Single-Band Stripe Noise Removal in Multispectral Remote Sensing Images Based on Semisupervised Disentangled Transformation Network
The presence of stripe noise in multispectral data is a common issue caused by various factors during the imaging process. This noise severely degrades image quality and imposes limitations on downstream tasks. Although deep learning-based methods have demonstrated promising results in destriping, t...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 62; pp. 1 - 13 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The presence of stripe noise in multispectral data is a common issue caused by various factors during the imaging process. This noise severely degrades image quality and imposes limitations on downstream tasks. Although deep learning-based methods have demonstrated promising results in destriping, they often encounter challenges due to the disparity between the stripe noise distribution in simulated and real images. As a result, their destriping performance on real data is significantly hindered. To address this challenge, we propose a semisupervised disentangled transformation network (SDTNet) that encourages the model to learn the real stripe noise distribution through image decoupling and noise transformation using simulated and real data. SDTNet consists of the simulated and real image branches, which are subject to supervised and unsupervised constraints, respectively. They are jointly trained to enhance each other mutually. Furthermore, we introduce a decoupling strategy that effectively preserves the clean background component using self-consistency and adversarial losses. Instead of directly converting the whole image from the simulated domain to the real domain, SDTNet focuses on the relatively simpler task of converting the stripe noise component while maintaining the consistency of the image background. Extensive experimental evaluations on various datasets demonstrate the superior destriping performance of the proposed SDTNet compared to other methods, particularly in effectively removing stripe noise from real images. |
---|---|
AbstractList | The presence of stripe noise in multispectral data is a common issue caused by various factors during the imaging process. This noise severely degrades image quality and imposes limitations on downstream tasks. Although deep learning-based methods have demonstrated promising results in destriping, they often encounter challenges due to the disparity between the stripe noise distribution in simulated and real images. As a result, their destriping performance on real data is significantly hindered. To address this challenge, we propose a semisupervised disentangled transformation network (SDTNet) that encourages the model to learn the real stripe noise distribution through image decoupling and noise transformation using simulated and real data. SDTNet consists of the simulated and real image branches, which are subject to supervised and unsupervised constraints, respectively. They are jointly trained to enhance each other mutually. Furthermore, we introduce a decoupling strategy that effectively preserves the clean background component using self-consistency and adversarial losses. Instead of directly converting the whole image from the simulated domain to the real domain, SDTNet focuses on the relatively simpler task of converting the stripe noise component while maintaining the consistency of the image background. Extensive experimental evaluations on various datasets demonstrate the superior destriping performance of the proposed SDTNet compared to other methods, particularly in effectively removing stripe noise from real images. |
Author | Li, Jia Cui, Fangfang He, Xianying Zeng, Dan Li, Chenchen Zhao, Jie Chen, Fansheng |
Author_xml | – sequence: 1 givenname: Jia orcidid: 0000-0002-8896-3017 surname: Li fullname: Li, Jia email: 13676952257@163.com organization: National Engineering Laboratory for Internet Medical Systems and Applications, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China – sequence: 2 givenname: Chenchen surname: Li fullname: Li, Chenchen email: licc@zzu.edu.cn organization: National Engineering Laboratory for Internet Medical Systems and Applications, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China – sequence: 3 givenname: Xianying surname: He fullname: He, Xianying email: hexianying@zzu.edu.cn organization: National Engineering Laboratory for Internet Medical Systems and Applications, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China – sequence: 4 givenname: Fangfang surname: Cui fullname: Cui, Fangfang email: fcccuiff@zzu.edu.cn organization: National Engineering Laboratory for Internet Medical Systems and Applications, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China – sequence: 5 givenname: Jie surname: Zhao fullname: Zhao, Jie email: zhaojie@zzu.edu.cn organization: National Engineering Laboratory for Internet Medical Systems and Applications, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China – sequence: 6 givenname: Fansheng orcidid: 0000-0003-2244-8327 surname: Chen fullname: Chen, Fansheng email: cfs@mail.sitp.ac.cn organization: Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China – sequence: 7 givenname: Dan orcidid: 0000-0003-1300-1769 surname: Zeng fullname: Zeng, Dan email: dzeng@shu.edu.cn organization: Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute of Advanced Communication and Data Science, Shanghai University, Shanghai, China |
BookMark | eNpNkElLBDEQhYMoOC4_QPAQ8Nxjts4kR3cFF3DGc5NJV0t0OmmTjOLZP26a8eClCl69V0V9e2jbBw8IHVEypZTo08XN83zKCBNTLjgXUmyhCa1rVREpxDaaEKplxZRmu2gvpTdCqKjpbIJ-5s6_rqA6N77F8xzdAPgxuAT4GfrwaVbYefywXmWXBrA5FmEcZMBz8Klk8V1vXiHhc5OgxcEXvXdpPUD8dKNyWarPZjzS4kU0PnUh9ia7Yn2E_BXi-wHa6cwqweFf30cv11eLi9vq_unm7uLsvrJMyFxRYmRNoZtpJZS1LVnWwGujiGGiNmBnqtVqKWxnOylbBgY057a8vARQrG75PjrZ7B1i-FhDys1bWEdfTjacKK0p10wXF924bAwpReiaIbrexO-GkmZk3Yysm5F188e6ZI43GQcA__ySckkk_wVPI3-w |
CODEN | IGRSD2 |
Cites_doi | 10.1109/TGRS.2020.2988519 10.1109/LGRS.2013.2285124 10.1109/CVPR.2017.19 10.1109/TGRS.2015.2480863 10.48175/IJARSCT-2898 10.1109/TIP.2010.2046796 10.1109/ICCV51070.2023.01110 10.1080/01431169008955060 10.1109/TIP.2023.3243853 10.1109/TGRS.2012.2226730 10.1109/TGRS.2020.3018732 10.1109/TGRS.2015.2510418 10.1109/tnnls.2021.3109872 10.1117/12.2245541 10.1109/MGRS.2021.3121761 10.1109/tgrs.2023.3263362 10.1109/TGRS.2014.2321557 10.1016/0146-664X(79)90035-2 10.1109/TGRS.2016.2594080 10.3390/rs10030361 10.1364/OE.17.008567 10.3390/rs14143376 10.1016/j.rse.2019.111416 10.1109/tgrs.2022.3233885 10.1109/tgrs.2021.3127232 10.1155/2017/5891417 10.1109/TGRS.2007.895841 10.1109/TGRS.2019.2957153 10.1109/TGRS.2019.2947599 10.1109/cvpr.2016.187 10.1109/TGRS.2023.3324606 10.1016/S0034-4257(98)00070-4 10.1109/TGRS.2008.2005780 10.1109/TGRS.2023.3306891 10.1109/TGRS.2017.2755016 10.1109/JSTARS.2016.2531178 10.1109/TGRS.2013.2284280 10.1109/CVPR.2016.90 10.1109/TGRS.2021.3074364 10.1109/TGRS.2021.3137313 10.1016/j.isprsjprs.2011.04.003 10.1109/CVPR.2017.625 10.3390/rs13030371 10.1109/TGRS.2018.2889731 10.1080/01431160050030592 10.3390/rs9060559 10.1109/TGRS.2022.3195092 10.1109/JPHOT.2018.2854303 10.1007/978-3-319-24574-4_28 10.1109/CVPR.2017.632 10.1109/TGRS.2018.2870980 10.1109/TGRS.2022.3233847 10.1109/TIP.2015.2404782 10.3390/rs14081790 10.1109/TGRS.2019.2912909 10.1109/TCYB.2023.3238200 10.1109/TGRS.2011.2119399 10.1109/JPHOT.2017.2717948 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2024.3433464 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 13 |
ExternalDocumentID | 10_1109_TGRS_2024_3433464 10613606 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2022ZD0160704 funderid: 10.13039/501100012166 – fundername: Postdoctoral Fellowship Program (Grade C) of China Postdoctoral Science Foundation grantid: GZC20232410 funderid: 10.13039/501100009996 – fundername: Key Science and Technology Program in Henan Province grantid: 201400210400 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c246t-10a651ef79848ccd0b5e35a80a245aec78d98b4cfcf66d2eae933c892bee825d3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Mon Jun 30 08:17:04 EDT 2025 Tue Jul 01 02:15:27 EDT 2025 Wed Aug 27 02:35:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c246t-10a651ef79848ccd0b5e35a80a245aec78d98b4cfcf66d2eae933c892bee825d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8896-3017 0000-0003-1300-1769 0000-0003-2244-8327 |
PQID | 3089913929 |
PQPubID | 85465 |
PageCount | 13 |
ParticipantIDs | ieee_primary_10613606 proquest_journals_3089913929 crossref_primary_10_1109_TGRS_2024_3433464 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref20 ref22 ref21 ref28 ref27 ref29 Imamura (ref25) 2019 |
References_xml | – ident: ref1 doi: 10.1109/TGRS.2020.2988519 – ident: ref40 doi: 10.1109/LGRS.2013.2285124 – ident: ref54 doi: 10.1109/CVPR.2017.19 – ident: ref4 doi: 10.1109/TGRS.2015.2480863 – ident: ref16 doi: 10.48175/IJARSCT-2898 – ident: ref10 doi: 10.1109/TIP.2010.2046796 – ident: ref26 doi: 10.1109/ICCV51070.2023.01110 – ident: ref7 doi: 10.1080/01431169008955060 – ident: ref18 doi: 10.1109/TIP.2023.3243853 – ident: ref13 doi: 10.1109/TGRS.2012.2226730 – ident: ref47 doi: 10.1109/TGRS.2020.3018732 – ident: ref37 doi: 10.1109/TGRS.2015.2510418 – ident: ref20 doi: 10.1109/tnnls.2021.3109872 – ident: ref56 doi: 10.1117/12.2245541 – ident: ref30 doi: 10.1109/MGRS.2021.3121761 – ident: ref46 doi: 10.1109/tgrs.2023.3263362 – ident: ref41 doi: 10.1109/TGRS.2014.2321557 – ident: ref6 doi: 10.1016/0146-664X(79)90035-2 – ident: ref42 doi: 10.1109/TGRS.2016.2594080 – ident: ref58 doi: 10.3390/rs10030361 – ident: ref35 doi: 10.1364/OE.17.008567 – ident: ref50 doi: 10.3390/rs14143376 – ident: ref49 doi: 10.1016/j.rse.2019.111416 – ident: ref19 doi: 10.1109/tgrs.2022.3233885 – ident: ref5 doi: 10.1109/tgrs.2021.3127232 – ident: ref22 doi: 10.1155/2017/5891417 – ident: ref9 doi: 10.1109/TGRS.2007.895841 – ident: ref29 doi: 10.1109/TGRS.2019.2957153 – ident: ref33 doi: 10.1109/TGRS.2019.2947599 – ident: ref43 doi: 10.1109/cvpr.2016.187 – ident: ref23 doi: 10.1109/TGRS.2023.3324606 – ident: ref8 doi: 10.1016/S0034-4257(98)00070-4 – ident: ref12 doi: 10.1109/TGRS.2008.2005780 – ident: ref55 doi: 10.1109/TGRS.2023.3306891 – ident: ref45 doi: 10.1109/TGRS.2017.2755016 – ident: ref39 doi: 10.1109/JSTARS.2016.2531178 – ident: ref38 doi: 10.1109/TGRS.2013.2284280 – ident: ref52 doi: 10.1109/CVPR.2016.90 – ident: ref2 doi: 10.1109/TGRS.2021.3074364 – ident: ref24 doi: 10.1109/TGRS.2021.3137313 – year: 2019 ident: ref25 article-title: Self-supervised hyperspectral image restoration using separable image prior publication-title: arXiv:1907.00651 – ident: ref34 doi: 10.1016/j.isprsjprs.2011.04.003 – ident: ref44 doi: 10.1109/CVPR.2017.625 – ident: ref21 doi: 10.3390/rs13030371 – ident: ref36 doi: 10.1109/TGRS.2018.2889731 – ident: ref31 doi: 10.1080/01431160050030592 – ident: ref57 doi: 10.3390/rs9060559 – ident: ref32 doi: 10.1109/TGRS.2022.3195092 – ident: ref27 doi: 10.1109/JPHOT.2018.2854303 – ident: ref51 doi: 10.1007/978-3-319-24574-4_28 – ident: ref53 doi: 10.1109/CVPR.2017.632 – ident: ref3 doi: 10.1109/TGRS.2018.2870980 – ident: ref17 doi: 10.1109/TGRS.2022.3233847 – ident: ref11 doi: 10.1109/TIP.2015.2404782 – ident: ref14 doi: 10.3390/rs14081790 – ident: ref28 doi: 10.1109/TGRS.2019.2912909 – ident: ref48 doi: 10.1109/TCYB.2023.3238200 – ident: ref59 doi: 10.1109/TGRS.2011.2119399 – ident: ref15 doi: 10.1109/JPHOT.2017.2717948 |
SSID | ssj0014517 |
Score | 2.433724 |
Snippet | The presence of stripe noise in multispectral data is a common issue caused by various factors during the imaging process. This noise severely degrades image... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Background noise Data models Decoupling Deep learning Degradation Image degradation Image enhancement Image quality Multispectral remote sensing image Noise Performance evaluation Remote sensing semisupervised disentangled transformation network (SDTNet) stripe noise removal Task analysis Tensors Transformations (mathematics) Wavelet transforms |
Title | Single-Band Stripe Noise Removal in Multispectral Remote Sensing Images Based on Semisupervised Disentangled Transformation Network |
URI | https://ieeexplore.ieee.org/document/10613606 https://www.proquest.com/docview/3089913929 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYACYke2kKpukCRD5yQsiTxY50jtOUlsQd2kbhFjj1BKyBBbPbClT_OjJNFWxASt2jiJFa-yXg-zyOM7XmlDQXgIih9GknU4CgzxSAC5awCJaUD2hq4GOrTK3l-ra67YvVQCwMAIfkM-nQYYvm-djPaKjsg-iI0NdheRubWFmu9hgykSrraaB0hi0i7EGYSZwfjk8sRUsFU9oUUQmr53yIU_qryzhSH9eX4GxvOZ9amldz2Z03Rd09vmjZ-eurf2dfO0-SHrWqssyWoNtiXhf6DG2w15H-66Q_2PELBHURHtvJ81KAlAT6sJ1Pgl3BfozbyScVDsW4ozXxEAZ1ogI8oA7664Wf3aJmm_AhXRc_rCuWoQbMHMkUk-TsJVU70EM_HC94yDh22qeib7Or43_jPadT9nyFyqdQNWnCrVQLlIDPSOOfjQoFQ1sQ2lcqCGxiPuEtXulJrn4KFTAiH0BQASEy9-MlWqrqCX4w7A94UDnySABJUaVWhkjJWxpa6LJTqsf05YPlD24YjD_QlznJCNyd08w7dHtskABYGtu--x3bmGOfdlzrNBcU9E_IStz64bJut0d3bfZcdttI8zuA3eiJNsRs08AVwst0l |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hKtT2UCgFdVsKPvRUKUsSP9Y5QildWsiBXSRukWNP0IqSIDZ76bV_nLGTRdtWlXqLJo5s-ZvMw_MwwEcnlfYBuAgrl0aCODjKdDmKUFojUQph0R8NXORqfCW-Xcvrvlg91MIgYkg-w6F_DLF819iFPyo79O4LV77B9jNS_DLpyrWeggZCJn11tIrIj0j7IGYSZ4fTr5cTcgZTMeSCc6HEb2oo3KvylzAOGuZ0E_Ll2rrEktvhoi2H9ucfbRv_e_Fb8Kq3NdlRxxyvYQ3rbXi50oFwGzZCBqidv4FfEyL8wOjY1I5NWpIlyPJmNkd2iXcN8SOb1SyU64bizAci-BctsonPga9v2NkdyaY5Oya96FhTE514aHHvhZGnnMxCnZOfxLHpir1MQ_MuGX0Hrk6_TD-Po_6GhsimQrUkw42SCVajTAttrYtLiVwaHZtUSIN2pB0hL2xlK6VcigYzzi1BUyKSa-r4LqzXTY1vgVmNTpcWXZIguajCyFImVSy1qVRVSjmAT0vAivuuEUcRHJg4Kzy6hUe36NEdwI4HYGVgt_cD2FtiXPT_6rzgPvKZeDvx3T8-O4Dn4-nFeXF-ln9_Dy_8TN0pzB6stw8L_EB2SVvuB258BB784G4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Band+Stripe+Noise+Removal+in+Multispectral+Remote+Sensing+Images+Based+on+Semisupervised+Disentangled+Transformation+Network&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Li%2C+Jia&rft.au=Li%2C+Chenchen&rft.au=He%2C+Xianying&rft.au=Cui%2C+Fangfang&rft.date=2024&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=62&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTGRS.2024.3433464&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2024_3433464 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |