Single-Band Stripe Noise Removal in Multispectral Remote Sensing Images Based on Semisupervised Disentangled Transformation Network

The presence of stripe noise in multispectral data is a common issue caused by various factors during the imaging process. This noise severely degrades image quality and imposes limitations on downstream tasks. Although deep learning-based methods have demonstrated promising results in destriping, t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 62; pp. 1 - 13
Main Authors Li, Jia, Li, Chenchen, He, Xianying, Cui, Fangfang, Zhao, Jie, Chen, Fansheng, Zeng, Dan
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The presence of stripe noise in multispectral data is a common issue caused by various factors during the imaging process. This noise severely degrades image quality and imposes limitations on downstream tasks. Although deep learning-based methods have demonstrated promising results in destriping, they often encounter challenges due to the disparity between the stripe noise distribution in simulated and real images. As a result, their destriping performance on real data is significantly hindered. To address this challenge, we propose a semisupervised disentangled transformation network (SDTNet) that encourages the model to learn the real stripe noise distribution through image decoupling and noise transformation using simulated and real data. SDTNet consists of the simulated and real image branches, which are subject to supervised and unsupervised constraints, respectively. They are jointly trained to enhance each other mutually. Furthermore, we introduce a decoupling strategy that effectively preserves the clean background component using self-consistency and adversarial losses. Instead of directly converting the whole image from the simulated domain to the real domain, SDTNet focuses on the relatively simpler task of converting the stripe noise component while maintaining the consistency of the image background. Extensive experimental evaluations on various datasets demonstrate the superior destriping performance of the proposed SDTNet compared to other methods, particularly in effectively removing stripe noise from real images.
AbstractList The presence of stripe noise in multispectral data is a common issue caused by various factors during the imaging process. This noise severely degrades image quality and imposes limitations on downstream tasks. Although deep learning-based methods have demonstrated promising results in destriping, they often encounter challenges due to the disparity between the stripe noise distribution in simulated and real images. As a result, their destriping performance on real data is significantly hindered. To address this challenge, we propose a semisupervised disentangled transformation network (SDTNet) that encourages the model to learn the real stripe noise distribution through image decoupling and noise transformation using simulated and real data. SDTNet consists of the simulated and real image branches, which are subject to supervised and unsupervised constraints, respectively. They are jointly trained to enhance each other mutually. Furthermore, we introduce a decoupling strategy that effectively preserves the clean background component using self-consistency and adversarial losses. Instead of directly converting the whole image from the simulated domain to the real domain, SDTNet focuses on the relatively simpler task of converting the stripe noise component while maintaining the consistency of the image background. Extensive experimental evaluations on various datasets demonstrate the superior destriping performance of the proposed SDTNet compared to other methods, particularly in effectively removing stripe noise from real images.
Author Li, Jia
Cui, Fangfang
He, Xianying
Zeng, Dan
Li, Chenchen
Zhao, Jie
Chen, Fansheng
Author_xml – sequence: 1
  givenname: Jia
  orcidid: 0000-0002-8896-3017
  surname: Li
  fullname: Li, Jia
  email: 13676952257@163.com
  organization: National Engineering Laboratory for Internet Medical Systems and Applications, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
– sequence: 2
  givenname: Chenchen
  surname: Li
  fullname: Li, Chenchen
  email: licc@zzu.edu.cn
  organization: National Engineering Laboratory for Internet Medical Systems and Applications, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
– sequence: 3
  givenname: Xianying
  surname: He
  fullname: He, Xianying
  email: hexianying@zzu.edu.cn
  organization: National Engineering Laboratory for Internet Medical Systems and Applications, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
– sequence: 4
  givenname: Fangfang
  surname: Cui
  fullname: Cui, Fangfang
  email: fcccuiff@zzu.edu.cn
  organization: National Engineering Laboratory for Internet Medical Systems and Applications, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
– sequence: 5
  givenname: Jie
  surname: Zhao
  fullname: Zhao, Jie
  email: zhaojie@zzu.edu.cn
  organization: National Engineering Laboratory for Internet Medical Systems and Applications, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
– sequence: 6
  givenname: Fansheng
  orcidid: 0000-0003-2244-8327
  surname: Chen
  fullname: Chen, Fansheng
  email: cfs@mail.sitp.ac.cn
  organization: Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
– sequence: 7
  givenname: Dan
  orcidid: 0000-0003-1300-1769
  surname: Zeng
  fullname: Zeng, Dan
  email: dzeng@shu.edu.cn
  organization: Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute of Advanced Communication and Data Science, Shanghai University, Shanghai, China
BookMark eNpNkElLBDEQhYMoOC4_QPAQ8Nxjts4kR3cFF3DGc5NJV0t0OmmTjOLZP26a8eClCl69V0V9e2jbBw8IHVEypZTo08XN83zKCBNTLjgXUmyhCa1rVREpxDaaEKplxZRmu2gvpTdCqKjpbIJ-5s6_rqA6N77F8xzdAPgxuAT4GfrwaVbYefywXmWXBrA5FmEcZMBz8Klk8V1vXiHhc5OgxcEXvXdpPUD8dKNyWarPZjzS4kU0PnUh9ia7Yn2E_BXi-wHa6cwqweFf30cv11eLi9vq_unm7uLsvrJMyFxRYmRNoZtpJZS1LVnWwGujiGGiNmBnqtVqKWxnOylbBgY057a8vARQrG75PjrZ7B1i-FhDys1bWEdfTjacKK0p10wXF924bAwpReiaIbrexO-GkmZk3Yysm5F188e6ZI43GQcA__ySckkk_wVPI3-w
CODEN IGRSD2
Cites_doi 10.1109/TGRS.2020.2988519
10.1109/LGRS.2013.2285124
10.1109/CVPR.2017.19
10.1109/TGRS.2015.2480863
10.48175/IJARSCT-2898
10.1109/TIP.2010.2046796
10.1109/ICCV51070.2023.01110
10.1080/01431169008955060
10.1109/TIP.2023.3243853
10.1109/TGRS.2012.2226730
10.1109/TGRS.2020.3018732
10.1109/TGRS.2015.2510418
10.1109/tnnls.2021.3109872
10.1117/12.2245541
10.1109/MGRS.2021.3121761
10.1109/tgrs.2023.3263362
10.1109/TGRS.2014.2321557
10.1016/0146-664X(79)90035-2
10.1109/TGRS.2016.2594080
10.3390/rs10030361
10.1364/OE.17.008567
10.3390/rs14143376
10.1016/j.rse.2019.111416
10.1109/tgrs.2022.3233885
10.1109/tgrs.2021.3127232
10.1155/2017/5891417
10.1109/TGRS.2007.895841
10.1109/TGRS.2019.2957153
10.1109/TGRS.2019.2947599
10.1109/cvpr.2016.187
10.1109/TGRS.2023.3324606
10.1016/S0034-4257(98)00070-4
10.1109/TGRS.2008.2005780
10.1109/TGRS.2023.3306891
10.1109/TGRS.2017.2755016
10.1109/JSTARS.2016.2531178
10.1109/TGRS.2013.2284280
10.1109/CVPR.2016.90
10.1109/TGRS.2021.3074364
10.1109/TGRS.2021.3137313
10.1016/j.isprsjprs.2011.04.003
10.1109/CVPR.2017.625
10.3390/rs13030371
10.1109/TGRS.2018.2889731
10.1080/01431160050030592
10.3390/rs9060559
10.1109/TGRS.2022.3195092
10.1109/JPHOT.2018.2854303
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2017.632
10.1109/TGRS.2018.2870980
10.1109/TGRS.2022.3233847
10.1109/TIP.2015.2404782
10.3390/rs14081790
10.1109/TGRS.2019.2912909
10.1109/TCYB.2023.3238200
10.1109/TGRS.2011.2119399
10.1109/JPHOT.2017.2717948
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2024.3433464
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 13
ExternalDocumentID 10_1109_TGRS_2024_3433464
10613606
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2022ZD0160704
  funderid: 10.13039/501100012166
– fundername: Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation
  grantid: GZC20232410
  funderid: 10.13039/501100009996
– fundername: Key Science and Technology Program in Henan Province
  grantid: 201400210400
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c246t-10a651ef79848ccd0b5e35a80a245aec78d98b4cfcf66d2eae933c892bee825d3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 08:17:04 EDT 2025
Tue Jul 01 02:15:27 EDT 2025
Wed Aug 27 02:35:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c246t-10a651ef79848ccd0b5e35a80a245aec78d98b4cfcf66d2eae933c892bee825d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8896-3017
0000-0003-1300-1769
0000-0003-2244-8327
PQID 3089913929
PQPubID 85465
PageCount 13
ParticipantIDs ieee_primary_10613606
proquest_journals_3089913929
crossref_primary_10_1109_TGRS_2024_3433464
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref20
ref22
ref21
ref28
ref27
ref29
Imamura (ref25) 2019
References_xml – ident: ref1
  doi: 10.1109/TGRS.2020.2988519
– ident: ref40
  doi: 10.1109/LGRS.2013.2285124
– ident: ref54
  doi: 10.1109/CVPR.2017.19
– ident: ref4
  doi: 10.1109/TGRS.2015.2480863
– ident: ref16
  doi: 10.48175/IJARSCT-2898
– ident: ref10
  doi: 10.1109/TIP.2010.2046796
– ident: ref26
  doi: 10.1109/ICCV51070.2023.01110
– ident: ref7
  doi: 10.1080/01431169008955060
– ident: ref18
  doi: 10.1109/TIP.2023.3243853
– ident: ref13
  doi: 10.1109/TGRS.2012.2226730
– ident: ref47
  doi: 10.1109/TGRS.2020.3018732
– ident: ref37
  doi: 10.1109/TGRS.2015.2510418
– ident: ref20
  doi: 10.1109/tnnls.2021.3109872
– ident: ref56
  doi: 10.1117/12.2245541
– ident: ref30
  doi: 10.1109/MGRS.2021.3121761
– ident: ref46
  doi: 10.1109/tgrs.2023.3263362
– ident: ref41
  doi: 10.1109/TGRS.2014.2321557
– ident: ref6
  doi: 10.1016/0146-664X(79)90035-2
– ident: ref42
  doi: 10.1109/TGRS.2016.2594080
– ident: ref58
  doi: 10.3390/rs10030361
– ident: ref35
  doi: 10.1364/OE.17.008567
– ident: ref50
  doi: 10.3390/rs14143376
– ident: ref49
  doi: 10.1016/j.rse.2019.111416
– ident: ref19
  doi: 10.1109/tgrs.2022.3233885
– ident: ref5
  doi: 10.1109/tgrs.2021.3127232
– ident: ref22
  doi: 10.1155/2017/5891417
– ident: ref9
  doi: 10.1109/TGRS.2007.895841
– ident: ref29
  doi: 10.1109/TGRS.2019.2957153
– ident: ref33
  doi: 10.1109/TGRS.2019.2947599
– ident: ref43
  doi: 10.1109/cvpr.2016.187
– ident: ref23
  doi: 10.1109/TGRS.2023.3324606
– ident: ref8
  doi: 10.1016/S0034-4257(98)00070-4
– ident: ref12
  doi: 10.1109/TGRS.2008.2005780
– ident: ref55
  doi: 10.1109/TGRS.2023.3306891
– ident: ref45
  doi: 10.1109/TGRS.2017.2755016
– ident: ref39
  doi: 10.1109/JSTARS.2016.2531178
– ident: ref38
  doi: 10.1109/TGRS.2013.2284280
– ident: ref52
  doi: 10.1109/CVPR.2016.90
– ident: ref2
  doi: 10.1109/TGRS.2021.3074364
– ident: ref24
  doi: 10.1109/TGRS.2021.3137313
– year: 2019
  ident: ref25
  article-title: Self-supervised hyperspectral image restoration using separable image prior
  publication-title: arXiv:1907.00651
– ident: ref34
  doi: 10.1016/j.isprsjprs.2011.04.003
– ident: ref44
  doi: 10.1109/CVPR.2017.625
– ident: ref21
  doi: 10.3390/rs13030371
– ident: ref36
  doi: 10.1109/TGRS.2018.2889731
– ident: ref31
  doi: 10.1080/01431160050030592
– ident: ref57
  doi: 10.3390/rs9060559
– ident: ref32
  doi: 10.1109/TGRS.2022.3195092
– ident: ref27
  doi: 10.1109/JPHOT.2018.2854303
– ident: ref51
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref53
  doi: 10.1109/CVPR.2017.632
– ident: ref3
  doi: 10.1109/TGRS.2018.2870980
– ident: ref17
  doi: 10.1109/TGRS.2022.3233847
– ident: ref11
  doi: 10.1109/TIP.2015.2404782
– ident: ref14
  doi: 10.3390/rs14081790
– ident: ref28
  doi: 10.1109/TGRS.2019.2912909
– ident: ref48
  doi: 10.1109/TCYB.2023.3238200
– ident: ref59
  doi: 10.1109/TGRS.2011.2119399
– ident: ref15
  doi: 10.1109/JPHOT.2017.2717948
SSID ssj0014517
Score 2.433724
Snippet The presence of stripe noise in multispectral data is a common issue caused by various factors during the imaging process. This noise severely degrades image...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Background noise
Data models
Decoupling
Deep learning
Degradation
Image degradation
Image enhancement
Image quality
Multispectral remote sensing image
Noise
Performance evaluation
Remote sensing
semisupervised disentangled transformation network (SDTNet)
stripe noise removal
Task analysis
Tensors
Transformations (mathematics)
Wavelet transforms
Title Single-Band Stripe Noise Removal in Multispectral Remote Sensing Images Based on Semisupervised Disentangled Transformation Network
URI https://ieeexplore.ieee.org/document/10613606
https://www.proquest.com/docview/3089913929
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYACYke2kKpukCRD5yQsiTxY50jtOUlsQd2kbhFjj1BKyBBbPbClT_OjJNFWxASt2jiJFa-yXg-zyOM7XmlDQXgIih9GknU4CgzxSAC5awCJaUD2hq4GOrTK3l-ra67YvVQCwMAIfkM-nQYYvm-djPaKjsg-iI0NdheRubWFmu9hgykSrraaB0hi0i7EGYSZwfjk8sRUsFU9oUUQmr53yIU_qryzhSH9eX4GxvOZ9amldz2Z03Rd09vmjZ-eurf2dfO0-SHrWqssyWoNtiXhf6DG2w15H-66Q_2PELBHURHtvJ81KAlAT6sJ1Pgl3BfozbyScVDsW4ozXxEAZ1ogI8oA7664Wf3aJmm_AhXRc_rCuWoQbMHMkUk-TsJVU70EM_HC94yDh22qeib7Or43_jPadT9nyFyqdQNWnCrVQLlIDPSOOfjQoFQ1sQ2lcqCGxiPuEtXulJrn4KFTAiH0BQASEy9-MlWqrqCX4w7A94UDnySABJUaVWhkjJWxpa6LJTqsf05YPlD24YjD_QlznJCNyd08w7dHtskABYGtu--x3bmGOfdlzrNBcU9E_IStz64bJut0d3bfZcdttI8zuA3eiJNsRs08AVwst0l
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hKtT2UCgFdVsKPvRUKUsSP9Y5QildWsiBXSRukWNP0IqSIDZ76bV_nLGTRdtWlXqLJo5s-ZvMw_MwwEcnlfYBuAgrl0aCODjKdDmKUFojUQph0R8NXORqfCW-Xcvrvlg91MIgYkg-w6F_DLF819iFPyo79O4LV77B9jNS_DLpyrWeggZCJn11tIrIj0j7IGYSZ4fTr5cTcgZTMeSCc6HEb2oo3KvylzAOGuZ0E_Ll2rrEktvhoi2H9ucfbRv_e_Fb8Kq3NdlRxxyvYQ3rbXi50oFwGzZCBqidv4FfEyL8wOjY1I5NWpIlyPJmNkd2iXcN8SOb1SyU64bizAci-BctsonPga9v2NkdyaY5Oya96FhTE514aHHvhZGnnMxCnZOfxLHpir1MQ_MuGX0Hrk6_TD-Po_6GhsimQrUkw42SCVajTAttrYtLiVwaHZtUSIN2pB0hL2xlK6VcigYzzi1BUyKSa-r4LqzXTY1vgVmNTpcWXZIguajCyFImVSy1qVRVSjmAT0vAivuuEUcRHJg4Kzy6hUe36NEdwI4HYGVgt_cD2FtiXPT_6rzgPvKZeDvx3T8-O4Dn4-nFeXF-ln9_Dy_8TN0pzB6stw8L_EB2SVvuB258BB784G4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Band+Stripe+Noise+Removal+in+Multispectral+Remote+Sensing+Images+Based+on+Semisupervised+Disentangled+Transformation+Network&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Li%2C+Jia&rft.au=Li%2C+Chenchen&rft.au=He%2C+Xianying&rft.au=Cui%2C+Fangfang&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTGRS.2024.3433464&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3433464
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon