Rotational Direction of a Weak Magnetic Field Selectively Targets Chiral Clusters in Liquid Water and Modifies Its Chemical Reactivity

Liquid water is thought by many to be composed of a quasi-stable mixture of clusters that range in size from dimers to several hundred molecules and even to micrometer-size units [1–3]. The implications of such a three-dimensional structure, or whether it even exists, are often subject to debate. Wh...

Full description

Saved in:
Bibliographic Details
Published inJournal of water chemistry and technology Vol. 45; no. 6; pp. 544 - 551
Main Author Stemler, A. J.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Liquid water is thought by many to be composed of a quasi-stable mixture of clusters that range in size from dimers to several hundred molecules and even to micrometer-size units [1–3]. The implications of such a three-dimensional structure, or whether it even exists, are often subject to debate. While many treatments (temperature change, shaking, electro-magnetic radiation, etc.) alter the physical-chemical properties of water, just how these interventions may affect the assemblage of clusters is often a matter of conjecture. The object of this study is to relate the effect of a weak, spinning, magnetic field to the assemblage of water clusters, and the subsequent changes in the chemical reactivity of bulk water. The results show that such a weak, rotating, magnetic field applied to water can either increase or decrease the spontaneous net rate of hydration of CO 2 , depending on the direction of spin of the magnet and the history of a given water sample. The targets for a magnetic field applied in this way are chiral water clusters and their destruction, or the inter/intra-conversion of enantiomers, can change the reactivity of water. The conclusion is that samples of distilled water, under otherwise identical conditions, can have a range of chemical reactivities depending on their individual assemblage of clusters.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1063-455X
1934-936X
DOI:10.3103/S1063455X23060115