) Image recognition Image resolution infrared (IR) Infrared detectors Infrared imaging Infrared radar Misalignment modality missing multimodal fusion recognition multisource data misalignment Robustness Sensor fusion Sensors Spatiotemporal data Spatiotemporal phenomena System reliability Target recognition Training |
Title | HIFR-Net: A HRRP-Infrared Fusion Recognition Network Capable of Handling Modality Missing and Multisource Data Misalignment |
URI | https://ieeexplore.ieee.org/document/10806481 https://www.proquest.com/docview/3163564354 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA7qi_rgj6k4nZIHn4TWrsnS1jeZjm6wIlVhb6VNrwrKJrN7UP9579JWhiL4FpqklFzSu8t99x1jZ-h0oBWbZpbUfm5RaM3yAc-VFrmQKifmScodHkcqfJCjSW9SJ6ubXBgAMOAzsKlpYvn5TC_oquyC8HBKUqL1Ku6zKlnrO2QQeIbWE0-wY0nhTeoQZtcJLkZ3NxG6gq60Bapvty7K1ighU1Xl16_Y6JfBNouaL6tgJc_2osxs_fGDtPHfn77DtmpLk19VW2OXrcC0xTaX-AdbbL0ugf70vsc-w-EgtiIoL_kVD-P41hpOiznB0_lgQVdqPG6wRtiOKvQ476OuzV6AzwoeEl8DvpaPZ7kx7vkYhUoPsIObRN8qUsCv0zKlThz1aMAI--xhcHPfD626MoOlXalKlGm3yFM3cBwtQEsi-C506gQCrRkFoEALP_N7AF6R5UqAIscryLCnh-6gEuKArU1nUzhkXKM9pYlDxuuCzNF_ApxSqNTrKV8p322z80ZUyWtFwJEYx8UJEpJrQnJNarm22T4t_dLAatXbrNNIN6nP6FsiusTNh-aiPPpj2jHbcKncrwFpd9haOV_ACdogZXZq9t4X0CHXGQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4h9gAcWJ6iuzx84ISUksaOk3BDQJUCjVABqbcocSYggVpU0sPu_vmdcRKEQEjcrNiOIo-dmfF88w3AITkdZMVmuaNMWDgcWnNCpHNlZCGVLph5knOHh4mO79Xl2B83yeo2FwYRLfgMu9y0sfxiauZ8VXbMeDitONH6Byl-5dfpWm9BgyiwxJ50hl1HyWDcBDF7bnR8eXuRkDPoqa4kBe41ZdlaNWTrqnz6GVsN0_8JSfttNbDkqTuv8q75-4G28dsfvwarja0pTuvNsQ4LONmAlXcMhBuw1BRBf_yzCf_iQX_kJFidiFMRj0Y3zmBSzhigLvpzvlQToxZtRO2kxo-LM9K2-TOKaSliZmyg14rhtLDmvRiSWPkBdQib6lvHCsR5VmXcSaMeLBxhC-77F3dnsdPUZnCMp3RFUu2VReZFrmskGsUU36XJ3EiSPaMRNRoZ5qGPGJR5oSVqdr2inHp8cgi1lNuwOJlOcAeEIYvKMItM0ENVkAeFNKXUWeDrUOvQ68BRK6r0pabgSK3r4kYpyzVluaaNXDuwxUv_bmC96h3YbaWbNqf0NZU9Zucjg1H9-mLaASzFd8Pr9HqQXP2GZY-L_1rI9i4sVrM57pFFUuX7dh_-Bzz82mY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HIFR-Net%3A+A+HRRP-Infrared+Fusion+Recognition+Network+Capable+of+Handling+Modality+Missing+and+Multisource+Data+Misalignment&rft.jtitle=IEEE+sensors+journal&rft.au=Zhang%2C+Fan&rft.au=Bi%2C+Xiaoye&rft.au=Zhang%2C+Zhaoxiang&rft.au=Xu%2C+Yuelei&rft.date=2025-02-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=25&rft.issue=3&rft.spage=5769&rft.epage=5781&rft_id=info:doi/10.1109%2FJSEN.2024.3515204&rft.externalDocID=10806481 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |