Estimation of Overfitting Degree of Algebraic Machine Learning in Boolean Algebra

The paper presents an estimation of overfitting probability for VKF-method of algebraic machine learning in the simplest case of Boolean algebra without counter-examples. The model uses the Vapnik—Chervonenkis proposal to minimize the empirical risk. Asymptotically the probability of overfitting err...

Full description

Saved in:
Bibliographic Details
Published inAutomatic documentation and mathematical linguistics Vol. 56; no. 3; pp. 160 - 162
Main Author Vinogradov, D.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.06.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0005-1055
1934-8371
DOI10.3103/S0005105522030098

Cover

Abstract The paper presents an estimation of overfitting probability for VKF-method of algebraic machine learning in the simplest case of Boolean algebra without counter-examples. The model uses the Vapnik—Chervonenkis proposal to minimize the empirical risk. Asymptotically the probability of overfitting errors for a fixed fraction of test examples tends to zero faster than exponentially decrease if the description length and the number of requested hypotheses go to infinity.
AbstractList The paper presents an estimation of overfitting probability for VKF-method of algebraic machine learning in the simplest case of Boolean algebra without counter-examples. The model uses the Vapnik—Chervonenkis proposal to minimize the empirical risk. Asymptotically the probability of overfitting errors for a fixed fraction of test examples tends to zero faster than exponentially decrease if the description length and the number of requested hypotheses go to infinity.
Author Vinogradov, D.
Author_xml – sequence: 1
  givenname: D.
  surname: Vinogradov
  fullname: Vinogradov, D.
  email: vinogradov.d.w@gmail.com
  organization: Federal Research Center Computer Science and Control, Russian Academy of Sciences
BookMark eNp9kE1LAzEQhoNUsK3-AG8Lnlcn2e9jrfUDKkXU85LNTtaUNalJKvjvzVpFUPQ0JPM8M8k7ISNtNBJyTOE0oZCc3QNARiHLGIMEoCr3yJhWSRqXSUFHZDy046F_QCbOrcMpK6t0TO4Wzqtn7pXRkZHR6hWtVN4r3UUX2FnE4XbWd9hYrkR0y8WT0hgtkVs9QEpH58b0yPUXdUj2Je8dHn3WKXm8XDzMr-Pl6upmPlvGgqW5jxlLuRTAUtZiyVseaktZmWdVXtI8L0SbNhyKRBZNwyoREFkBTRm0EvNWQDIlJ7u5G2tetuh8vTZbq8PKmhVhblUwWgaK7ihhjXMWZb2x4b_2raZQD8nVv5ILTvHDEcp_RORDCP2_JtuZLmzRHdrvN_0tvQPRWYF6
CitedBy_id crossref_primary_10_1080_10106049_2024_2379842
Cites_doi 10.3103/S0005105518010090
10.1063/1.3062516
ContentType Journal Article
Copyright Allerton Press, Inc. 2022. ISSN 0005-1055, Automatic Documentation and Mathematical Linguistics, 2022, Vol. 56, No. 3, pp. 160–162. © Allerton Press, Inc., 2022. Russian Text © The Author(s), 2022, published in Nauchno-Tekhnicheskaya Informatsiya, Seriya 2: Informatsionnye Protsessy i Sistemy, 2022, No. 6, pp. 17–19.
Copyright_xml – notice: Allerton Press, Inc. 2022. ISSN 0005-1055, Automatic Documentation and Mathematical Linguistics, 2022, Vol. 56, No. 3, pp. 160–162. © Allerton Press, Inc., 2022. Russian Text © The Author(s), 2022, published in Nauchno-Tekhnicheskaya Informatsiya, Seriya 2: Informatsionnye Protsessy i Sistemy, 2022, No. 6, pp. 17–19.
DBID AAYXX
CITATION
DOI 10.3103/S0005105522030098
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
Computer Science
EISSN 1934-8371
EndPage 162
ExternalDocumentID 10_3103_S0005105522030098
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
23N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5GY
5VS
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
H~9
IJ-
IKXTQ
IWAJR
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9O
PF-
PT4
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W48
WK8
XU3
YLTOR
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
ID FETCH-LOGICAL-c246t-224afc0242de8ada42dd128659681667cd4ba073f7bb29c8adf901420dfe6dc03
IEDL.DBID AGYKE
ISSN 0005-1055
IngestDate Tue Sep 09 14:51:18 EDT 2025
Tue Jul 01 04:21:36 EDT 2025
Thu Apr 24 23:00:30 EDT 2025
Fri Feb 21 02:45:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords overfitting
empirical risk
Boolean algebra
VKF-method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-224afc0242de8ada42dd128659681667cd4ba073f7bb29c8adf901420dfe6dc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2702497218
PQPubID 2043878
PageCount 3
ParticipantIDs proquest_journals_2702497218
crossref_primary_10_3103_S0005105522030098
crossref_citationtrail_10_3103_S0005105522030098
springer_journals_10_3103_S0005105522030098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Automatic documentation and mathematical linguistics
PublicationTitleAbbrev Autom. Doc. Math. Linguist
PublicationYear 2022
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References Vorontsov (CR4) 2004
CR2
CR5
Anshakov (CR7) 2009
Vinogradov (CR1) 2018; 934
Feller (CR6) 1958
Vinogradov (CR3) 2018; 52
7110_CR5
W. Feller (7110_CR6) 1958
D.V. Vinogradov (7110_CR1) 2018; 934
D.V. Vinogradov (7110_CR3) 2018; 52
7110_CR2
K.V. Vorontsov (7110_CR4) 2004
(7110_CR7) 2009
References_xml – volume: 52
  start-page: 35
  year: 2018
  end-page: 37
  ident: CR3
  article-title: The rate of convergence to the limit of the probability of encountering an accidental similarity in the presence of counter examples
  publication-title: Autom. Doc. Math. Linguist.
  doi: 10.3103/S0005105518010090
– year: 1958
  ident: CR6
  doi: 10.1063/1.3062516
– ident: CR5
– ident: CR2
– year: 2004
  ident: CR4
  publication-title: Combinatorial approach to estimation of quality of learnable algorithms, (Mathematical Questions of Cybernetics)
– volume: 934
  start-page: 46
  year: 2018
  end-page: 59
  ident: CR1
  article-title: Machine learning based on similarity operation
  publication-title: Commun. Comput. Inf. Sci.
– year: 2009
  ident: CR7
  publication-title: (JSM Method of Automated Hypothesis Generation: Logical and Epistemological Foundations)
– volume: 52
  start-page: 35
  year: 2018
  ident: 7110_CR3
  publication-title: Autom. Doc. Math. Linguist.
  doi: 10.3103/S0005105518010090
– ident: 7110_CR5
– volume-title: DSM-metod avtomaticheskogo porozhdeniya gipotez: logicheskie i epistemologicheskie osnovaniya (JSM Method of Automated Hypothesis Generation: Logical and Epistemological Foundations)
  year: 2009
  ident: 7110_CR7
– volume: 934
  start-page: 46
  year: 2018
  ident: 7110_CR1
  publication-title: Commun. Comput. Inf. Sci.
– volume-title: An Introduction to Probability Theory and Its Applications
  year: 1958
  ident: 7110_CR6
  doi: 10.1063/1.3062516
– ident: 7110_CR2
– volume-title: Combinatorial approach to estimation of quality of learnable algorithms, Matematicheskie voprosy kibernetiki (Mathematical Questions of Cybernetics)
  year: 2004
  ident: 7110_CR4
SSID ssj0055894
Score 2.191277
Snippet The paper presents an estimation of overfitting probability for VKF-method of algebraic machine learning in the simplest case of Boolean algebra without...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 160
SubjectTerms Boolean algebra
Computer Science
Fractions
Information Storage and Retrieval
Intelligent Systems
Machine learning
Title Estimation of Overfitting Degree of Algebraic Machine Learning in Boolean Algebra
URI https://link.springer.com/article/10.3103/S0005105522030098
https://www.proquest.com/docview/2702497218
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_cfPHF-YnzizyID0pHlzVt8jh1UxQVYYP5VNo0HcPRiut88K831yaKn7CnQnItbe5yd-nvPgCOWIrNYz3h-DyhjvbAqSMCvfH8QASMRh1Fy9ic2zv_auhdj9jI5HHPbLS7hSRLTV2eK90O5vSiADHtMGjBdAWvwTJrc8HrsNy9fLzpWQXMGBdV8eWyyCZjFZj5-0O-mqNPH_MbLFpam34DBvY9qyCTp9a8iFvy7VsJxwU_ZA1WjfdJupW4rMOSyjagYTs7ELPRN-DApDOQY2LylZB_dn4THnpaM5jBPCX3r9jruoygJhdKn-AVjnanY0SlJ5LclhGbiphirmMyychZnk9VlFmqLRj2e4PzK8c0Z3Ak9fzC0aY_SiVa-ETxKIn0NWljmqvwEYoMZOLFkdYfaRDHVEhNkiJiS90kVX4i3c421LM8UztAuPR4KgKldS_CipTLVHtFiee3FYKIsgmu5VEoTeVybKAxDfUJBpc0_LGkTTj5uOW5KtvxH_G-ZXxodvAsxDw9D0sb6elTy8fP6T8ftrsQ9R6sUMynKH_r7EO9eJmrA-3lFPGhkepDqA1p9x0zIO0K
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UD3rxgRpR0B6MB80mS9lHe0SFoALGBBJum90-CAnZNYL-fjvdVuIz8bRJO7uHaafzdb95IHQeKmgeGzAvooJ4GoETj8Xa8KKYxSFJW5KY2JzBMOqNg_tJOLF53AsX7e4oSXNSm3ul34KcXthAoQYMemP6jK6jDY0FKLQtGJO2O37DkLKy9LIpsRmGJZX58yc-O6MVwvxCihpf091F2xYk4na5qntoTeZVtOMaMGBrj1XUsFkH-ALbtCJQs5vfR08dbcB2sFD48Q1aUptAZ3wr9UVbwmh7PgXyeMbxwARWSmxrrk7xLMfXRTGXae6kDtC42xnd9DzbQ8HjJIiWnvbQqeLgiIWkqUj1UzQhG5VFwBjGXARZqs1cxVlGGNciCohV4gslI8H91iGq5EUujxCmPKCKxVIfkcD-EcqVBi8iiJoSuD5eQ75TZsJtgXHoczFP9EUD9J98038NXX688lxW1_hLuO5WKLGGtkggnS6ACkR6-sqt2mr6148d_0v6DG32RoN-0r8bPpygLQIpEOZPTB1Vli-vsqGByTI7NRvxHSg90lc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QXzxYypON82D-KAUu6xpm8fpNubHpoKDvZU2H2Mw2uGqf7-5NnH4CT4VkkseLne5S3_3gdApVdA81mOOHwriaA-cOCzQiucHLKAkbklSxOYMhn5_5N2O6dj0OV3YaHcLSZY5DVClKc0v50JdFm9MtwX5vSBMVDsPWkhdFq6iNX0bN0HQR6Rtr2JKQ1aWYS7KbVJawpo_b_HZMC29zS8AaWF3etto0ziMuF2e8A5akWkVbdlmDNjoZhU1TAYCPsMmxQhYbud30VNXK7MZzBR-eIP21EXQM-5I_eiWMNqeTQBInnI8KIIsJTb1Vyd4muKrLJvJOLVUe2jU6z5f9x3TT8HhxPNzR1vrWHEwykKGsYj1VzQhM5X5gB4GXHhJrFVeBUlCGNckCkBW4golfcHd1j6qpFkqDxAOuRcqFkh9XQISSEKutCMjPL8pAffjNeRaZkbcFBuHnhezSD86gP_RN_7X0PnHknlZaeMv4ro9ocgo3SKC1DoPqhHp6Qt7asvpXzc7_Bf1CVp_7PSi-5vh3RHaIJANUfyUqaNK_vIqG9pHyZPjQg7fAcKT1pM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+Overfitting+Degree+of+Algebraic+Machine+Learning+in+Boolean+Algebra&rft.jtitle=Automatic+documentation+and+mathematical+linguistics&rft.au=Vinogradov%2C+D.&rft.date=2022-06-01&rft.issn=0005-1055&rft.eissn=1934-8371&rft.volume=56&rft.issue=3&rft.spage=160&rft.epage=162&rft_id=info:doi/10.3103%2FS0005105522030098&rft.externalDBID=n%2Fa&rft.externalDocID=10_3103_S0005105522030098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1055&client=summon