Data-Driven Closed-Loop Reachability Analysis for Nonlinear Human-in-the-Loop Systems Using Gaussian Mixture Model
This article presents data-driven algorithms to perform the reachability analysis of nonlinear human-in-the-loop (HITL) systems. Such systems require consideration of the human control policy, otherwise might result in a conservative reachable set. However, formulating the human control policy in a...
Saved in:
Published in | IEEE transactions on control systems technology Vol. 33; no. 2; pp. 788 - 798 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1063-6536 1558-0865 |
DOI | 10.1109/TCST.2024.3518118 |
Cover
Loading…
Abstract | This article presents data-driven algorithms to perform the reachability analysis of nonlinear human-in-the-loop (HITL) systems. Such systems require consideration of the human control policy, otherwise might result in a conservative reachable set. However, formulating the human control policy in a mathematically tractable form is challenging, and thus, it is commonly ignored or simplified in many applications. To tackle this problem, we propose Gaussian mixture model (GMM)-based data-driven algorithms that can explicitly consider the human control policy during the reachability analysis of an HITL system. The proposed algorithms learn the human control policy as a GMM using the given trajectory. Then, the control input from the human operator is predicted based on the trained GMM by leveraging the Gaussian mixture regression (GMR), thereby facilitating the closed-loop forward stochastic reachability analysis. In this article, we examine two types of human control policies, state-independent and state-dependent, and propose the respective algorithms. We also tested our proposed algorithms using the human subject experimental data and demonstrated to generate more accurate results compared with other existing algorithms. |
---|---|
AbstractList | This article presents data-driven algorithms to perform the reachability analysis of nonlinear human-in-the-loop (HITL) systems. Such systems require consideration of the human control policy, otherwise might result in a conservative reachable set. However, formulating the human control policy in a mathematically tractable form is challenging, and thus, it is commonly ignored or simplified in many applications. To tackle this problem, we propose Gaussian mixture model (GMM)-based data-driven algorithms that can explicitly consider the human control policy during the reachability analysis of an HITL system. The proposed algorithms learn the human control policy as a GMM using the given trajectory. Then, the control input from the human operator is predicted based on the trained GMM by leveraging the Gaussian mixture regression (GMR), thereby facilitating the closed-loop forward stochastic reachability analysis. In this article, we examine two types of human control policies, state-independent and state-dependent, and propose the respective algorithms. We also tested our proposed algorithms using the human subject experimental data and demonstrated to generate more accurate results compared with other existing algorithms. |
Author | Byeon, Sooyung Choi, Joonwon Hwang, Inseok |
Author_xml | – sequence: 1 givenname: Joonwon orcidid: 0000-0001-8470-3528 surname: Choi fullname: Choi, Joonwon email: choi774@purdue.edu organization: School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA – sequence: 2 givenname: Sooyung orcidid: 0000-0003-4297-0331 surname: Byeon fullname: Byeon, Sooyung email: sbyeon@purdue.edu organization: School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA – sequence: 3 givenname: Inseok orcidid: 0000-0001-7847-9865 surname: Hwang fullname: Hwang, Inseok email: ihwang@purdue.edu organization: School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA |
BookMark | eNpNkE9LAzEUxIMo2FY_gOAh4Dk1L_-6eyytVqEqaD0vafetTdkmNdkV--3d0h48zTyYeTC_Pjn3wSMhN8CHADy_X0w-FkPBhRpKDRlAdkZ6oHXGeGb0eee5kcxoaS5JP6UN56C0GPVInNrGsml0P-jppA4JSzYPYUff0a7Wdulq1-zp2Nt6n1yiVYj0NfjaebSRPrVb65nzrFnjsfWxTw1uE_1Mzn_RmW1TctbTF_fbtBHpSyixviIXla0TXp90QD4fHxaTJzZ_mz1PxnO2Eso0DKBaGTXKKxzxcqkzndvcCtmJEiIvq7LbUILAnCuj5LI7LcrKiLKUiKBzOSB3x7-7GL5bTE2xCW3slqRCwghUzoU0XQqOqVUMKUWsil10Wxv3BfDigLY4oC0OaIsT2q5ze-w4RPyXz0AqIeUfPHF3TQ |
CODEN | IETTE2 |
Cites_doi | 10.1016/0005-1098(71)90097-5 10.1016/j.ifacol.2021.11.232 10.1016/j.automatica.2018.07.023 10.15607/RSS.2018.XIV.069 10.1109/IVS.2011.5940464 10.1177/1541931214581185 10.1109/TCST.2022.3222728 10.1109/TCST.2021.3112613 10.1109/TAES.2007.4383588 10.2514/1.36247 10.1109/TITS.2012.2191542 10.1016/j.neunet.2015.05.005 10.1109/TASE.2017.2707129 10.1117/12.892796 10.1177/0278364920950795 10.1109/TII.2016.2619064 10.1080/00423114.2014.954589 10.1109/LRA.2020.3028049 10.1109/TCST.2023.3234248 10.1109/TITS.2010.2072502 10.1016/j.asr.2022.03.041 10.1109/CDC49753.2023.10383447 10.1016/j.robot.2021.103864 10.1109/DASC52595.2021.9594324 10.1109/ICAR.2015.7251438 10.3390/app7050457 10.1016/j.ifacol.2023.01.113 10.1109/9.855552 10.3390/s18041007 10.23919/acc60939.2024.10644707 10.1007/s11370-015-0187-9 10.1109/tit.2023.3323346 10.23919/ACC45564.2020.9147918 10.1561/2300000053 10.1109/LRA.2019.2928760 10.1109/LCSYS.2023.3347188 10.1007/978-3-642-54862-8_40 10.1109/SMC52423.2021.9658994 10.1175/MWR-D-14-00292.1 10.1109/JPROC.2006.888405 10.1109/ICRA46639.2022.9811952 10.1016/j.automatica.2018.07.024 10.1109/ACCESS.2022.3194851 10.1109/LCSYS.2019.2954102 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 L7M |
DOI | 10.1109/TCST.2024.3518118 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Engineering Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0865 |
EndPage | 798 |
ExternalDocumentID | 10_1109_TCST_2024_3518118 10813423 |
Genre | orig-research |
GrantInformation_xml | – fundername: NSF grantid: CNS-1836952 funderid: 10.13039/100000001 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 7TB 8FD FR3 L7M |
ID | FETCH-LOGICAL-c246t-11fc6479fe70db5859a9a2359a4229dfd001d12e904643bd00ae3f62dd3ee1593 |
IEDL.DBID | RIE |
ISSN | 1063-6536 |
IngestDate | Tue Jul 22 22:53:23 EDT 2025 Tue Jul 01 05:23:48 EDT 2025 Wed Aug 27 01:49:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-11fc6479fe70db5859a9a2359a4229dfd001d12e904643bd00ae3f62dd3ee1593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8470-3528 0000-0001-7847-9865 0000-0003-4297-0331 |
PQID | 3171490236 |
PQPubID | 85425 |
PageCount | 11 |
ParticipantIDs | ieee_primary_10813423 proquest_journals_3171490236 crossref_primary_10_1109_TCST_2024_3518118 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on control systems technology |
PublicationTitleAbbrev | TCST |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref46 ref45 ref47 ref42 ref41 ref44 ref43 Lew (ref48) Alanwar (ref15) 2021 ref8 ref7 ref9 ref4 Sabatino (ref49) 2015 ref3 ref6 ref5 Yun (ref37) 2021 ref40 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Alanwar (ref13) ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref41 doi: 10.1016/0005-1098(71)90097-5 – ident: ref43 doi: 10.1016/j.ifacol.2021.11.232 – ident: ref36 doi: 10.1016/j.automatica.2018.07.023 – ident: ref8 doi: 10.15607/RSS.2018.XIV.069 – ident: ref21 doi: 10.1109/IVS.2011.5940464 – ident: ref30 doi: 10.1177/1541931214581185 – year: 2015 ident: ref49 article-title: Quadrotor control: Modeling, nonlinear control design, and simulation – ident: ref25 doi: 10.1109/TCST.2022.3222728 – ident: ref6 doi: 10.1109/TCST.2021.3112613 – ident: ref45 doi: 10.1109/TAES.2007.4383588 – ident: ref35 doi: 10.2514/1.36247 – ident: ref32 doi: 10.1109/TITS.2012.2191542 – ident: ref34 doi: 10.1016/j.neunet.2015.05.005 – ident: ref5 doi: 10.1109/TASE.2017.2707129 – ident: ref40 doi: 10.1117/12.892796 – ident: ref10 doi: 10.1177/0278364920950795 – ident: ref33 doi: 10.1109/TII.2016.2619064 – ident: ref31 doi: 10.1080/00423114.2014.954589 – ident: ref7 doi: 10.1109/LRA.2020.3028049 – ident: ref12 doi: 10.1109/TCST.2023.3234248 – ident: ref20 doi: 10.1109/TITS.2010.2072502 – ident: ref38 doi: 10.1016/j.asr.2022.03.041 – ident: ref18 doi: 10.1109/CDC49753.2023.10383447 – ident: ref28 doi: 10.1016/j.robot.2021.103864 – ident: ref4 doi: 10.1109/DASC52595.2021.9594324 – ident: ref3 doi: 10.1109/ICAR.2015.7251438 – ident: ref24 doi: 10.3390/app7050457 – ident: ref17 doi: 10.1016/j.ifacol.2023.01.113 – ident: ref42 doi: 10.1109/9.855552 – year: 2021 ident: ref15 article-title: Data-driven reachability analysis from noisy data publication-title: arXiv:2105.07229 – start-page: 2055 volume-title: Proc. Conf. Robot Learn. ident: ref48 article-title: Sampling-based reachability analysis: A random set theory approach with adversarial sampling – ident: ref22 doi: 10.3390/s18041007 – ident: ref16 doi: 10.23919/acc60939.2024.10644707 – ident: ref26 doi: 10.1007/s11370-015-0187-9 – ident: ref44 doi: 10.1109/tit.2023.3323346 – ident: ref47 doi: 10.23919/ACC45564.2020.9147918 – ident: ref27 doi: 10.1561/2300000053 – ident: ref19 doi: 10.1109/LRA.2019.2928760 – ident: ref29 doi: 10.1109/LCSYS.2023.3347188 – ident: ref1 doi: 10.1007/978-3-642-54862-8_40 – ident: ref2 doi: 10.1109/SMC52423.2021.9658994 – ident: ref39 doi: 10.1175/MWR-D-14-00292.1 – ident: ref23 doi: 10.1109/JPROC.2006.888405 – ident: ref9 doi: 10.1109/ICRA46639.2022.9811952 – ident: ref46 doi: 10.1016/j.automatica.2018.07.024 – ident: ref14 doi: 10.1109/ACCESS.2022.3194851 – ident: ref11 doi: 10.1109/LCSYS.2019.2954102 – start-page: 163 volume-title: Proc. 3rd Conf. Learn. Dyn. Control ident: ref13 article-title: Data-driven reachability analysis using matrix zonotopes – year: 2021 ident: ref37 article-title: Sequential Monte Carlo filtering with Gaussian mixture models for highly nonlinear systems |
SSID | ssj0014527 |
Score | 2.4487174 |
Snippet | This article presents data-driven algorithms to perform the reachability analysis of nonlinear human-in-the-loop (HITL) systems. Such systems require... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 788 |
SubjectTerms | Accuracy Algorithms Analytical models Closed loops Control systems Data-driven modeling Heuristic algorithms Hierarchies human-in-the-loop (HITL) Nonlinear dynamical systems Nonlinear systems Prediction algorithms Probabilistic models Reachability analysis Stochastic processes Trajectory Vehicle dynamics vehicle safety |
Title | Data-Driven Closed-Loop Reachability Analysis for Nonlinear Human-in-the-Loop Systems Using Gaussian Mixture Model |
URI | https://ieeexplore.ieee.org/document/10813423 https://www.proquest.com/docview/3171490236 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA_qkz74ObF-kQefhFSbZO3yKPNjiO5BN9hbSZMURFnH1oH613uXdDIUwZe2gQZCLsnd5e5-P0LOjHbcpKpkRcZLJmVmmMosPgqb6CK1Wcjy7ae9obwftUdNsbqvhXHO-eQzF-Onj-Xbyszxqgx2eCdBxLpVsgqeWyjW-g4ZyMDPCi6OYKmPSUYNoObFoPs8AFeQy1i0QaMhwceSEvKsKr-OYq9fbrdIfzGykFbyGs_rIjafP0Ab_z30bbLZWJr0KiyNHbLixrtkYwl_cI9Mr3Wt2fUUTzzafatmzrKHqprQJ8yxDAjeH3SBW0LBvqX9AK2hp9Rf_7OXMQMTMvRq0M-pT0Ogd3o-wwpN-vjyjmEKirRrby0yvL0ZdHusIWFghsu0ZklSmlRmqnTZpS3AuVBaaS7gJTlXtrQw9TbhTmGMVBTQ1E6UKbdWOAe2ktgna-Nq7A4INdwKpa0ujVEy7fCiDRoaLDaQCS_BUInI-UIq-SRgbeTeR7lUOYowRxHmjQgj0sJZXvoxTHBEjheCzJvtOMsF0rwrBMs__KPbEVnnyOzrs8uOyVo9nbsTMDfq4tQvsy-spNId |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB58HNSDb7FaNQdPQqqbpLvNUeqjau1BK3hbskkWitKVdgvqrzeTbKUogpd9wAbCTJL5ZmfmG4BjrSzTscxplrCcCpFoKhODl8xEKotNErJ8e3HnSdw-N5-rYnVfC2Ot9clntoGPPpZvCj3BX2Vuh7ciZKybh8UmVuOGcq3voIEIHVqdk8Np7KOStYpS87Tffuw7Z5CJBm86m4YtPmbMkO-r8usw9hbmag1607mFxJKXxqTMGvrzB23jvye_DqsV1iTnYXFswJwdbsLKDAPhFowuVKnoxQjPPNJ-LcbW0G5RvJEHzLIMHN4fZMpcQhzCJb1ArqFGxAcA6GBIHYgMoyr-c-ITEci1moyxRpPcD94xUEGw8drrNjxdXfbbHVq1YaCaibikUZTrWCQyt8mZyZx7IZVUjLubYEya3DjRm4hZiVFSnrlXZXkeM2O4tQ4t8R1YGBZDuwtEM8OlMirXWoq4xbKms9EOszmdsNxBlRqcTLWSvgW2jdR7KWcyRRWmqMK0UmENtlHKMx8GAdegPlVkWm3Iccqx0btEuvy9P4YdwVKnf99Nuze9u31YZtjn1-ea1WGhHE3sgQMfZXbol9wXy1DVZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Closed-Loop+Reachability+Analysis+for+Nonlinear+Human-in-the-Loop+Systems+Using+Gaussian+Mixture+Model&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Choi%2C+Joonwon&rft.au=Byeon%2C+Sooyung&rft.au=Hwang%2C+Inseok&rft.date=2025-03-01&rft.pub=IEEE&rft.issn=1063-6536&rft.volume=33&rft.issue=2&rft.spage=788&rft.epage=798&rft_id=info:doi/10.1109%2FTCST.2024.3518118&rft.externalDocID=10813423 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon |