HIFR-Net: A HRRP-Infrared Fusion Recognition Network Capable of Handling Modality Missing and Multisource Data Misalignment

Radar (RR) and infrared (IR) sensors have different characteristics and applications. Combining these two sensors in complex environments can yield complementary advantages, enhancing the reliability, robustness, and accuracy of detection systems. Some related studies have combined RR's high-re...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 25; no. 3; pp. 5769 - 5781
Main Authors Zhang, Fan, Bi, Xiaoye, Zhang, Zhaoxiang, Xu, Yuelei
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2024.3515204

Cover

Abstract Radar (RR) and infrared (IR) sensors have different characteristics and applications. Combining these two sensors in complex environments can yield complementary advantages, enhancing the reliability, robustness, and accuracy of detection systems. Some related studies have combined RR's high-resolution range profile (HRRP) data with IR images for target recognition. However, existing recognition frameworks primarily focus on improving recognition accuracy while neglecting practical issues that may arise, such as modality data absence or spatiotemporal misalignment of multisource data, thereby limiting their applicability. To address these challenges, we propose a multimodal fusion recognition network based on HRRP data and IR images, named HIFR-Net, which can effectively handle modality missing and multisource data misalignment. Additionally, we explore a device-cloud distributed collaborative inference approach for deploying HIFR-Net. The design of the modality gating mechanism and cross-modal interaction strategy in HIFR-Net enhances its robustness to modality missing and spatiotemporal differences in multisource data. We evaluate HIFR-Net on a constructed air target dataset containing HRRP data and IR images. Results from multiple experiments demonstrate that HIFR-Net exhibits excellent comprehensive recognition capability, achieving a recognition accuracy of 98.65%, and shows strong robustness and applicability in handling modality missing, multisource data misalignment, and interference such as noise.
AbstractList Radar (RR) and infrared (IR) sensors have different characteristics and applications. Combining these two sensors in complex environments can yield complementary advantages, enhancing the reliability, robustness, and accuracy of detection systems. Some related studies have combined RR’s high-resolution range profile (HRRP) data with IR images for target recognition. However, existing recognition frameworks primarily focus on improving recognition accuracy while neglecting practical issues that may arise, such as modality data absence or spatiotemporal misalignment of multisource data, thereby limiting their applicability. To address these challenges, we propose a multimodal fusion recognition network based on HRRP data and IR images, named HIFR-Net, which can effectively handle modality missing and multisource data misalignment. Additionally, we explore a device-cloud distributed collaborative inference approach for deploying HIFR-Net. The design of the modality gating mechanism and cross-modal interaction strategy in HIFR-Net enhances its robustness to modality missing and spatiotemporal differences in multisource data. We evaluate HIFR-Net on a constructed air target dataset containing HRRP data and IR images. Results from multiple experiments demonstrate that HIFR-Net exhibits excellent comprehensive recognition capability, achieving a recognition accuracy of 98.65%, and shows strong robustness and applicability in handling modality missing, multisource data misalignment, and interference such as noise.
Author Xu, Yuelei
Bi, Xiaoye
Zhang, Fan
Zhang, Zhaoxiang
Author_xml – sequence: 1
  givenname: Fan
  orcidid: 0000-0002-7618-2846
  surname: Zhang
  fullname: Zhang, Fan
  email: zf13977118754@163.com
  organization: National Key Laboratory of Unmanned Aerial Vehicle Technology, Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Xiaoye
  orcidid: 0009-0004-7471-7191
  surname: Bi
  fullname: Bi, Xiaoye
  email: 48811574@qq.com
  organization: National Key Laboratory of Unmanned Aerial Vehicle Technology, Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Zhaoxiang
  orcidid: 0000-0002-1469-1469
  surname: Zhang
  fullname: Zhang, Zhaoxiang
  email: zhangzhaoxiang666@outlook.com
  organization: National Key Laboratory of Unmanned Aerial Vehicle Technology, Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Yuelei
  orcidid: 0000-0002-9868-7693
  surname: Xu
  fullname: Xu, Yuelei
  email: xuyuelei@nwpu.edu.cn
  organization: National Key Laboratory of Unmanned Aerial Vehicle Technology, Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, China
BookMark eNpNkE1PwkAQhjcGExH9ASYeNvFc3O1-tPVGECwG0KAm3pptOyXFsou7JYb4590GDp5mMu8zX-8l6mmjAaEbSoaUkuT--W2yHIYk5EMmqAgJP0N9KkQc0IjHvS5nJOAs-rxAl85tCKFJJKI--k1n01WwhPYBj3C6Wr0GM11ZZaHE072rjcYrKMxa122Xe-7H2C88VjuVN4BNhVOly6bWa7wwpWrq9oAXtXNdwQt4sW_a2pm9LQA_qlZ1oqfWegu6vULnlWocXJ_iAH1MJ-_jNJi_PM3Go3lQhFy2AQ9pVaowIaRgUPBEQVIViiQs5lICSChYnMcCIKryUjKQhPnvcq8IzmPJ2ADdHefurPneg2uzjb9I-5UZo5IJyZngnqJHqrDGOQtVtrP1VtlDRknWeZx1Hmedx9nJY99ze-ypAeAfHxPJY8r-AClUehg
CODEN ISJEAZ
Cites_doi 10.1109/TSP.2021.3065847
10.1016/j.inffus.2023.102181
10.1109/TSP.2007.892708
10.3390/rs16152710
10.5555/3045118.3045167
10.1109/LSP.2023.3341397
10.1109/TAES.2022.3182303
10.1117/12.2520589
10.3390/s17071675
10.1109/TGRS.2021.3117131
10.1016/j.infrared.2021.103659
10.1109/TAES.2002.1145746
10.1117/12.3026382
10.1007/978-3-642-35289-8_25
10.1109/CVPR52688.2022.01223
10.1109/ICCWorkshops49005.2020.9145068
10.1016/j.patcog.2010.03.011
10.23919/JSEE.2022.000100
10.1109/TGRS.2021.3055061
10.3390/s18072148
10.3390/electronics8050535
10.1016/j.sigpro.2022.108497
10.1016/j.sigpro.2018.09.041
10.1109/CVPR.2007.383452
10.1117/12.541454
10.3115/v1/D14-1179
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2024.3515204
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 5781
ExternalDocumentID 10_1109_JSEN_2024_3515204
10806481
Genre orig-research
GrantInformation_xml – fundername: Young Scientists Fund of the National Natural Science Foundation of China
  grantid: 52302506
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c246t-421fda2900c3ec49ae9fca0938466ee6ec38b85ee7fbd63e603019bee65448633
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:07:44 EDT 2025
Tue Jul 01 03:03:05 EDT 2025
Wed Aug 27 01:53:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-421fda2900c3ec49ae9fca0938466ee6ec38b85ee7fbd63e603019bee65448633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7618-2846
0009-0004-7471-7191
0000-0002-1469-1469
0000-0002-9868-7693
PQID 3163564354
PQPubID 75733
PageCount 13
ParticipantIDs proquest_journals_3163564354
crossref_primary_10_1109_JSEN_2024_3515204
ieee_primary_10806481
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
Xu (ref22) 2015
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
Srivastava (ref23) 2014; 15
ref24
ref25
ref20
Van der Maaten (ref31) 2008; 9
ref21
Zhang (ref28); 13086
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
Paszke (ref26); 32
ref5
References_xml – ident: ref8
  doi: 10.1109/TSP.2021.3065847
– ident: ref29
  doi: 10.1016/j.inffus.2023.102181
– ident: ref5
  doi: 10.1109/TSP.2007.892708
– ident: ref30
  doi: 10.3390/rs16152710
– ident: ref21
  doi: 10.5555/3045118.3045167
– ident: ref15
  doi: 10.1109/LSP.2023.3341397
– ident: ref27
  doi: 10.1109/TAES.2022.3182303
– ident: ref25
  doi: 10.1117/12.2520589
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: ref23
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref6
  doi: 10.3390/s17071675
– volume: 9
  start-page: 1
  issue: 11
  year: 2008
  ident: ref31
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref14
  doi: 10.1109/TGRS.2021.3117131
– ident: ref13
  doi: 10.1016/j.infrared.2021.103659
– ident: ref4
  doi: 10.1109/TAES.2002.1145746
– ident: ref17
  doi: 10.1117/12.3026382
– ident: ref24
  doi: 10.1007/978-3-642-35289-8_25
– volume: 32
  start-page: 8024
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref26
  article-title: Pytorch: Animperative style, high-performance deep learning library
– ident: ref19
  doi: 10.1109/CVPR52688.2022.01223
– ident: ref18
  doi: 10.1109/ICCWorkshops49005.2020.9145068
– ident: ref11
  doi: 10.1016/j.patcog.2010.03.011
– ident: ref16
  doi: 10.23919/JSEE.2022.000100
– ident: ref10
  doi: 10.1109/TGRS.2021.3055061
– ident: ref1
  doi: 10.3390/s18072148
– ident: ref2
  doi: 10.3390/electronics8050535
– ident: ref9
  doi: 10.1016/j.sigpro.2022.108497
– ident: ref7
  doi: 10.1016/j.sigpro.2018.09.041
– volume: 13086
  start-page: 152
  volume-title: Proc. SPIE
  ident: ref28
  article-title: Deep fusion network based on two-stream CNN for radar target recognition
– ident: ref12
  doi: 10.1109/CVPR.2007.383452
– ident: ref3
  doi: 10.1117/12.541454
– ident: ref20
  doi: 10.3115/v1/D14-1179
– year: 2015
  ident: ref22
  article-title: Empirical evaluation of rectified activations in convolutional network
  publication-title: arXiv:1505.00853
SSID ssj0019757
Score 2.4243252
Snippet Radar (RR) and infrared (IR) sensors have different characteristics and applications. Combining these two sensors in complex environments can yield...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 5769
SubjectTerms Accuracy
Data mining
Data models
Feature extraction
High-resolution range profile (HRRP)
Image recognition
Image resolution
infrared (IR)
Infrared detectors
Infrared imaging
Infrared radar
Misalignment
modality missing
multimodal fusion recognition
multisource data misalignment
Robustness
Sensor fusion
Sensors
Spatiotemporal data
Spatiotemporal phenomena
System reliability
Target recognition
Training
Title HIFR-Net: A HRRP-Infrared Fusion Recognition Network Capable of Handling Modality Missing and Multisource Data Misalignment
URI https://ieeexplore.ieee.org/document/10806481
https://www.proquest.com/docview/3163564354
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA7qi_rgj6k4nZIHn4TWrsnS1jeZjm6wIlVhb6VNrwrKJrN7UP9579JWhiL4FpqklFzSu8t99x1jZ-h0oBWbZpbUfm5RaM3yAc-VFrmQKifmScodHkcqfJCjSW9SJ6ubXBgAMOAzsKlpYvn5TC_oquyC8HBKUqL1Ku6zKlnrO2QQeIbWE0-wY0nhTeoQZtcJLkZ3NxG6gq60Bapvty7K1ighU1Xl16_Y6JfBNouaL6tgJc_2osxs_fGDtPHfn77DtmpLk19VW2OXrcC0xTaX-AdbbL0ugf70vsc-w-EgtiIoL_kVD-P41hpOiznB0_lgQVdqPG6wRtiOKvQ476OuzV6AzwoeEl8DvpaPZ7kx7vkYhUoPsIObRN8qUsCv0zKlThz1aMAI--xhcHPfD626MoOlXalKlGm3yFM3cBwtQEsi-C506gQCrRkFoEALP_N7AF6R5UqAIscryLCnh-6gEuKArU1nUzhkXKM9pYlDxuuCzNF_ApxSqNTrKV8p322z80ZUyWtFwJEYx8UJEpJrQnJNarm22T4t_dLAatXbrNNIN6nP6FsiusTNh-aiPPpj2jHbcKncrwFpd9haOV_ACdogZXZq9t4X0CHXGQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4h9gAcWJ6iuzx84ISUksaOk3BDQJUCjVABqbcocSYggVpU0sPu_vmdcRKEQEjcrNiOIo-dmfF88w3AITkdZMVmuaNMWDgcWnNCpHNlZCGVLph5knOHh4mO79Xl2B83yeo2FwYRLfgMu9y0sfxiauZ8VXbMeDitONH6Byl-5dfpWm9BgyiwxJ50hl1HyWDcBDF7bnR8eXuRkDPoqa4kBe41ZdlaNWTrqnz6GVsN0_8JSfttNbDkqTuv8q75-4G28dsfvwarja0pTuvNsQ4LONmAlXcMhBuw1BRBf_yzCf_iQX_kJFidiFMRj0Y3zmBSzhigLvpzvlQToxZtRO2kxo-LM9K2-TOKaSliZmyg14rhtLDmvRiSWPkBdQib6lvHCsR5VmXcSaMeLBxhC-77F3dnsdPUZnCMp3RFUu2VReZFrmskGsUU36XJ3EiSPaMRNRoZ5qGPGJR5oSVqdr2inHp8cgi1lNuwOJlOcAeEIYvKMItM0ENVkAeFNKXUWeDrUOvQ68BRK6r0pabgSK3r4kYpyzVluaaNXDuwxUv_bmC96h3YbaWbNqf0NZU9Zucjg1H9-mLaASzFd8Pr9HqQXP2GZY-L_1rI9i4sVrM57pFFUuX7dh_-Bzz82mY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HIFR-Net%3A+A+HRRP-Infrared+Fusion+Recognition+Network+Capable+of+Handling+Modality+Missing+and+Multisource+Data+Misalignment&rft.jtitle=IEEE+sensors+journal&rft.au=Zhang%2C+Fan&rft.au=Bi%2C+Xiaoye&rft.au=Zhang%2C+Zhaoxiang&rft.au=Xu%2C+Yuelei&rft.date=2025-02-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=25&rft.issue=3&rft.spage=5769&rft.epage=5781&rft_id=info:doi/10.1109%2FJSEN.2024.3515204&rft.externalDocID=10806481
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon