Rotational Direction of a Weak Magnetic Field Selectively Targets Chiral Clusters in Liquid Water and Modifies Its Chemical Reactivity

Liquid water is thought by many to be composed of a quasi-stable mixture of clusters that range in size from dimers to several hundred molecules and even to micrometer-size units [1–3]. The implications of such a three-dimensional structure, or whether it even exists, are often subject to debate. Wh...

Full description

Saved in:
Bibliographic Details
Published inJournal of water chemistry and technology Vol. 45; no. 6; pp. 544 - 551
Main Author Stemler, A. J.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Liquid water is thought by many to be composed of a quasi-stable mixture of clusters that range in size from dimers to several hundred molecules and even to micrometer-size units [1–3]. The implications of such a three-dimensional structure, or whether it even exists, are often subject to debate. While many treatments (temperature change, shaking, electro-magnetic radiation, etc.) alter the physical-chemical properties of water, just how these interventions may affect the assemblage of clusters is often a matter of conjecture. The object of this study is to relate the effect of a weak, spinning, magnetic field to the assemblage of water clusters, and the subsequent changes in the chemical reactivity of bulk water. The results show that such a weak, rotating, magnetic field applied to water can either increase or decrease the spontaneous net rate of hydration of CO 2 , depending on the direction of spin of the magnet and the history of a given water sample. The targets for a magnetic field applied in this way are chiral water clusters and their destruction, or the inter/intra-conversion of enantiomers, can change the reactivity of water. The conclusion is that samples of distilled water, under otherwise identical conditions, can have a range of chemical reactivities depending on their individual assemblage of clusters.
AbstractList Liquid water is thought by many to be composed of a quasi-stable mixture of clusters that range in size from dimers to several hundred molecules and even to micrometer-size units [1–3]. The implications of such a three-dimensional structure, or whether it even exists, are often subject to debate. While many treatments (temperature change, shaking, electro-magnetic radiation, etc.) alter the physical-chemical properties of water, just how these interventions may affect the assemblage of clusters is often a matter of conjecture. The object of this study is to relate the effect of a weak, spinning, magnetic field to the assemblage of water clusters, and the subsequent changes in the chemical reactivity of bulk water. The results show that such a weak, rotating, magnetic field applied to water can either increase or decrease the spontaneous net rate of hydration of CO2, depending on the direction of spin of the magnet and the history of a given water sample. The targets for a magnetic field applied in this way are chiral water clusters and their destruction, or the inter/intra-conversion of enantiomers, can change the reactivity of water. The conclusion is that samples of distilled water, under otherwise identical conditions, can have a range of chemical reactivities depending on their individual assemblage of clusters.
Liquid water is thought by many to be composed of a quasi-stable mixture of clusters that range in size from dimers to several hundred molecules and even to micrometer-size units [1–3]. The implications of such a three-dimensional structure, or whether it even exists, are often subject to debate. While many treatments (temperature change, shaking, electro-magnetic radiation, etc.) alter the physical-chemical properties of water, just how these interventions may affect the assemblage of clusters is often a matter of conjecture. The object of this study is to relate the effect of a weak, spinning, magnetic field to the assemblage of water clusters, and the subsequent changes in the chemical reactivity of bulk water. The results show that such a weak, rotating, magnetic field applied to water can either increase or decrease the spontaneous net rate of hydration of CO 2 , depending on the direction of spin of the magnet and the history of a given water sample. The targets for a magnetic field applied in this way are chiral water clusters and their destruction, or the inter/intra-conversion of enantiomers, can change the reactivity of water. The conclusion is that samples of distilled water, under otherwise identical conditions, can have a range of chemical reactivities depending on their individual assemblage of clusters.
Author Stemler, A. J.
Author_xml – sequence: 1
  givenname: A. J.
  surname: Stemler
  fullname: Stemler, A. J.
  email: ajstemler@ucdavis.edu
  organization: Department of Plant Biology, University of California-Davis
BookMark eNp9kN1KxDAQhYOs4Lr6AN4FvK7mr2lzKdVVYUVYV9a7EpvpGq2tJllhX8DnNrWCoOjVDHPON5OcXTRquxYQOqDkiFPCj28okVyk6R3jRBJK0y00poqLRHF5N4p9lJNe30G73j8SkkrG0zF6n3dBB9u1usGn1kHV97irscZL0E_4Sq9aCLbCUwuNwTfQ9JY3aDZ4od0KgsfFg3WRLpq1D-A8ti2e2de1NXip4wDr1uCrztjagseXnwA82yoic9D9Mhs2e2i71o2H_a86QbfTs0Vxkcyuzy-Lk1lSMSFDwqhgwJnK84reZ0LVUppUSMWozoyRUuaE0TwFRbWJWm0IEVAJyJQxWmWGT9DhsPfFda9r8KF87NYuft6XLFckZ4pyEV10cFWu895BXb44-6zdpqSk7OMuf8UdmewHU9kh2eC0bf4l2UD6eKVdgft-09_QB12vlT8
CitedBy_id crossref_primary_10_3390_w16101381
Cites_doi 10.1016/S0301-0104(00)00189-0
10.3390/w13172441
10.1371/journal.pone.0195057
10.1038/s41598-019-39198-y
10.1080/00268971003762134
10.1006/abio.1993.1203
10.1016/0304-4165(72)90315-7
10.1371/journal.pone.0260967
10.1002/btpr.3035
10.1016/S0021-9258(18)48696-6
10.1007/s10265-005-0246-y
10.3103/S1063455X17060029
10.1016/j.homp.2007.05.006
10.3103/S1063455X08020033
10.3103/S002713491604010X
10.1002/jcc.23144
10.1080/14328917.2005.11784911
10.3390/plants9091139
10.2307/1540514
10.1039/c9nj01659g
10.1142/S0217984912500698
10.1063/1.2429659
10.1007/978-3-319-04334-0_3
10.1007/978-981-10-3579-1_5
ContentType Journal Article
Copyright Allerton Press, Inc. 2023. ISSN 1063-455X, Journal of Water Chemistry and Technology, 2023, Vol. 45, No. 6, pp. 544–551. © Allerton Press, Inc., 2023.
Copyright_xml – notice: Allerton Press, Inc. 2023. ISSN 1063-455X, Journal of Water Chemistry and Technology, 2023, Vol. 45, No. 6, pp. 544–551. © Allerton Press, Inc., 2023.
DBID AAYXX
CITATION
7QH
7UA
C1K
F1W
H96
H97
L.G
DOI 10.3103/S1063455X23060115
DatabaseName CrossRef
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1934-936X
EndPage 551
ExternalDocumentID 10_3103_S1063455X23060115
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
29L
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VS
6NX
7XC
88I
8CJ
8FE
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKC
AAJBT
AAJKR
AAMNW
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ATCPS
AXYYD
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCPQU
COF
CS3
D1J
D1K
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
I-F
IJ-
IKXTQ
IWAJR
I~X
I~Z
J-C
JBSCW
JZLTJ
K6-
KOV
LK5
LK8
LLZTM
M2P
M4Y
M7P
M7R
MA-
ML-
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9N
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XU3
YLTOR
Z7Y
ZMTXR
~02
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
7QH
7UA
ABRTQ
C1K
F1W
H96
H97
L.G
ID FETCH-LOGICAL-c246t-2142e32988c1b749f66d546921a7dd666802185e91adf66fd004ec4e79dda97d3
IEDL.DBID U2A
ISSN 1063-455X
IngestDate Wed Aug 13 06:32:23 EDT 2025
Tue Jul 01 04:27:43 EDT 2025
Thu Apr 24 23:00:56 EDT 2025
Fri Feb 21 02:41:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords water memory
magnetic field
water clusters
chirality
water structure
water
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-2142e32988c1b749f66d546921a7dd666802185e91adf66fd004ec4e79dda97d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2890829134
PQPubID 54472
PageCount 8
ParticipantIDs proquest_journals_2890829134
crossref_primary_10_3103_S1063455X23060115
crossref_citationtrail_10_3103_S1063455X23060115
springer_journals_10_3103_S1063455X23060115
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Dordrecht
PublicationTitle Journal of water chemistry and technology
PublicationTitleAbbrev J. Water Chem. Technol
PublicationYear 2023
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References Rad, Stahlberg, Kung, Pollack (CR16) 2021; 16
Roy, Tiller, Bell, Hoover (CR4) 2005; 9
Gibbons, Edsall (CR20) 1963; 238
CR17
Chaplin (CR1) 2013; 58
CR15
Rao, Sedlmayr, Roy, Kanzius (CR14) 2010; 98
Brown, Chow (CR27) 1975; 148
Sarraf, Kataria, Taimourya, Santos, Menegatti, Jain, Ihtisham, Liu (CR24) 2020; 9
Chaplin (CR8) 2007; 96
Sidorenko, Brilly, Laptev, Gorlenko, Antoshkin, Vidmar, Kryžanowski (CR11) 2021; 13
Wasak, Drozd, Jankowiak, Rakoczy (CR23) 2019; 9
Pang, Deng, Tang (CR10) 2012; 26
Garg, Maren (CR22) 1972; 261
CR2
Wang, Cao (CR21) 2013; 34
Galland, Pazur (CR25) 2005; 118
Xantheas (CR5) 2000; 258
Khakhalin, Gradoboeva (CR7) 2016; 71
Goncharuk, Syroeshkin, Pleteneva, Uspenskay, Levitskaya, Tverdislov (CR3) 2017; 39
Malloum, Fifen, Dhaouadi, Engoa, Conradie (CR6) 2019; 43
Clark, Cappa, Smith, Saykally, Head-Gordon (CR9) 2010; 108
CR26
Stemler (CR19) 1993; 210
Emamdadi, Gholizadeh, Housaindokht (CR12) 2020; 36
Hwang, Hong, Sharma, Pollack, Bahng (CR18) 2018; 13
Goncharuk, Orekhova, Malyarenko (CR13) 2008; 30
F.A. Brown (7256_CR27) 1975; 148
V.V. Goncharuk (7256_CR3) 2017; 39
M. Sarraf (7256_CR24) 2020; 9
V.V. Goncharuk (7256_CR13) 2008; 30
B.H. Gibbons (7256_CR20) 1963; 238
S.G. Hwang (7256_CR18) 2018; 13
M.F. Chaplin (7256_CR1) 2013; 58
P. Galland (7256_CR25) 2005; 118
L.C. Garg (7256_CR22) 1972; 261
A. Wasak (7256_CR23) 2019; 9
M.L. Rao (7256_CR14) 2010; 98
7256_CR2
7256_CR26
A. Stemler (7256_CR19) 1993; 210
A.V. Khakhalin (7256_CR7) 2016; 71
N. Emamdadi (7256_CR12) 2020; 36
S. Xantheas (7256_CR5) 2000; 258
G. Sidorenko (7256_CR11) 2021; 13
7256_CR17
I. Rad (7256_CR16) 2021; 16
G.N.I. Clark (7256_CR9) 2010; 108
A. Malloum (7256_CR6) 2019; 43
7256_CR15
X-F. Pang (7256_CR10) 2012; 26
B. Wang (7256_CR21) 2013; 34
M.F. Chaplin (7256_CR8) 2007; 96
R. Roy (7256_CR4) 2005; 9
References_xml – volume: 58
  start-page: 41
  year: 2013
  end-page: 45
  ident: CR1
  article-title: What is liquid water
  publication-title: Sci. Soc.
– volume: 258
  start-page: 225
  year: 2000
  end-page: 231
  ident: CR5
  article-title: Cooperativity and hydrogen bonding network in water clusters
  publication-title: Chem. Phys.
  doi: 10.1016/S0301-0104(00)00189-0
– volume: 98
  start-page: 1500
  year: 2010
  end-page: 1504
  ident: CR14
  article-title: Polarized microwave and RF radiation effects on the structure and stability of liquid water
  publication-title: Curr. Sci.
– ident: CR2
– volume: 13
  start-page: 2441
  year: 2021
  end-page: 2455
  ident: CR11
  article-title: The role of modification of the structure of water and water-containing systems in changing their biological, therapeutic, and other properties overview
  publication-title: Water
  doi: 10.3390/w13172441
– volume: 13
  start-page: e0195057
  year: 2018
  ident: CR18
  article-title: Exclusion zone and heterogeneous water structure at ambient temperature
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0195057
– volume: 9
  start-page: 3707
  year: 2019
  ident: CR23
  article-title: Rotating magnetic field as tool for enhancing enzymes properties—Laccase case study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-39198-y
– volume: 108
  start-page: 1415
  year: 2010
  end-page: 1433
  ident: CR9
  article-title: The structure of ambient water
  publication-title: Mol. Phys.
  doi: 10.1080/00268971003762134
– volume: 210
  start-page: 328
  year: 1993
  end-page: 331
  ident: CR19
  article-title: An assay for carbonic anhydrase activity and reactions that produce radiolabeled gases or small uncharged molecules
  publication-title: Anal. Biochem
  doi: 10.1006/abio.1993.1203
– volume: 261
  start-page: 70
  year: 1972
  end-page: 76
  ident: CR22
  article-title: The rates of hydration of carbon dioxide and dehydration of carbonic acid at 37°C
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0304-4165(72)90315-7
– volume: 16
  start-page: e0260967
  year: 2021
  ident: CR16
  article-title: Low frequency weak electric fields can induce structural changes in water
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0260967
– volume: 36
  start-page: e3035
  year: 2020
  ident: CR12
  article-title: The effect of magnetized water on the oxidation reaction of phenol derivatives and aromatic amines by horseradish peroxidase enzyme
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.3035
– ident: CR15
– volume: 238
  start-page: 3502
  year: 1963
  end-page: 3507
  ident: CR20
  article-title: Rate of hydration of carbon dioxide and dehydration of carbonic acid at 25°
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)48696-6
– volume: 118
  start-page: 371
  year: 2005
  end-page: 389
  ident: CR25
  article-title: Magnetoreception in plants
  publication-title: J. Plant Res.
  doi: 10.1007/s10265-005-0246-y
– volume: 39
  start-page: 319
  year: 2017
  end-page: 324
  ident: CR3
  article-title: On the possibility of chiral structure-density submillimeter inhomogeneities existing in water
  publication-title: J. Water Chem. Tech
  doi: 10.3103/S1063455X17060029
– ident: CR17
– volume: 96
  start-page: 143
  year: 2007
  end-page: 150
  ident: CR8
  article-title: The memory of water: An overview
  publication-title: Homeopathy
  doi: 10.1016/j.homp.2007.05.006
– volume: 30
  start-page: 80
  year: 2008
  end-page: 84
  ident: CR13
  article-title: Influence of temperature on water clusters
  publication-title: J. Water Chem. Technol.
  doi: 10.3103/S1063455X08020033
– volume: 71
  start-page: 413
  year: 2016
  end-page: 419
  ident: CR7
  article-title: Investigation of the chiral properties of configurations of (H O) , K (H O) , and Na (H O) ( = 4–8, = 5–10) small water clusters at 1 K
  publication-title: Moscow Univ. Phys. Bull.
  doi: 10.3103/S002713491604010X
– volume: 34
  start-page: 372
  year: 2013
  end-page: 378
  ident: CR21
  article-title: How water molecules modulate the hydration of CO in water solution: Insight from the cluster-continuum model calculations
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23144
– volume: 9
  start-page: 98
  year: 2005
  end-page: 103
  ident: CR4
  article-title: The structure of liquid water; Novel insights from materials research; Potential relevance to homeopathy
  publication-title: Mater. Res. Innovations
  doi: 10.1080/14328917.2005.11784911
– volume: 9
  start-page: 1139
  year: 2020
  end-page: 1156
  ident: CR24
  article-title: Magnetic field (MF) applications in plants: An overview
  publication-title: Plants
  doi: 10.3390/plants9091139
– volume: 148
  start-page: 370
  year: 1975
  end-page: 379
  ident: CR27
  article-title: Non-equivalence for bean seeds of clockwise and counterclockwise magnetic motion: A novel terrestrial adaptation
  publication-title: Biol. Bull.
  doi: 10.2307/1540514
– volume: 43
  start-page: 13020
  year: 2019
  end-page: 13037
  ident: CR6
  article-title: Structures, relative stability and binding energies of neutral water clusters, (H O)
  publication-title: New J. Chem.
  doi: 10.1039/c9nj01659g
– volume: 26
  start-page: 1250069
  year: 2012
  ident: CR10
  article-title: Influence of magnetic field on macroscopic properties of water
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984912500698
– ident: CR26
– volume: 148
  start-page: 370
  year: 1975
  ident: 7256_CR27
  publication-title: Biol. Bull.
  doi: 10.2307/1540514
– volume: 9
  start-page: 98
  year: 2005
  ident: 7256_CR4
  publication-title: Mater. Res. Innovations
  doi: 10.1080/14328917.2005.11784911
– volume: 210
  start-page: 328
  year: 1993
  ident: 7256_CR19
  publication-title: Anal. Biochem
  doi: 10.1006/abio.1993.1203
– volume: 13
  start-page: 2441
  year: 2021
  ident: 7256_CR11
  publication-title: Water
  doi: 10.3390/w13172441
– ident: 7256_CR17
  doi: 10.1063/1.2429659
– volume: 238
  start-page: 3502
  year: 1963
  ident: 7256_CR20
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)48696-6
– volume: 118
  start-page: 371
  year: 2005
  ident: 7256_CR25
  publication-title: J. Plant Res.
  doi: 10.1007/s10265-005-0246-y
– volume: 58
  start-page: 41
  year: 2013
  ident: 7256_CR1
  publication-title: Sci. Soc.
– volume: 9
  start-page: 1139
  year: 2020
  ident: 7256_CR24
  publication-title: Plants
  doi: 10.3390/plants9091139
– volume: 39
  start-page: 319
  year: 2017
  ident: 7256_CR3
  publication-title: J. Water Chem. Tech
  doi: 10.3103/S1063455X17060029
– volume: 26
  start-page: 1250069
  year: 2012
  ident: 7256_CR10
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984912500698
– volume: 96
  start-page: 143
  year: 2007
  ident: 7256_CR8
  publication-title: Homeopathy
  doi: 10.1016/j.homp.2007.05.006
– volume: 36
  start-page: e3035
  year: 2020
  ident: 7256_CR12
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.3035
– volume: 16
  start-page: e0260967
  year: 2021
  ident: 7256_CR16
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0260967
– ident: 7256_CR2
  doi: 10.1007/978-3-319-04334-0_3
– volume: 13
  start-page: e0195057
  year: 2018
  ident: 7256_CR18
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0195057
– volume: 261
  start-page: 70
  year: 1972
  ident: 7256_CR22
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0304-4165(72)90315-7
– volume: 30
  start-page: 80
  year: 2008
  ident: 7256_CR13
  publication-title: J. Water Chem. Technol.
  doi: 10.3103/S1063455X08020033
– ident: 7256_CR26
  doi: 10.1007/978-981-10-3579-1_5
– volume: 98
  start-page: 1500
  year: 2010
  ident: 7256_CR14
  publication-title: Curr. Sci.
– volume: 71
  start-page: 413
  year: 2016
  ident: 7256_CR7
  publication-title: Moscow Univ. Phys. Bull.
  doi: 10.3103/S002713491604010X
– ident: 7256_CR15
– volume: 34
  start-page: 372
  year: 2013
  ident: 7256_CR21
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23144
– volume: 108
  start-page: 1415
  year: 2010
  ident: 7256_CR9
  publication-title: Mol. Phys.
  doi: 10.1080/00268971003762134
– volume: 258
  start-page: 225
  year: 2000
  ident: 7256_CR5
  publication-title: Chem. Phys.
  doi: 10.1016/S0301-0104(00)00189-0
– volume: 43
  start-page: 13020
  year: 2019
  ident: 7256_CR6
  publication-title: New J. Chem.
  doi: 10.1039/c9nj01659g
– volume: 9
  start-page: 3707
  year: 2019
  ident: 7256_CR23
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-39198-y
SSID ssj0056235
Score 2.2681565
Snippet Liquid water is thought by many to be composed of a quasi-stable mixture of clusters that range in size from dimers to several hundred molecules and even to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 544
SubjectTerms Aquatic Pollution
Carbon dioxide
Chemical properties
Chemical reactions
Chemicophysical properties
Clusters
Direction
Distilled water
Earth and Environmental Science
Electromagnetic radiation
Enantiomers
Environment
Industrial Chemistry/Chemical Engineering
Magnetic field
Magnetic fields
Magnetic properties
Physical Chemistry of Water Treatment Processes
Reactivity
Shaking
Waste Water Technology
Water analysis
Water Industry/Water Technologies
Water Management
Water Pollution Control
Water Quality/Water Pollution
Water sampling
Title Rotational Direction of a Weak Magnetic Field Selectively Targets Chiral Clusters in Liquid Water and Modifies Its Chemical Reactivity
URI https://link.springer.com/article/10.3103/S1063455X23060115
https://www.proquest.com/docview/2890829134
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-QwDI4QXOCA2AXELCzygROoYqZpm_Q4GjELC8MBGAGnKm0SqBi1yzwO_AF-N3baLm8kzkl8qBPbX21_ZmyHW24z7ktPyDT1ApNpD6N84dkQL0PMlRCOSmlwGh0Og79X4VXdxz1pqt2blKSz1A5Xtvn-OYIXHoQIrjhxiFBj-UJI0B0v8dDvNuaX_HnoUpwR92h7lcr8WMRrZ_QcYb5Jijpf019hy3WQCN1Kqz_YnCl-sqUX1IGr7PGsnNb_8aA2W2UBpQUFl0bdwUDdFNSfCH0qUYNzN-4GLdvoAS5c8fcEerf5GE_3RjMiS5hAXsBJfj_LNVxiADoGVWgYlDq3CKbhyB2oyAXgzFA7BE2dWGPD_sFF79CrZyp4mR9EU48Y1gz3YymzTiqC2EaRDhEi-x0ltEYsI8nphybuKI1rVuMjMllgRKy1ioXm62y-KAuzwSCTxCUfBe0s1ijIKu1LYy3Ga8LoVAYt1m4-bpLVhOM092KUIPAgfSTv9NFiu_-P_KvYNr7avNVoLKkf3iShvKn0qZygxfYaLT4vfyrs17d2b7JFGjtflbVssfnpeGZ-Y3AyTbfZQvfP9fHBtruUTzLA2lg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUQHCgHRKGIpdDOgRNVxG6cxM4RrVgt7e4eYFdwi5zYhohV0u7HoX-gv7szTsJCC0icbc8hY8_My8y8YeyEW24z7ktPyDT1ApNpD6N84dkQL0PMlRCOSmk4ivqT4PtteFv3cc-bavcmJekstcOVbX52jeCFByGCK04cItRYvoGxgKQ6rol_3phf8uehS3FG3KPtVSrzZRHPndEqwvwnKep8TW-HbddBIpxXWv3I1kyxy7aeUAfusT9X5aL-jwe12SoLKC0ouDHqAYbqrqD-ROhRiRpcu3E3aNmmv2Hsir_n0L3PZ3i6O10SWcIc8gIG-a9lruEGA9AZqELDsNS5RTANl-5ARS4AV4baIWjqxCc26V2Mu32vnqngZX4QLTxiWDPcj6XMOqkIYhtFOkSI7HeU0BqxjCSnH5q4ozSuWY2PyGSBEbHWKhaa77P1oizMAYNMEpd8FLSzWKMgq7QvjbUYrwmjUxm0WLv5uElWE47T3ItpgsCD9JH8p48WO3088rNi23hr81GjsaR-ePOE8qbSp3KCFvvWaHG1_Kqww3ft_so2--PhIBlcjn58Zh9oBH1V4nLE1hezpTnGQGWRfnEX8y_IHtu3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELYQKyE4oF0eogssc-AEitrGSewcUaHiVYSACm6RE9sQbZVAmx74A_u7dyYP3iBx9uOQscffl5n5hrFtbrlNuCsdIePY8UyiHUT5wrE-HoaQKyFKKaXBWXA49I5v_Ju6z-mkyXZvQpJVTQOpNGVF-17bdskxO7x9iUSGez4SLU56IlRk_gO9cZeO9dDda1wxve1-Ge4MuEPTq7Dmx1u8fpie0eabAGn57vR_ssUaMMJeZeFfbMZkS2zhhYzgMvt3kRf1Pz2oXVieQW5BwbVRf2GgbjOqVYQ-pavBZdn6Br3c6BGuykTwCfTu0jGu7o2mJJwwgTSD0_Rhmmq4RjA6BpVpGOQ6tUis4ahcUAkNwIWh0gjqQLHChv2Dq96hU_dXcBLXCwqH1NYMd0Mpk24svNAGgfaRLrtdJbRGXiMJAPgm7CqNY1bjhTKJZ0SotQqF5qtsNsszs8YgkaQrH3idJNS4kVXalcZaxG7C6Fh6LdZpPm6U1OLj1ANjFCEJIXtE7-zRYjtPS-4r5Y2vJm80FovqSziJKIYqXUotaLHdxorPw59u9vtbs7fY3Pl-Pzo9OjtZZ_PUjb7Kdtlgs8V4ajYRsxTxn_Jc_gev_d_z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rotational+Direction+of+a+Weak+Magnetic+Field+Selectively+Targets+Chiral+Clusters+in+Liquid+Water+and+Modifies+Its+Chemical+Reactivity&rft.jtitle=Journal+of+water+chemistry+and+technology&rft.au=Stemler%2C+A.+J.&rft.date=2023-12-01&rft.issn=1063-455X&rft.eissn=1934-936X&rft.volume=45&rft.issue=6&rft.spage=544&rft.epage=551&rft_id=info:doi/10.3103%2FS1063455X23060115&rft.externalDBID=n%2Fa&rft.externalDocID=10_3103_S1063455X23060115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-455X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-455X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-455X&client=summon