Infrared Small Target Detection Based on Adaptive Region Growing Algorithm With Iterative Threshold Analysis
Existing infrared (IR) small target detection algorithms often lack adaptability in complex scenes and heavily rely on parameter configurations. To address this limitation, we propose a novel IR small target detection method based on adaptive region growing algorithm with iterative threshold analysi...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 62; pp. 1 - 15 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Existing infrared (IR) small target detection algorithms often lack adaptability in complex scenes and heavily rely on parameter configurations. To address this limitation, we propose a novel IR small target detection method based on adaptive region growing algorithm with iterative threshold analysis that leverages the homogenous compactness of the small target and discontinuity with its surroundings. Initially, the image undergoes adaptive splitting into multiple regions using an automatic seeded region growing (ASRG) algorithm, eliminating the need for preassigned seed points. Next, the segmentation results at each threshold are utilized to calculate the relative residual map (RRM) and local dissimilarity map (LDM), contributing to the selection of the optimal threshold. Finally, RRM and LDM corresponding to the optimal threshold are integrated to accurately characterize the small target signal while effectively removing background clutter. The experimental results show that the proposed method is effective in clutter removal and small target detection in diverse complex scenes and is robust to the shape and size of targets. |
---|---|
AbstractList | Existing infrared (IR) small target detection algorithms often lack adaptability in complex scenes and heavily rely on parameter configurations. To address this limitation, we propose a novel IR small target detection method based on adaptive region growing algorithm with iterative threshold analysis that leverages the homogenous compactness of the small target and discontinuity with its surroundings. Initially, the image undergoes adaptive splitting into multiple regions using an automatic seeded region growing (ASRG) algorithm, eliminating the need for preassigned seed points. Next, the segmentation results at each threshold are utilized to calculate the relative residual map (RRM) and local dissimilarity map (LDM), contributing to the selection of the optimal threshold. Finally, RRM and LDM corresponding to the optimal threshold are integrated to accurately characterize the small target signal while effectively removing background clutter. The experimental results show that the proposed method is effective in clutter removal and small target detection in diverse complex scenes and is robust to the shape and size of targets. |
Author | Guo, Zhiwei Li, Zhengzhou Siddique, Abubakar Liu, Yuchuan Yu, Keping Li, Yongsong |
Author_xml | – sequence: 1 givenname: Yongsong orcidid: 0000-0002-5955-2999 surname: Li fullname: Li, Yongsong email: liyongsong@ctbu.edu.cn organization: School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing, China – sequence: 2 givenname: Zhengzhou orcidid: 0000-0001-5275-1728 surname: Li fullname: Li, Zhengzhou email: lizhengzhou@cqu.edu.cn organization: School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, China – sequence: 3 givenname: Zhiwei orcidid: 0000-0001-8868-6913 surname: Guo fullname: Guo, Zhiwei email: zwguo@ctbu.edu.cn organization: School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing, China – sequence: 4 givenname: Abubakar orcidid: 0009-0000-4131-9665 surname: Siddique fullname: Siddique, Abubakar email: abubakar@cqu.edu.cn organization: School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, China – sequence: 5 givenname: Yuchuan orcidid: 0000-0003-3010-7653 surname: Liu fullname: Liu, Yuchuan email: liuyc@cqust.edu.cn organization: School of Intelligent Technology and Engineering, Chongqing University of Science and Technology, Chongqing, China – sequence: 6 givenname: Keping orcidid: 0000-0001-5735-2507 surname: Yu fullname: Yu, Keping email: keping.yu@ieee.org organization: Graduate School of Science and Engineering, Hosei University, Tokyo, Japan |
BookMark | eNpNkE9Lw0AQxRdRsK1-AMHDgufU_ZNsssdYtRYKQhvxGDab2TQlTeruVum3N7E9eJkZeO8NM78xumy7FhC6o2RKKZGP2Xy1njLCwinnsQhZdIFGNIqSgIgwvEQjQqUIWCLZNRo7tyWEhhGNR6hZtMYqCyVe71TT4EzZCjx-Bg_a112Ln5TrxX5IS7X39TfgFVSDMLfdT91WOG2qztZ-s8OffcULD1b9-bKNBbfpmhKnrWqOrnY36MqoxsHtuU_Qx-tLNnsLlu_zxSxdBpqFwgcMpNZGqTgmMkqYFIaaRJbcxImQcak1LQqugZlChrwoIOFFqYkQSWlAUyr4BD2c9u5t93UA5_Ntd7D9ES7nJOr_jiMxuOjJpW3nnAWT7229U_aYU5IPUPMBaj5Azc9Q-8z9KVMDwD9_KJJIMP4L7_12ow |
CODEN | IGRSD2 |
Cites_doi | 10.1016/j.infrared.2018.01.032 10.1016/j.infrared.2019.05.010 10.1016/j.patcog.2016.04.002 10.1109/TGRS.2019.2911513 10.1109/TGRS.2020.3044958 10.1109/LGRS.2020.3004978 10.1109/LGRS.2021.3080986 10.1109/TGRS.2023.3244784 10.1016/j.infrared.2019.06.003 10.1109/TGRS.2021.3074289 10.1016/j.infrared.2021.103657 10.1016/j.patcog.2008.10.013 10.1109/TAES.2020.3024391 10.1364/AO.54.004689 10.1109/TGRS.2021.3068465 10.1109/TAES.2022.3189336 10.1109/TGRS.2023.3276175 10.1117/1.2724874 10.1016/j.jag.2021.102669 10.1016/j.neucom.2020.08.065 10.1109/TGRS.2022.3163173 10.3390/rs12121963 10.1109/tgrs.2020.3040221 10.1109/LGRS.2022.3196433 10.1016/j.sigpro.2020.107727 10.1109/JSTARS.2017.2700023 10.1109/LGRS.2020.3003267 10.1109/TIP.2013.2281420 10.1109/JSTARS.2021.3115637 10.1109/TGRS.2023.3246565 10.1109/LGRS.2019.2912989 10.1109/TGRS.2020.3022069 10.1016/j.infrared.2021.103893 10.1109/TGRS.2017.2660879 10.1109/TPAMI.2008.15 10.1016/j.dsp.2020.102949 10.1109/TGRS.2023.3242960 10.1109/LGRS.2021.3050828 10.1109/TGRS.2023.3276995 10.1109/TIM.2021.3080385 10.1109/TGRS.2013.2242477 10.1109/LGRS.2016.2616416 10.1109/LGRS.2021.3070984 10.1109/TGRS.2012.2190079 10.1109/JSTARS.2018.2828317 10.1109/LGRS.2020.3047524 10.1016/j.patcog.2009.12.023 10.1109/LGRS.2017.2711047 10.1016/j.optlastec.2012.08.009 10.1109/JSTARS.2022.3200380 10.1109/TGRS.2016.2538295 10.1016/j.patcog.2020.107729 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2024.3376425 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 15 |
ExternalDocumentID | 10_1109_TGRS_2024_3376425 10468562 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61675036 funderid: 10.13039/501100001809 – fundername: Open Foundation of Chongqing Key Laboratory for Oil and Gas Production Safety and Risk Control grantid: cqsrc202113 – fundername: Science and Technology Research Project of Chongqing Municipal Education Commission of China grantid: KJQN202200827 – fundername: High-Level Talent Research Start-Up Fund of Chongqing Technology and Business University (CTBU) grantid: 5156022 funderid: 10.13039/501100004500 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAYOK ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS RXW TAE TN5 VH1 XFK Y6R AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c246t-2e9ccfaa770958296f1f89d3f78697dcc1bb3ce2fb943bbe83bdc0668dfec1163 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Thu Oct 10 19:57:42 EDT 2024 Fri Aug 23 02:59:06 EDT 2024 Wed Jun 26 19:38:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-2e9ccfaa770958296f1f89d3f78697dcc1bb3ce2fb943bbe83bdc0668dfec1163 |
ORCID | 0000-0001-8868-6913 0000-0003-3010-7653 0000-0002-5955-2999 0000-0001-5735-2507 0009-0000-4131-9665 0000-0001-5275-1728 |
PQID | 3055177566 |
PQPubID | 85465 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_TGRS_2024_3376425 proquest_journals_3055177566 ieee_primary_10468562 |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref26 doi: 10.1016/j.infrared.2018.01.032 – ident: ref7 doi: 10.1016/j.infrared.2019.05.010 – ident: ref30 doi: 10.1016/j.patcog.2016.04.002 – ident: ref5 doi: 10.1109/TGRS.2019.2911513 – ident: ref14 doi: 10.1109/TGRS.2020.3044958 – ident: ref32 doi: 10.1109/LGRS.2020.3004978 – ident: ref45 doi: 10.1109/LGRS.2021.3080986 – ident: ref1 doi: 10.1109/TGRS.2023.3244784 – ident: ref28 doi: 10.1016/j.infrared.2019.06.003 – ident: ref41 doi: 10.1109/TGRS.2021.3074289 – ident: ref20 doi: 10.1016/j.infrared.2021.103657 – ident: ref49 doi: 10.1016/j.patcog.2008.10.013 – ident: ref13 doi: 10.1109/TAES.2020.3024391 – ident: ref17 doi: 10.1364/AO.54.004689 – ident: ref24 doi: 10.1109/TGRS.2021.3068465 – ident: ref3 doi: 10.1109/TAES.2022.3189336 – ident: ref48 doi: 10.1109/TGRS.2023.3276175 – ident: ref44 doi: 10.1117/1.2724874 – ident: ref52 doi: 10.1016/j.jag.2021.102669 – ident: ref23 doi: 10.1016/j.neucom.2020.08.065 – ident: ref11 doi: 10.1109/TGRS.2022.3163173 – ident: ref15 doi: 10.3390/rs12121963 – ident: ref21 doi: 10.1109/tgrs.2020.3040221 – ident: ref38 doi: 10.1109/LGRS.2022.3196433 – ident: ref27 doi: 10.1016/j.sigpro.2020.107727 – ident: ref22 doi: 10.1109/JSTARS.2017.2700023 – ident: ref31 doi: 10.1109/LGRS.2020.3003267 – ident: ref4 doi: 10.1109/TIP.2013.2281420 – ident: ref51 doi: 10.1109/JSTARS.2021.3115637 – ident: ref47 doi: 10.1109/TGRS.2023.3246565 – ident: ref39 doi: 10.1109/LGRS.2019.2912989 – ident: ref8 doi: 10.1109/TGRS.2020.3022069 – ident: ref16 doi: 10.1016/j.infrared.2021.103893 – ident: ref6 doi: 10.1109/TGRS.2017.2660879 – ident: ref40 doi: 10.1109/TPAMI.2008.15 – ident: ref50 doi: 10.1016/j.dsp.2020.102949 – ident: ref33 doi: 10.1109/TGRS.2023.3242960 – ident: ref12 doi: 10.1109/LGRS.2021.3050828 – ident: ref10 doi: 10.1109/TGRS.2023.3276995 – ident: ref43 doi: 10.1109/TIM.2021.3080385 – ident: ref29 doi: 10.1109/TGRS.2013.2242477 – ident: ref46 doi: 10.1109/LGRS.2016.2616416 – ident: ref36 doi: 10.1109/LGRS.2021.3070984 – ident: ref42 doi: 10.1109/TGRS.2012.2190079 – ident: ref9 doi: 10.1109/JSTARS.2018.2828317 – ident: ref34 doi: 10.1109/LGRS.2020.3047524 – ident: ref19 doi: 10.1016/j.patcog.2009.12.023 – ident: ref35 doi: 10.1109/LGRS.2017.2711047 – ident: ref18 doi: 10.1016/j.optlastec.2012.08.009 – ident: ref37 doi: 10.1109/JSTARS.2022.3200380 – ident: ref25 doi: 10.1109/TGRS.2016.2538295 – ident: ref2 doi: 10.1016/j.patcog.2020.107729 |
SSID | ssj0014517 |
Score | 2.5491052 |
Snippet | Existing infrared (IR) small target detection algorithms often lack adaptability in complex scenes and heavily rely on parameter configurations. To address... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Adaptability Adaptive algorithms Adaptive region growing algorithm Algorithms Clutter Filtering algorithms Image edge detection Image segmentation infrared (IR) imaging Infrared analysis Iterative algorithms iterative threshold analysis Object detection Remote sensing small target detection Target detection |
Title | Infrared Small Target Detection Based on Adaptive Region Growing Algorithm With Iterative Threshold Analysis |
URI | https://ieeexplore.ieee.org/document/10468562 https://www.proquest.com/docview/3055177566 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4qCHrwLa4vcvAkdLdJ06Y5rm8FPeiKeyt5qrh2Zbd78dc7SbuyKIKXkkMaQmYyj8w3MwgdcWITRg2PYidoxChxkVAmBoJocEByCTrb5zvf3mVXj-ymn_abZPWQC2OtDeAz2_bDEMs3Qz3xT2UdH4_MUy9x57kQdbLWd8iApaTJjc4i8CJoE8Iksej0Lu8fwBWkrJ3AfWK-LfaMEgpdVX6J4qBfLlbR3XRnNazkrT2pVFt__ija-O-tr6GVxtLE3Zo11tGcLTfQ8kz9wQ20GPCferyJBtelG3ksOn54l4MB7gWAOD6zVYBqlfgEtJ3BMOga-eFFJL63HsqML8GPh8Vwd_A8HL1WL-_4Cb74OlRr9vN6wC1jH-TC0wIoW-jx4rx3ehU1jRgiTVlWRdQKrZ2UnINBllOROeJyYRLH80xwozVRKtGWOiVYopTNE2U02DK5cVYTsPi20UI5LO0OwonhXIJkM3kaM5YyKVgqwa2JlckkJbaFjqeUKT7qehtF8FNiUXgyFp6MRUPGFtryJz0zsT7kFtqfErNoruS48KXNCOdgvu7-8dseWvKr1w8s-2ihGk3sAZgclToMrPYF9sLSkw |
link.rule.ids | 315,783,787,799,4033,27937,27938,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VrRBwKFCKWCitD5yQso0dJ46Py6PdhXYPbSp6i_ykFdtstZu98OsZO1m0AiH1EvngJJa_sWfG880Y4L2gLuPMiiT1kiWcUZ9IbVMExKADUirU2SHf-XxajK_41-v8uk9Wj7kwzrlIPnPD0IyxfDs3q3BUdhzikWUedtydPBgWXbrWn6ABz2mfHV0k6EewPohJU3lcnV5cojPI-DDDFcXDxdgbaijeq_LPZhw1zMkzmK7H1hFLfg5XrR6aX3-VbXzw4J_Dbm9rklEnHC9gyzV78HSjAuEePIoMULN8CbNJ4xeBjU4u79RsRqpIESefXRvJWg35iPrOEmyMrLoPmyS5cIHMTE7Rk8ePkdHsx3xx297cke_4JJNYrzn0q1BeliHMRdYlUPbh6uRL9Wmc9FcxJIbxok2Yk8Z4pYRAk6xksvDUl9JmXpSFFNYYqnVmHPNa8kxrV2baGrRmSuudoWjzvYLtZt6410AyK4RC8GyZp5znXEmeK3RsUm0LxagbwIc1MvV9V3Gjjp5KKusAYx1grHsYB7AfZnqjYzfJAzhYg1n3i3JZh-JmVAg0YN_857UjeDyuzs_qs8n021t4Ev7UHbccwHa7WLl3aIC0-jCK3W8muNXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infrared+Small+Target+Detection+Based+on+Adaptive+Region+Growing+Algorithm+With+Iterative+Threshold+Analysis&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Li%2C+Yongsong&rft.au=Li%2C+Zhengzhou&rft.au=Guo%2C+Zhiwei&rft.au=Siddique%2C+Abubakar&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTGRS.2024.3376425&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3376425 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |