Rotational Direction of a Weak Magnetic Field Selectively Targets Chiral Clusters in Liquid Water and Modifies Its Chemical Reactivity
Liquid water is thought by many to be composed of a quasi-stable mixture of clusters that range in size from dimers to several hundred molecules and even to micrometer-size units [1–3]. The implications of such a three-dimensional structure, or whether it even exists, are often subject to debate. Wh...
Saved in:
Published in | Journal of water chemistry and technology Vol. 45; no. 6; pp. 544 - 551 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.12.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liquid water is thought by many to be composed of a quasi-stable mixture of clusters that range in size from dimers to several hundred molecules and even to micrometer-size units [1–3]. The implications of such a three-dimensional structure, or whether it even exists, are often subject to debate. While many treatments (temperature change, shaking, electro-magnetic radiation, etc.) alter the physical-chemical properties of water, just how these interventions may affect the assemblage of clusters is often a matter of conjecture. The object of this study is to relate the effect of a weak, spinning, magnetic field to the assemblage of water clusters, and the subsequent changes in the chemical reactivity of bulk water. The results show that such a weak, rotating, magnetic field applied to water can either increase or decrease the spontaneous net rate of hydration of CO
2
, depending on the direction of spin of the magnet and the history of a given water sample. The targets for a magnetic field applied in this way are chiral water clusters and their destruction, or the inter/intra-conversion of enantiomers, can change the reactivity of water. The conclusion is that samples of distilled water, under otherwise identical conditions, can have a range of chemical reactivities depending on their individual assemblage of clusters. |
---|---|
AbstractList | Liquid water is thought by many to be composed of a quasi-stable mixture of clusters that range in size from dimers to several hundred molecules and even to micrometer-size units [1–3]. The implications of such a three-dimensional structure, or whether it even exists, are often subject to debate. While many treatments (temperature change, shaking, electro-magnetic radiation, etc.) alter the physical-chemical properties of water, just how these interventions may affect the assemblage of clusters is often a matter of conjecture. The object of this study is to relate the effect of a weak, spinning, magnetic field to the assemblage of water clusters, and the subsequent changes in the chemical reactivity of bulk water. The results show that such a weak, rotating, magnetic field applied to water can either increase or decrease the spontaneous net rate of hydration of CO2, depending on the direction of spin of the magnet and the history of a given water sample. The targets for a magnetic field applied in this way are chiral water clusters and their destruction, or the inter/intra-conversion of enantiomers, can change the reactivity of water. The conclusion is that samples of distilled water, under otherwise identical conditions, can have a range of chemical reactivities depending on their individual assemblage of clusters. Liquid water is thought by many to be composed of a quasi-stable mixture of clusters that range in size from dimers to several hundred molecules and even to micrometer-size units [1–3]. The implications of such a three-dimensional structure, or whether it even exists, are often subject to debate. While many treatments (temperature change, shaking, electro-magnetic radiation, etc.) alter the physical-chemical properties of water, just how these interventions may affect the assemblage of clusters is often a matter of conjecture. The object of this study is to relate the effect of a weak, spinning, magnetic field to the assemblage of water clusters, and the subsequent changes in the chemical reactivity of bulk water. The results show that such a weak, rotating, magnetic field applied to water can either increase or decrease the spontaneous net rate of hydration of CO 2 , depending on the direction of spin of the magnet and the history of a given water sample. The targets for a magnetic field applied in this way are chiral water clusters and their destruction, or the inter/intra-conversion of enantiomers, can change the reactivity of water. The conclusion is that samples of distilled water, under otherwise identical conditions, can have a range of chemical reactivities depending on their individual assemblage of clusters. |
Author | Stemler, A. J. |
Author_xml | – sequence: 1 givenname: A. J. surname: Stemler fullname: Stemler, A. J. email: ajstemler@ucdavis.edu organization: Department of Plant Biology, University of California-Davis |
BookMark | eNp9kN1KxDAQhYOs4Lr6AN4FvK7mr2lzKdVVYUVYV9a7EpvpGq2tJllhX8DnNrWCoOjVDHPON5OcXTRquxYQOqDkiFPCj28okVyk6R3jRBJK0y00poqLRHF5N4p9lJNe30G73j8SkkrG0zF6n3dBB9u1usGn1kHV97irscZL0E_4Sq9aCLbCUwuNwTfQ9JY3aDZ4od0KgsfFg3WRLpq1D-A8ti2e2de1NXip4wDr1uCrztjagseXnwA82yoic9D9Mhs2e2i71o2H_a86QbfTs0Vxkcyuzy-Lk1lSMSFDwqhgwJnK84reZ0LVUppUSMWozoyRUuaE0TwFRbWJWm0IEVAJyJQxWmWGT9DhsPfFda9r8KF87NYuft6XLFckZ4pyEV10cFWu895BXb44-6zdpqSk7OMuf8UdmewHU9kh2eC0bf4l2UD6eKVdgft-09_QB12vlT8 |
CitedBy_id | crossref_primary_10_3390_w16101381 |
Cites_doi | 10.1016/S0301-0104(00)00189-0 10.3390/w13172441 10.1371/journal.pone.0195057 10.1038/s41598-019-39198-y 10.1080/00268971003762134 10.1006/abio.1993.1203 10.1016/0304-4165(72)90315-7 10.1371/journal.pone.0260967 10.1002/btpr.3035 10.1016/S0021-9258(18)48696-6 10.1007/s10265-005-0246-y 10.3103/S1063455X17060029 10.1016/j.homp.2007.05.006 10.3103/S1063455X08020033 10.3103/S002713491604010X 10.1002/jcc.23144 10.1080/14328917.2005.11784911 10.3390/plants9091139 10.2307/1540514 10.1039/c9nj01659g 10.1142/S0217984912500698 10.1063/1.2429659 10.1007/978-3-319-04334-0_3 10.1007/978-981-10-3579-1_5 |
ContentType | Journal Article |
Copyright | Allerton Press, Inc. 2023. ISSN 1063-455X, Journal of Water Chemistry and Technology, 2023, Vol. 45, No. 6, pp. 544–551. © Allerton Press, Inc., 2023. |
Copyright_xml | – notice: Allerton Press, Inc. 2023. ISSN 1063-455X, Journal of Water Chemistry and Technology, 2023, Vol. 45, No. 6, pp. 544–551. © Allerton Press, Inc., 2023. |
DBID | AAYXX CITATION 7QH 7UA C1K F1W H96 H97 L.G |
DOI | 10.3103/S1063455X23060115 |
DatabaseName | CrossRef Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1934-936X |
EndPage | 551 |
ExternalDocumentID | 10_3103_S1063455X23060115 |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 29L 2J2 2JN 2JY 2KG 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VS 6NX 7XC 88I 8CJ 8FE 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKC AAJBT AAJKR AAMNW AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ATCPS AXYYD AZQEC B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ CAG CCPQU COF CS3 D1J D1K DDRTE DNIVK DPUIP DWQXO EBLON EBS EDH EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ I-F IJ- IKXTQ IWAJR I~X I~Z J-C JBSCW JZLTJ K6- KOV LK5 LK8 LLZTM M2P M4Y M7P M7R MA- ML- N9A NPVJJ NQJWS NU0 O9- O93 O9J P2P P9N PATMY PCBAR PF0 PQQKQ PROAC PT4 PYCSY Q2X QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEV SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XU3 YLTOR Z7Y ZMTXR ~02 ~A9 AAPKM AAYXX ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT 7QH 7UA ABRTQ C1K F1W H96 H97 L.G |
ID | FETCH-LOGICAL-c246t-2142e32988c1b749f66d546921a7dd666802185e91adf66fd004ec4e79dda97d3 |
IEDL.DBID | U2A |
ISSN | 1063-455X |
IngestDate | Wed Aug 13 06:32:23 EDT 2025 Tue Jul 01 04:27:43 EDT 2025 Thu Apr 24 23:00:56 EDT 2025 Fri Feb 21 02:41:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | water memory magnetic field water clusters chirality water structure water |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-2142e32988c1b749f66d546921a7dd666802185e91adf66fd004ec4e79dda97d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2890829134 |
PQPubID | 54472 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2890829134 crossref_primary_10_3103_S1063455X23060115 crossref_citationtrail_10_3103_S1063455X23060115 springer_journals_10_3103_S1063455X23060115 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: Dordrecht |
PublicationTitle | Journal of water chemistry and technology |
PublicationTitleAbbrev | J. Water Chem. Technol |
PublicationYear | 2023 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | Rad, Stahlberg, Kung, Pollack (CR16) 2021; 16 Roy, Tiller, Bell, Hoover (CR4) 2005; 9 Gibbons, Edsall (CR20) 1963; 238 CR17 Chaplin (CR1) 2013; 58 CR15 Rao, Sedlmayr, Roy, Kanzius (CR14) 2010; 98 Brown, Chow (CR27) 1975; 148 Sarraf, Kataria, Taimourya, Santos, Menegatti, Jain, Ihtisham, Liu (CR24) 2020; 9 Chaplin (CR8) 2007; 96 Sidorenko, Brilly, Laptev, Gorlenko, Antoshkin, Vidmar, Kryžanowski (CR11) 2021; 13 Wasak, Drozd, Jankowiak, Rakoczy (CR23) 2019; 9 Pang, Deng, Tang (CR10) 2012; 26 Garg, Maren (CR22) 1972; 261 CR2 Wang, Cao (CR21) 2013; 34 Galland, Pazur (CR25) 2005; 118 Xantheas (CR5) 2000; 258 Khakhalin, Gradoboeva (CR7) 2016; 71 Goncharuk, Syroeshkin, Pleteneva, Uspenskay, Levitskaya, Tverdislov (CR3) 2017; 39 Malloum, Fifen, Dhaouadi, Engoa, Conradie (CR6) 2019; 43 Clark, Cappa, Smith, Saykally, Head-Gordon (CR9) 2010; 108 CR26 Stemler (CR19) 1993; 210 Emamdadi, Gholizadeh, Housaindokht (CR12) 2020; 36 Hwang, Hong, Sharma, Pollack, Bahng (CR18) 2018; 13 Goncharuk, Orekhova, Malyarenko (CR13) 2008; 30 F.A. Brown (7256_CR27) 1975; 148 V.V. Goncharuk (7256_CR3) 2017; 39 M. Sarraf (7256_CR24) 2020; 9 V.V. Goncharuk (7256_CR13) 2008; 30 B.H. Gibbons (7256_CR20) 1963; 238 S.G. Hwang (7256_CR18) 2018; 13 M.F. Chaplin (7256_CR1) 2013; 58 P. Galland (7256_CR25) 2005; 118 L.C. Garg (7256_CR22) 1972; 261 A. Wasak (7256_CR23) 2019; 9 M.L. Rao (7256_CR14) 2010; 98 7256_CR2 7256_CR26 A. Stemler (7256_CR19) 1993; 210 A.V. Khakhalin (7256_CR7) 2016; 71 N. Emamdadi (7256_CR12) 2020; 36 S. Xantheas (7256_CR5) 2000; 258 G. Sidorenko (7256_CR11) 2021; 13 7256_CR17 I. Rad (7256_CR16) 2021; 16 G.N.I. Clark (7256_CR9) 2010; 108 A. Malloum (7256_CR6) 2019; 43 7256_CR15 X-F. Pang (7256_CR10) 2012; 26 B. Wang (7256_CR21) 2013; 34 M.F. Chaplin (7256_CR8) 2007; 96 R. Roy (7256_CR4) 2005; 9 |
References_xml | – volume: 58 start-page: 41 year: 2013 end-page: 45 ident: CR1 article-title: What is liquid water publication-title: Sci. Soc. – volume: 258 start-page: 225 year: 2000 end-page: 231 ident: CR5 article-title: Cooperativity and hydrogen bonding network in water clusters publication-title: Chem. Phys. doi: 10.1016/S0301-0104(00)00189-0 – volume: 98 start-page: 1500 year: 2010 end-page: 1504 ident: CR14 article-title: Polarized microwave and RF radiation effects on the structure and stability of liquid water publication-title: Curr. Sci. – ident: CR2 – volume: 13 start-page: 2441 year: 2021 end-page: 2455 ident: CR11 article-title: The role of modification of the structure of water and water-containing systems in changing their biological, therapeutic, and other properties overview publication-title: Water doi: 10.3390/w13172441 – volume: 13 start-page: e0195057 year: 2018 ident: CR18 article-title: Exclusion zone and heterogeneous water structure at ambient temperature publication-title: PLoS One doi: 10.1371/journal.pone.0195057 – volume: 9 start-page: 3707 year: 2019 ident: CR23 article-title: Rotating magnetic field as tool for enhancing enzymes properties—Laccase case study publication-title: Sci. Rep. doi: 10.1038/s41598-019-39198-y – volume: 108 start-page: 1415 year: 2010 end-page: 1433 ident: CR9 article-title: The structure of ambient water publication-title: Mol. Phys. doi: 10.1080/00268971003762134 – volume: 210 start-page: 328 year: 1993 end-page: 331 ident: CR19 article-title: An assay for carbonic anhydrase activity and reactions that produce radiolabeled gases or small uncharged molecules publication-title: Anal. Biochem doi: 10.1006/abio.1993.1203 – volume: 261 start-page: 70 year: 1972 end-page: 76 ident: CR22 article-title: The rates of hydration of carbon dioxide and dehydration of carbonic acid at 37°C publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4165(72)90315-7 – volume: 16 start-page: e0260967 year: 2021 ident: CR16 article-title: Low frequency weak electric fields can induce structural changes in water publication-title: PLoS One doi: 10.1371/journal.pone.0260967 – volume: 36 start-page: e3035 year: 2020 ident: CR12 article-title: The effect of magnetized water on the oxidation reaction of phenol derivatives and aromatic amines by horseradish peroxidase enzyme publication-title: Biotechnol. Prog. doi: 10.1002/btpr.3035 – ident: CR15 – volume: 238 start-page: 3502 year: 1963 end-page: 3507 ident: CR20 article-title: Rate of hydration of carbon dioxide and dehydration of carbonic acid at 25° publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)48696-6 – volume: 118 start-page: 371 year: 2005 end-page: 389 ident: CR25 article-title: Magnetoreception in plants publication-title: J. Plant Res. doi: 10.1007/s10265-005-0246-y – volume: 39 start-page: 319 year: 2017 end-page: 324 ident: CR3 article-title: On the possibility of chiral structure-density submillimeter inhomogeneities existing in water publication-title: J. Water Chem. Tech doi: 10.3103/S1063455X17060029 – ident: CR17 – volume: 96 start-page: 143 year: 2007 end-page: 150 ident: CR8 article-title: The memory of water: An overview publication-title: Homeopathy doi: 10.1016/j.homp.2007.05.006 – volume: 30 start-page: 80 year: 2008 end-page: 84 ident: CR13 article-title: Influence of temperature on water clusters publication-title: J. Water Chem. Technol. doi: 10.3103/S1063455X08020033 – volume: 71 start-page: 413 year: 2016 end-page: 419 ident: CR7 article-title: Investigation of the chiral properties of configurations of (H O) , K (H O) , and Na (H O) ( = 4–8, = 5–10) small water clusters at 1 K publication-title: Moscow Univ. Phys. Bull. doi: 10.3103/S002713491604010X – volume: 34 start-page: 372 year: 2013 end-page: 378 ident: CR21 article-title: How water molecules modulate the hydration of CO in water solution: Insight from the cluster-continuum model calculations publication-title: J. Comput. Chem. doi: 10.1002/jcc.23144 – volume: 9 start-page: 98 year: 2005 end-page: 103 ident: CR4 article-title: The structure of liquid water; Novel insights from materials research; Potential relevance to homeopathy publication-title: Mater. Res. Innovations doi: 10.1080/14328917.2005.11784911 – volume: 9 start-page: 1139 year: 2020 end-page: 1156 ident: CR24 article-title: Magnetic field (MF) applications in plants: An overview publication-title: Plants doi: 10.3390/plants9091139 – volume: 148 start-page: 370 year: 1975 end-page: 379 ident: CR27 article-title: Non-equivalence for bean seeds of clockwise and counterclockwise magnetic motion: A novel terrestrial adaptation publication-title: Biol. Bull. doi: 10.2307/1540514 – volume: 43 start-page: 13020 year: 2019 end-page: 13037 ident: CR6 article-title: Structures, relative stability and binding energies of neutral water clusters, (H O) publication-title: New J. Chem. doi: 10.1039/c9nj01659g – volume: 26 start-page: 1250069 year: 2012 ident: CR10 article-title: Influence of magnetic field on macroscopic properties of water publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984912500698 – ident: CR26 – volume: 148 start-page: 370 year: 1975 ident: 7256_CR27 publication-title: Biol. Bull. doi: 10.2307/1540514 – volume: 9 start-page: 98 year: 2005 ident: 7256_CR4 publication-title: Mater. Res. Innovations doi: 10.1080/14328917.2005.11784911 – volume: 210 start-page: 328 year: 1993 ident: 7256_CR19 publication-title: Anal. Biochem doi: 10.1006/abio.1993.1203 – volume: 13 start-page: 2441 year: 2021 ident: 7256_CR11 publication-title: Water doi: 10.3390/w13172441 – ident: 7256_CR17 doi: 10.1063/1.2429659 – volume: 238 start-page: 3502 year: 1963 ident: 7256_CR20 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)48696-6 – volume: 118 start-page: 371 year: 2005 ident: 7256_CR25 publication-title: J. Plant Res. doi: 10.1007/s10265-005-0246-y – volume: 58 start-page: 41 year: 2013 ident: 7256_CR1 publication-title: Sci. Soc. – volume: 9 start-page: 1139 year: 2020 ident: 7256_CR24 publication-title: Plants doi: 10.3390/plants9091139 – volume: 39 start-page: 319 year: 2017 ident: 7256_CR3 publication-title: J. Water Chem. Tech doi: 10.3103/S1063455X17060029 – volume: 26 start-page: 1250069 year: 2012 ident: 7256_CR10 publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984912500698 – volume: 96 start-page: 143 year: 2007 ident: 7256_CR8 publication-title: Homeopathy doi: 10.1016/j.homp.2007.05.006 – volume: 36 start-page: e3035 year: 2020 ident: 7256_CR12 publication-title: Biotechnol. Prog. doi: 10.1002/btpr.3035 – volume: 16 start-page: e0260967 year: 2021 ident: 7256_CR16 publication-title: PLoS One doi: 10.1371/journal.pone.0260967 – ident: 7256_CR2 doi: 10.1007/978-3-319-04334-0_3 – volume: 13 start-page: e0195057 year: 2018 ident: 7256_CR18 publication-title: PLoS One doi: 10.1371/journal.pone.0195057 – volume: 261 start-page: 70 year: 1972 ident: 7256_CR22 publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4165(72)90315-7 – volume: 30 start-page: 80 year: 2008 ident: 7256_CR13 publication-title: J. Water Chem. Technol. doi: 10.3103/S1063455X08020033 – ident: 7256_CR26 doi: 10.1007/978-981-10-3579-1_5 – volume: 98 start-page: 1500 year: 2010 ident: 7256_CR14 publication-title: Curr. Sci. – volume: 71 start-page: 413 year: 2016 ident: 7256_CR7 publication-title: Moscow Univ. Phys. Bull. doi: 10.3103/S002713491604010X – ident: 7256_CR15 – volume: 34 start-page: 372 year: 2013 ident: 7256_CR21 publication-title: J. Comput. Chem. doi: 10.1002/jcc.23144 – volume: 108 start-page: 1415 year: 2010 ident: 7256_CR9 publication-title: Mol. Phys. doi: 10.1080/00268971003762134 – volume: 258 start-page: 225 year: 2000 ident: 7256_CR5 publication-title: Chem. Phys. doi: 10.1016/S0301-0104(00)00189-0 – volume: 43 start-page: 13020 year: 2019 ident: 7256_CR6 publication-title: New J. Chem. doi: 10.1039/c9nj01659g – volume: 9 start-page: 3707 year: 2019 ident: 7256_CR23 publication-title: Sci. Rep. doi: 10.1038/s41598-019-39198-y |
SSID | ssj0056235 |
Score | 2.2681565 |
Snippet | Liquid water is thought by many to be composed of a quasi-stable mixture of clusters that range in size from dimers to several hundred molecules and even to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 544 |
SubjectTerms | Aquatic Pollution Carbon dioxide Chemical properties Chemical reactions Chemicophysical properties Clusters Direction Distilled water Earth and Environmental Science Electromagnetic radiation Enantiomers Environment Industrial Chemistry/Chemical Engineering Magnetic field Magnetic fields Magnetic properties Physical Chemistry of Water Treatment Processes Reactivity Shaking Waste Water Technology Water analysis Water Industry/Water Technologies Water Management Water Pollution Control Water Quality/Water Pollution Water sampling |
Title | Rotational Direction of a Weak Magnetic Field Selectively Targets Chiral Clusters in Liquid Water and Modifies Its Chemical Reactivity |
URI | https://link.springer.com/article/10.3103/S1063455X23060115 https://www.proquest.com/docview/2890829134 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-QwDI4QXOCA2AXELCzygROoYqZpm_Q4GjELC8MBGAGnKm0SqBi1yzwO_AF-N3baLm8kzkl8qBPbX21_ZmyHW24z7ktPyDT1ApNpD6N84dkQL0PMlRCOSmlwGh0Og79X4VXdxz1pqt2blKSz1A5Xtvn-OYIXHoQIrjhxiFBj-UJI0B0v8dDvNuaX_HnoUpwR92h7lcr8WMRrZ_QcYb5Jijpf019hy3WQCN1Kqz_YnCl-sqUX1IGr7PGsnNb_8aA2W2UBpQUFl0bdwUDdFNSfCH0qUYNzN-4GLdvoAS5c8fcEerf5GE_3RjMiS5hAXsBJfj_LNVxiADoGVWgYlDq3CKbhyB2oyAXgzFA7BE2dWGPD_sFF79CrZyp4mR9EU48Y1gz3YymzTiqC2EaRDhEi-x0ltEYsI8nphybuKI1rVuMjMllgRKy1ioXm62y-KAuzwSCTxCUfBe0s1ijIKu1LYy3Ga8LoVAYt1m4-bpLVhOM092KUIPAgfSTv9NFiu_-P_KvYNr7avNVoLKkf3iShvKn0qZygxfYaLT4vfyrs17d2b7JFGjtflbVssfnpeGZ-Y3AyTbfZQvfP9fHBtruUTzLA2lg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUQHCgHRKGIpdDOgRNVxG6cxM4RrVgt7e4eYFdwi5zYhohV0u7HoX-gv7szTsJCC0icbc8hY8_My8y8YeyEW24z7ktPyDT1ApNpD6N84dkQL0PMlRCOSmk4ivqT4PtteFv3cc-bavcmJekstcOVbX52jeCFByGCK04cItRYvoGxgKQ6rol_3phf8uehS3FG3KPtVSrzZRHPndEqwvwnKep8TW-HbddBIpxXWv3I1kyxy7aeUAfusT9X5aL-jwe12SoLKC0ouDHqAYbqrqD-ROhRiRpcu3E3aNmmv2Hsir_n0L3PZ3i6O10SWcIc8gIG-a9lruEGA9AZqELDsNS5RTANl-5ARS4AV4baIWjqxCc26V2Mu32vnqngZX4QLTxiWDPcj6XMOqkIYhtFOkSI7HeU0BqxjCSnH5q4ozSuWY2PyGSBEbHWKhaa77P1oizMAYNMEpd8FLSzWKMgq7QvjbUYrwmjUxm0WLv5uElWE47T3ItpgsCD9JH8p48WO3088rNi23hr81GjsaR-ePOE8qbSp3KCFvvWaHG1_Kqww3ft_so2--PhIBlcjn58Zh9oBH1V4nLE1hezpTnGQGWRfnEX8y_IHtu3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELYQKyE4oF0eogssc-AEitrGSewcUaHiVYSACm6RE9sQbZVAmx74A_u7dyYP3iBx9uOQscffl5n5hrFtbrlNuCsdIePY8UyiHUT5wrE-HoaQKyFKKaXBWXA49I5v_Ju6z-mkyXZvQpJVTQOpNGVF-17bdskxO7x9iUSGez4SLU56IlRk_gO9cZeO9dDda1wxve1-Ge4MuEPTq7Dmx1u8fpie0eabAGn57vR_ssUaMMJeZeFfbMZkS2zhhYzgMvt3kRf1Pz2oXVieQW5BwbVRf2GgbjOqVYQ-pavBZdn6Br3c6BGuykTwCfTu0jGu7o2mJJwwgTSD0_Rhmmq4RjA6BpVpGOQ6tUis4ahcUAkNwIWh0gjqQLHChv2Dq96hU_dXcBLXCwqH1NYMd0Mpk24svNAGgfaRLrtdJbRGXiMJAPgm7CqNY1bjhTKJZ0SotQqF5qtsNsszs8YgkaQrH3idJNS4kVXalcZaxG7C6Fh6LdZpPm6U1OLj1ANjFCEJIXtE7-zRYjtPS-4r5Y2vJm80FovqSziJKIYqXUotaLHdxorPw59u9vtbs7fY3Pl-Pzo9OjtZZ_PUjb7Kdtlgs8V4ajYRsxTxn_Jc_gev_d_z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rotational+Direction+of+a+Weak+Magnetic+Field+Selectively+Targets+Chiral+Clusters+in+Liquid+Water+and+Modifies+Its+Chemical+Reactivity&rft.jtitle=Journal+of+water+chemistry+and+technology&rft.au=Stemler%2C+A.+J.&rft.date=2023-12-01&rft.issn=1063-455X&rft.eissn=1934-936X&rft.volume=45&rft.issue=6&rft.spage=544&rft.epage=551&rft_id=info:doi/10.3103%2FS1063455X23060115&rft.externalDBID=n%2Fa&rft.externalDocID=10_3103_S1063455X23060115 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-455X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-455X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-455X&client=summon |