Application of spectral analysis methods for data pre-processing of anomaly detection problem of vibration diagnostics in non-destructive testing

The paper is devoted to the problem of primary data processing obtained in the vibration measurements during the processing of the workpiece on a milling machine with computer numerical control. An experimental setup is described and an algorithm for analysing vibration diagnostics signals using a m...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 2127; no. 1; pp. 12028 - 12036
Main Authors Trufanov, N N, Churikov, D V, Kravchenko, O V
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.11.2021
Online AccessGet full text

Cover

Loading…
Abstract The paper is devoted to the problem of primary data processing obtained in the vibration measurements during the processing of the workpiece on a milling machine with computer numerical control. An experimental setup is described and an algorithm for analysing vibration diagnostics signals using a mathematical machine learning tool is proposed. Special attention is paid to the study of the rigidity characteristics of the machine at different relative positions of its components. The analysis of the equipment design and factors affecting the ongoing process is carried out, as a result of which the received signal is processed and its characteristic fragments in the time and frequency domains are identified. The data is prepared for further use in solving the problem of detecting anomalies of the technological process, which implies predicting the progress of the technological process based on a mathematical model constructed using machine learning methods, and identifying deviations of the real technological process from the forecast. Preliminary preparation is carried out using the windowed Fourier transform. Various variants of windows in the transformation are considered, including those constructed using atomic functions. Calculations are performed using the Python 3.9 language, the main results are supported by graphs. The development of training methods for the considered models of neural networks is the subject of further research.
AbstractList The paper is devoted to the problem of primary data processing obtained in the vibration measurements during the processing of the workpiece on a milling machine with computer numerical control. An experimental setup is described and an algorithm for analysing vibration diagnostics signals using a mathematical machine learning tool is proposed. Special attention is paid to the study of the rigidity characteristics of the machine at different relative positions of its components. The analysis of the equipment design and factors affecting the ongoing process is carried out, as a result of which the received signal is processed and its characteristic fragments in the time and frequency domains are identified. The data is prepared for further use in solving the problem of detecting anomalies of the technological process, which implies predicting the progress of the technological process based on a mathematical model constructed using machine learning methods, and identifying deviations of the real technological process from the forecast. Preliminary preparation is carried out using the windowed Fourier transform. Various variants of windows in the transformation are considered, including those constructed using atomic functions. Calculations are performed using the Python 3.9 language, the main results are supported by graphs. The development of training methods for the considered models of neural networks is the subject of further research.
Author Trufanov, N N
Churikov, D V
Kravchenko, O V
Author_xml – sequence: 1
  givenname: N N
  surname: Trufanov
  fullname: Trufanov, N N
  organization: Scientific and Technological Center of Unique Instrumentation of RAS , Russia
– sequence: 2
  givenname: D V
  surname: Churikov
  fullname: Churikov, D V
  organization: V.A. Kotelnikov IRE of the Russian Academy of Sciences , Russia
– sequence: 3
  givenname: O V
  surname: Kravchenko
  fullname: Kravchenko, O V
  organization: V.A. Kotelnikov IRE of the Russian Academy of Sciences , Russia
BookMark eNqFkNtqwyAYx2V0sLbbM8zrQRY1B9PLUnaksMG2a1GjnSVV0bTQx9gbz5BRGAzmjR_-Dx_-ZmBinVUAXGN0i1HT5JiWJKurRZ0TTGiOc4QJIs0ZmJ6UyWlumgswi3GLUJEOnYKvpfedkbw3zkKnYfRK9oF3kFveHaOJcKf6T9dGqF2ALe859EFlPjipYjR2M4S4dbvkhq3qU3poSrro1G4QD0aEsb41fGNd7I2M0FiY_pG1KvZhnzIHBfs0p8JLcK55F9XVzz0HH_d376vHbP3y8LRarjNJyrrJRK1JxZGSRSmaliO6IKQggpZVvSi4FkUrKiIw0qgspKRKCCE5xlWl0hOteTEHdOyVwcUYlGY-mB0PR4YRG8iygRkb-LGBLMNsJJuSN2PSOM-2bh8SqsieX1dvv43MtzqZiz_M_634BkPfjwY
Cites_doi 10.1007/s00170-020-05955-x
10.1109/5.364486
10.1007/s00170-004-2038-2
10.3103/S1068798X21030102
10.1007/s10845-020-01591-0
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
DOI 10.1088/1742-6596/2127/1/012028
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_2127_1_012028
JPCS_2127_1_012028
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
CITATION
OVT
PHGZM
PHGZT
ROL
ID FETCH-LOGICAL-c2468-b6f25a0ec34b8da0792232b745693afb3db52b10f043cc7ebbbca1155e0f076a3
IEDL.DBID IOP
ISSN 1742-6588
IngestDate Tue Jul 01 00:56:18 EDT 2025
Wed Aug 21 03:35:51 EDT 2024
Tue Dec 14 22:30:44 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2468-b6f25a0ec34b8da0792232b745693afb3db52b10f043cc7ebbbca1155e0f076a3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1742-6596/2127/1/012028
PageCount 9
ParticipantIDs crossref_primary_10_1088_1742_6596_2127_1_012028
iop_journals_10_1088_1742_6596_2127_1_012028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 20211101
  day: 01
PublicationDecade 2020
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References JPCS_2127_1_012028bib8
JPCS_2127_1_012028bib9
Kravchenko (JPCS_2127_1_012028bib11) 2016
Rehorn (JPCS_2127_1_012028bib3) 2005; 26
Jiang (JPCS_2127_1_012028bib10) 1995; 83
Qin (JPCS_2127_1_012028bib4) 2020; 110
Rozhkov (JPCS_2127_1_012028bib7) 2016; 8
Kravchenko (JPCS_2127_1_012028bib12) 2005; 10
Hsu (JPCS_2127_1_012028bib1) 2021; 32
Kravchenko (JPCS_2127_1_012028bib13) 2021; 10
Masalimov (JPCS_2127_1_012028bib6) 2020
Li (JPCS_2127_1_012028bib5) 2021; 68
Masalimov (JPCS_2127_1_012028bib2) 2021; 41
References_xml – volume: 110
  start-page: 3365
  year: 2020
  ident: JPCS_2127_1_012028bib4
  article-title: Research on automatic monitoring method of face milling cutter wear based on dynamic image sequence
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-020-05955-x
– volume: 68
  year: 2021
  ident: JPCS_2127_1_012028bib5
  article-title: An automatic and accurate method for tool wear inspection using grayscale image probability algorithm based on bayesian inference
  publication-title: RCIM
– volume: 10
  start-page: 82
  year: 2021
  ident: JPCS_2127_1_012028bib13
  article-title: Generation of the data training selection for vibration diagnostics of the cutting processing technological process
  publication-title: Phys. Bas. of Instr.
– volume: 83
  start-page: 378
  year: 1995
  ident: JPCS_2127_1_012028bib10
  article-title: Neuro-fuzzy modeling and control
  publication-title: Proc. of the IEEE
  doi: 10.1109/5.364486
– volume: 26
  start-page: 693
  year: 2005
  ident: JPCS_2127_1_012028bib3
  article-title: State-of-the-art methods and results in tool condition monitoring: a review
  publication-title: Int J AdvManuf Technol
  doi: 10.1007/s00170-004-2038-2
– volume: 8
  start-page: 188
  year: 2016
  ident: JPCS_2127_1_012028bib7
  article-title: Monitoring of the technical condition of spindle assemblies of metal-cutting machines
  publication-title: Technical sciences
– volume: 41
  start-page: 252
  year: 2021
  ident: JPCS_2127_1_012028bib2
  article-title: Diagnostics of the tool condition in metal-cutting machines by means of recurrent neural networks
  publication-title: Russian Engineering Research
  doi: 10.3103/S1068798X21030102
– volume: 10
  start-page: 70
  year: 2005
  ident: JPCS_2127_1_012028bib12
  article-title: Rvachev’s V.L. R-Functions and the atomic functions in problems of complex-shaped contour objects description and digital image processing
  publication-title: EW&ES
– start-page: 1093
  year: 2020
  ident: JPCS_2127_1_012028bib6
  article-title: Diagnostic of the state of the cutting tool of metal-cutting machines using bidirectional recurrent neural networks with a long short-term memory
– year: 2016
  ident: JPCS_2127_1_012028bib11
– volume: 32
  start-page: 823
  year: 2021
  ident: JPCS_2127_1_012028bib1
  article-title: Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturing
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-020-01591-0
– ident: JPCS_2127_1_012028bib8
– ident: JPCS_2127_1_012028bib9
SSID ssj0033337
Score 2.3033357
Snippet The paper is devoted to the problem of primary data processing obtained in the vibration measurements during the processing of the workpiece on a milling...
SourceID crossref
iop
SourceType Index Database
Enrichment Source
Publisher
StartPage 12028
Title Application of spectral analysis methods for data pre-processing of anomaly detection problem of vibration diagnostics in non-destructive testing
URI https://iopscience.iop.org/article/10.1088/1742-6596/2127/1/012028
Volume 2127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEF_0pNCXVm2LtvVYsI_NJdmPZPN4SEUEPcGKvi37WYqYC72rD_0v-h93JpujXkGKmIcQNjObzWyyM8v-frOEfDLOl8LYMgum9JmITmZNY1jmueQWZnKcSeQOn51XJ1fi9EbePOTCzLth6J_AZUoUnEw4AOJUDjE0yyrZVDlmJ8_LHPmfTG2SLa7AfyKJb3axGo05HHUiRaKSUiuM1-MVrXmoTWjFA4dz_Jq4VVMTzuR28nNpJ-7XP1kcn_cu2-TVEI_SadLYIRuh3SUvelyoW7whv6d_F7jpPNKemPkDFMyQzISmLagXFIJfinBTiriSLtEPwC2ikmnndyBNfVj2wK-WDtvY4M17nK_3hT6h_jBvNP3e0nbeZj4M-W3vA11iPpD221tydfzl69FJNuzikDmGtC5bRejvIjgurPKmqBuISJitIXJruImWeyuZLYtYCO5cHay1zkCcKgMU1ZXh78gInhj2CDVO1lF47qE-IT2zITbCi1gVNpTK2H1SrHpOdylZh-4X2ZXSaGmNltZoaV3qZOl98hn6Rg8_7uL_4odr4qcXR5frErrz8f3TKv1AXjJEyvQMx49kBIYNBxDqLO0YHY0c9180nGf8-g905vSZ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgCMQFsYqyWoIjIYmXLMeqULGDBBXcLK-IA2lFK_6DP2Ycp0APCJFT5IwXzTiesfzeGKFDqU3KpEojK1MTMad5VJaSRIZyqmAnRwn33OHrm-yszy6e-NMM6n1xYQbDZuk_hteQKDiosAHEFTHE0CTKeJnFPjt5nMae_0mKeGjcLJrjFDwOzOtb-jhZkSk8eSBG-opFMcF5_d7YlJeahZH8cDq9ZbTURIu4E8a2gmZstYrma9SmHq2hj8738TMeOFzTJt-ggmxSjeBwQfQIQ2iKPRgUe9THMJADwGn5SrIavII0NnZcw7Iq3Fwy4z---910XWgCJs9ndcYvFa4GVWRsk3323eKxz9ZRPa-jfu_0oXsWNXcsRJp40pXKHFgjsZoyVRiZ5CXEC0TlEFeVVDpFjeJEpYlLGNU6t0opLSGK5BaK8kzSDdSCHu0mwlLz3DFDDbTHuCHKupIZ5rJE2bSQqo2SiU7FMKTSEPUReFEIbwbhzSC8GUQqghna6Ah0L5rfavS3-MGU-MVd935aQsAk2fpfo_to4e6kJ67Oby630SLxkJaairiDWqBjuwsxyVjt1RPuExEj1qc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+spectral+analysis+methods+for+data+pre-processing+of+anomaly+detection+problem+of+vibration+diagnostics+in+non-destructive+testing&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Trufanov%2C+N+N&rft.au=Churikov%2C+D+V&rft.au=Kravchenko%2C+O+V&rft.date=2021-11-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2127&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F2127%2F1%2F012028&rft.externalDocID=JPCS_2127_1_012028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon