Data-Driven Closed-Loop Reachability Analysis for Nonlinear Human-in-the-Loop Systems Using Gaussian Mixture Model

This article presents data-driven algorithms to perform the reachability analysis of nonlinear human-in-the-loop (HITL) systems. Such systems require consideration of the human control policy, otherwise might result in a conservative reachable set. However, formulating the human control policy in a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 33; no. 2; pp. 788 - 798
Main Authors Choi, Joonwon, Byeon, Sooyung, Hwang, Inseok
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6536
1558-0865
DOI10.1109/TCST.2024.3518118

Cover

Loading…
Abstract This article presents data-driven algorithms to perform the reachability analysis of nonlinear human-in-the-loop (HITL) systems. Such systems require consideration of the human control policy, otherwise might result in a conservative reachable set. However, formulating the human control policy in a mathematically tractable form is challenging, and thus, it is commonly ignored or simplified in many applications. To tackle this problem, we propose Gaussian mixture model (GMM)-based data-driven algorithms that can explicitly consider the human control policy during the reachability analysis of an HITL system. The proposed algorithms learn the human control policy as a GMM using the given trajectory. Then, the control input from the human operator is predicted based on the trained GMM by leveraging the Gaussian mixture regression (GMR), thereby facilitating the closed-loop forward stochastic reachability analysis. In this article, we examine two types of human control policies, state-independent and state-dependent, and propose the respective algorithms. We also tested our proposed algorithms using the human subject experimental data and demonstrated to generate more accurate results compared with other existing algorithms.
AbstractList This article presents data-driven algorithms to perform the reachability analysis of nonlinear human-in-the-loop (HITL) systems. Such systems require consideration of the human control policy, otherwise might result in a conservative reachable set. However, formulating the human control policy in a mathematically tractable form is challenging, and thus, it is commonly ignored or simplified in many applications. To tackle this problem, we propose Gaussian mixture model (GMM)-based data-driven algorithms that can explicitly consider the human control policy during the reachability analysis of an HITL system. The proposed algorithms learn the human control policy as a GMM using the given trajectory. Then, the control input from the human operator is predicted based on the trained GMM by leveraging the Gaussian mixture regression (GMR), thereby facilitating the closed-loop forward stochastic reachability analysis. In this article, we examine two types of human control policies, state-independent and state-dependent, and propose the respective algorithms. We also tested our proposed algorithms using the human subject experimental data and demonstrated to generate more accurate results compared with other existing algorithms.
Author Byeon, Sooyung
Choi, Joonwon
Hwang, Inseok
Author_xml – sequence: 1
  givenname: Joonwon
  orcidid: 0000-0001-8470-3528
  surname: Choi
  fullname: Choi, Joonwon
  email: choi774@purdue.edu
  organization: School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA
– sequence: 2
  givenname: Sooyung
  orcidid: 0000-0003-4297-0331
  surname: Byeon
  fullname: Byeon, Sooyung
  email: sbyeon@purdue.edu
  organization: School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA
– sequence: 3
  givenname: Inseok
  orcidid: 0000-0001-7847-9865
  surname: Hwang
  fullname: Hwang, Inseok
  email: ihwang@purdue.edu
  organization: School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA
BookMark eNpNkE9LAzEUxIMo2FY_gOAh4Dk1L_-6eyytVqEqaD0vafetTdkmNdkV--3d0h48zTyYeTC_Pjn3wSMhN8CHADy_X0w-FkPBhRpKDRlAdkZ6oHXGeGb0eee5kcxoaS5JP6UN56C0GPVInNrGsml0P-jppA4JSzYPYUff0a7Wdulq1-zp2Nt6n1yiVYj0NfjaebSRPrVb65nzrFnjsfWxTw1uE_1Mzn_RmW1TctbTF_fbtBHpSyixviIXla0TXp90QD4fHxaTJzZ_mz1PxnO2Eso0DKBaGTXKKxzxcqkzndvcCtmJEiIvq7LbUILAnCuj5LI7LcrKiLKUiKBzOSB3x7-7GL5bTE2xCW3slqRCwghUzoU0XQqOqVUMKUWsil10Wxv3BfDigLY4oC0OaIsT2q5ze-w4RPyXz0AqIeUfPHF3TQ
CODEN IETTE2
Cites_doi 10.1016/0005-1098(71)90097-5
10.1016/j.ifacol.2021.11.232
10.1016/j.automatica.2018.07.023
10.15607/RSS.2018.XIV.069
10.1109/IVS.2011.5940464
10.1177/1541931214581185
10.1109/TCST.2022.3222728
10.1109/TCST.2021.3112613
10.1109/TAES.2007.4383588
10.2514/1.36247
10.1109/TITS.2012.2191542
10.1016/j.neunet.2015.05.005
10.1109/TASE.2017.2707129
10.1117/12.892796
10.1177/0278364920950795
10.1109/TII.2016.2619064
10.1080/00423114.2014.954589
10.1109/LRA.2020.3028049
10.1109/TCST.2023.3234248
10.1109/TITS.2010.2072502
10.1016/j.asr.2022.03.041
10.1109/CDC49753.2023.10383447
10.1016/j.robot.2021.103864
10.1109/DASC52595.2021.9594324
10.1109/ICAR.2015.7251438
10.3390/app7050457
10.1016/j.ifacol.2023.01.113
10.1109/9.855552
10.3390/s18041007
10.23919/acc60939.2024.10644707
10.1007/s11370-015-0187-9
10.1109/tit.2023.3323346
10.23919/ACC45564.2020.9147918
10.1561/2300000053
10.1109/LRA.2019.2928760
10.1109/LCSYS.2023.3347188
10.1007/978-3-642-54862-8_40
10.1109/SMC52423.2021.9658994
10.1175/MWR-D-14-00292.1
10.1109/JPROC.2006.888405
10.1109/ICRA46639.2022.9811952
10.1016/j.automatica.2018.07.024
10.1109/ACCESS.2022.3194851
10.1109/LCSYS.2019.2954102
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
DOI 10.1109/TCST.2024.3518118
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0865
EndPage 798
ExternalDocumentID 10_1109_TCST_2024_3518118
10813423
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: CNS-1836952
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
L7M
ID FETCH-LOGICAL-c246t-11fc6479fe70db5859a9a2359a4229dfd001d12e904643bd00ae3f62dd3ee1593
IEDL.DBID RIE
ISSN 1063-6536
IngestDate Tue Jul 22 22:53:23 EDT 2025
Tue Jul 01 05:23:48 EDT 2025
Wed Aug 27 01:49:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-11fc6479fe70db5859a9a2359a4229dfd001d12e904643bd00ae3f62dd3ee1593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8470-3528
0000-0001-7847-9865
0000-0003-4297-0331
PQID 3171490236
PQPubID 85425
PageCount 11
ParticipantIDs ieee_primary_10813423
proquest_journals_3171490236
crossref_primary_10_1109_TCST_2024_3518118
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on control systems technology
PublicationTitleAbbrev TCST
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref46
ref45
ref47
ref42
ref41
ref44
ref43
Lew (ref48)
Alanwar (ref15) 2021
ref8
ref7
ref9
ref4
Sabatino (ref49) 2015
ref3
ref6
ref5
Yun (ref37) 2021
ref40
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Alanwar (ref13)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref41
  doi: 10.1016/0005-1098(71)90097-5
– ident: ref43
  doi: 10.1016/j.ifacol.2021.11.232
– ident: ref36
  doi: 10.1016/j.automatica.2018.07.023
– ident: ref8
  doi: 10.15607/RSS.2018.XIV.069
– ident: ref21
  doi: 10.1109/IVS.2011.5940464
– ident: ref30
  doi: 10.1177/1541931214581185
– year: 2015
  ident: ref49
  article-title: Quadrotor control: Modeling, nonlinear control design, and simulation
– ident: ref25
  doi: 10.1109/TCST.2022.3222728
– ident: ref6
  doi: 10.1109/TCST.2021.3112613
– ident: ref45
  doi: 10.1109/TAES.2007.4383588
– ident: ref35
  doi: 10.2514/1.36247
– ident: ref32
  doi: 10.1109/TITS.2012.2191542
– ident: ref34
  doi: 10.1016/j.neunet.2015.05.005
– ident: ref5
  doi: 10.1109/TASE.2017.2707129
– ident: ref40
  doi: 10.1117/12.892796
– ident: ref10
  doi: 10.1177/0278364920950795
– ident: ref33
  doi: 10.1109/TII.2016.2619064
– ident: ref31
  doi: 10.1080/00423114.2014.954589
– ident: ref7
  doi: 10.1109/LRA.2020.3028049
– ident: ref12
  doi: 10.1109/TCST.2023.3234248
– ident: ref20
  doi: 10.1109/TITS.2010.2072502
– ident: ref38
  doi: 10.1016/j.asr.2022.03.041
– ident: ref18
  doi: 10.1109/CDC49753.2023.10383447
– ident: ref28
  doi: 10.1016/j.robot.2021.103864
– ident: ref4
  doi: 10.1109/DASC52595.2021.9594324
– ident: ref3
  doi: 10.1109/ICAR.2015.7251438
– ident: ref24
  doi: 10.3390/app7050457
– ident: ref17
  doi: 10.1016/j.ifacol.2023.01.113
– ident: ref42
  doi: 10.1109/9.855552
– year: 2021
  ident: ref15
  article-title: Data-driven reachability analysis from noisy data
  publication-title: arXiv:2105.07229
– start-page: 2055
  volume-title: Proc. Conf. Robot Learn.
  ident: ref48
  article-title: Sampling-based reachability analysis: A random set theory approach with adversarial sampling
– ident: ref22
  doi: 10.3390/s18041007
– ident: ref16
  doi: 10.23919/acc60939.2024.10644707
– ident: ref26
  doi: 10.1007/s11370-015-0187-9
– ident: ref44
  doi: 10.1109/tit.2023.3323346
– ident: ref47
  doi: 10.23919/ACC45564.2020.9147918
– ident: ref27
  doi: 10.1561/2300000053
– ident: ref19
  doi: 10.1109/LRA.2019.2928760
– ident: ref29
  doi: 10.1109/LCSYS.2023.3347188
– ident: ref1
  doi: 10.1007/978-3-642-54862-8_40
– ident: ref2
  doi: 10.1109/SMC52423.2021.9658994
– ident: ref39
  doi: 10.1175/MWR-D-14-00292.1
– ident: ref23
  doi: 10.1109/JPROC.2006.888405
– ident: ref9
  doi: 10.1109/ICRA46639.2022.9811952
– ident: ref46
  doi: 10.1016/j.automatica.2018.07.024
– ident: ref14
  doi: 10.1109/ACCESS.2022.3194851
– ident: ref11
  doi: 10.1109/LCSYS.2019.2954102
– start-page: 163
  volume-title: Proc. 3rd Conf. Learn. Dyn. Control
  ident: ref13
  article-title: Data-driven reachability analysis using matrix zonotopes
– year: 2021
  ident: ref37
  article-title: Sequential Monte Carlo filtering with Gaussian mixture models for highly nonlinear systems
SSID ssj0014527
Score 2.4487174
Snippet This article presents data-driven algorithms to perform the reachability analysis of nonlinear human-in-the-loop (HITL) systems. Such systems require...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 788
SubjectTerms Accuracy
Algorithms
Analytical models
Closed loops
Control systems
Data-driven modeling
Heuristic algorithms
Hierarchies
human-in-the-loop (HITL)
Nonlinear dynamical systems
Nonlinear systems
Prediction algorithms
Probabilistic models
Reachability analysis
Stochastic processes
Trajectory
Vehicle dynamics
vehicle safety
Title Data-Driven Closed-Loop Reachability Analysis for Nonlinear Human-in-the-Loop Systems Using Gaussian Mixture Model
URI https://ieeexplore.ieee.org/document/10813423
https://www.proquest.com/docview/3171490236
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA_qkz74ObF-kQefhFSbZO3yKPNjiO5BN9hbSZMURFnH1oH613uXdDIUwZe2gQZCLsnd5e5-P0LOjHbcpKpkRcZLJmVmmMosPgqb6CK1Wcjy7ae9obwftUdNsbqvhXHO-eQzF-Onj-Xbyszxqgx2eCdBxLpVsgqeWyjW-g4ZyMDPCi6OYKmPSUYNoObFoPs8AFeQy1i0QaMhwceSEvKsKr-OYq9fbrdIfzGykFbyGs_rIjafP0Ab_z30bbLZWJr0KiyNHbLixrtkYwl_cI9Mr3Wt2fUUTzzafatmzrKHqprQJ8yxDAjeH3SBW0LBvqX9AK2hp9Rf_7OXMQMTMvRq0M-pT0Ogd3o-wwpN-vjyjmEKirRrby0yvL0ZdHusIWFghsu0ZklSmlRmqnTZpS3AuVBaaS7gJTlXtrQw9TbhTmGMVBTQ1E6UKbdWOAe2ktgna-Nq7A4INdwKpa0ujVEy7fCiDRoaLDaQCS_BUInI-UIq-SRgbeTeR7lUOYowRxHmjQgj0sJZXvoxTHBEjheCzJvtOMsF0rwrBMs__KPbEVnnyOzrs8uOyVo9nbsTMDfq4tQvsy-spNId
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB58HNSDb7FaNQdPQqqbpLvNUeqjau1BK3hbskkWitKVdgvqrzeTbKUogpd9wAbCTJL5ZmfmG4BjrSzTscxplrCcCpFoKhODl8xEKotNErJ8e3HnSdw-N5-rYnVfC2Ot9clntoGPPpZvCj3BX2Vuh7ciZKybh8UmVuOGcq3voIEIHVqdk8Np7KOStYpS87Tffuw7Z5CJBm86m4YtPmbMkO-r8usw9hbmag1607mFxJKXxqTMGvrzB23jvye_DqsV1iTnYXFswJwdbsLKDAPhFowuVKnoxQjPPNJ-LcbW0G5RvJEHzLIMHN4fZMpcQhzCJb1ArqFGxAcA6GBIHYgMoyr-c-ITEci1moyxRpPcD94xUEGw8drrNjxdXfbbHVq1YaCaibikUZTrWCQyt8mZyZx7IZVUjLubYEya3DjRm4hZiVFSnrlXZXkeM2O4tQ4t8R1YGBZDuwtEM8OlMirXWoq4xbKms9EOszmdsNxBlRqcTLWSvgW2jdR7KWcyRRWmqMK0UmENtlHKMx8GAdegPlVkWm3Iccqx0btEuvy9P4YdwVKnf99Nuze9u31YZtjn1-ea1WGhHE3sgQMfZXbol9wXy1DVZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Closed-Loop+Reachability+Analysis+for+Nonlinear+Human-in-the-Loop+Systems+Using+Gaussian+Mixture+Model&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Choi%2C+Joonwon&rft.au=Byeon%2C+Sooyung&rft.au=Hwang%2C+Inseok&rft.date=2025-03-01&rft.pub=IEEE&rft.issn=1063-6536&rft.volume=33&rft.issue=2&rft.spage=788&rft.epage=798&rft_id=info:doi/10.1109%2FTCST.2024.3518118&rft.externalDocID=10813423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon