Graphene nanoribbons: current status, challenges and opportunities
Graphene nanoribbons (GNRs) are narrow strips of graphene with widths ranging from a few nanometers to a few tens of nanometers. GNRs possess most of the excellent properties of graphene, while also exhibiting unique physical characteristics not found in graphene, such as an adjustable band gap and...
Saved in:
Published in | Quantum frontiers Vol. 3; no. 1; pp. 1 - 12 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
20.02.2024
Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphene nanoribbons (GNRs) are narrow strips of graphene with widths ranging from a few nanometers to a few tens of nanometers. GNRs possess most of the excellent properties of graphene, while also exhibiting unique physical characteristics not found in graphene, such as an adjustable band gap and spin-polarized edge states. These properties make GNRs an appealing candidate for carbon-based electronics. In this review, we begin by introducing the edge geometry and electronic bands of GNRs. We then discuss various methods for fabricating GNRs and analyze the characteristics of each method. Subsequently, the performance of GNR field-effect transistor devices obtained from a few representative GNR fabrication methods is discussed and compared. We also investigate the use of GNRs as quantum dots and spintronic devices. Finally, the challenges and opportunities of GNRs as a quantum material for next-generation electronics and spintronics are explored and proposed. |
---|---|
AbstractList | Abstract Graphene nanoribbons (GNRs) are narrow strips of graphene with widths ranging from a few nanometers to a few tens of nanometers. GNRs possess most of the excellent properties of graphene, while also exhibiting unique physical characteristics not found in graphene, such as an adjustable band gap and spin-polarized edge states. These properties make GNRs an appealing candidate for carbon-based electronics. In this review, we begin by introducing the edge geometry and electronic bands of GNRs. We then discuss various methods for fabricating GNRs and analyze the characteristics of each method. Subsequently, the performance of GNR field-effect transistor devices obtained from a few representative GNR fabrication methods is discussed and compared. We also investigate the use of GNRs as quantum dots and spintronic devices. Finally, the challenges and opportunities of GNRs as a quantum material for next-generation electronics and spintronics are explored and proposed. Graphene nanoribbons (GNRs) are narrow strips of graphene with widths ranging from a few nanometers to a few tens of nanometers. GNRs possess most of the excellent properties of graphene, while also exhibiting unique physical characteristics not found in graphene, such as an adjustable band gap and spin-polarized edge states. These properties make GNRs an appealing candidate for carbon-based electronics. In this review, we begin by introducing the edge geometry and electronic bands of GNRs. We then discuss various methods for fabricating GNRs and analyze the characteristics of each method. Subsequently, the performance of GNR field-effect transistor devices obtained from a few representative GNR fabrication methods is discussed and compared. We also investigate the use of GNRs as quantum dots and spintronic devices. Finally, the challenges and opportunities of GNRs as a quantum material for next-generation electronics and spintronics are explored and proposed. Abstract Graphene nanoribbons (GNRs) are narrow strips of graphene with widths ranging from a few nanometers to a few tens of nanometers. GNRs possess most of the excellent properties of graphene, while also exhibiting unique physical characteristics not found in graphene, such as an adjustable band gap and spin-polarized edge states. These properties make GNRs an appealing candidate for carbon-based electronics. In this review, we begin by introducing the edge geometry and electronic bands of GNRs. We then discuss various methods for fabricating GNRs and analyze the characteristics of each method. Subsequently, the performance of GNR field-effect transistor devices obtained from a few representative GNR fabrication methods is discussed and compared. We also investigate the use of GNRs as quantum dots and spintronic devices. Finally, the challenges and opportunities of GNRs as a quantum material for next-generation electronics and spintronics are explored and proposed. |
ArticleNumber | 3 |
Author | Lyu, Bosai Shi, Zhiwen Chen, Jiajun Shen, Peiyue Lou, Shuo Zhou, Xianliang |
Author_xml | – sequence: 1 givenname: Shuo surname: Lou fullname: Lou, Shuo organization: Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Tsung-Dao Lee Institute, Shanghai Jiao Tong University – sequence: 2 givenname: Bosai surname: Lyu fullname: Lyu, Bosai organization: Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Tsung-Dao Lee Institute, Shanghai Jiao Tong University – sequence: 3 givenname: Xianliang surname: Zhou fullname: Zhou, Xianliang organization: Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Tsung-Dao Lee Institute, Shanghai Jiao Tong University – sequence: 4 givenname: Peiyue surname: Shen fullname: Shen, Peiyue organization: Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Tsung-Dao Lee Institute, Shanghai Jiao Tong University – sequence: 5 givenname: Jiajun surname: Chen fullname: Chen, Jiajun organization: Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Tsung-Dao Lee Institute, Shanghai Jiao Tong University – sequence: 6 givenname: Zhiwen surname: Shi fullname: Shi, Zhiwen email: zwshi@sjtu.edu.cn organization: Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Tsung-Dao Lee Institute, Shanghai Jiao Tong University |
BookMark | eNp9kMFOwzAMhiM0JMbYC3DqA1BwnDRNucEEY9IkLnCO3DbZOpVkSroDb0_ZEOLEwbJl-f8kf5ds4oO3jF1zuOUA5V2SErnMAccCKCDXZ2yKpeC54qAmf-YLNk9pNx6hLrECNWWPy0j7rfU28-RD7Oo6-HSfNYcYrR-yNNBwSDdZs6W-t35jU0a-zcJ-H-Jw8N3Q2XTFzh31yc5_-oy9Pz-9LV7y9etytXhY5w1KpXMqZF0VWCne1pZj3QjNLXBHlmqSEgoFWmlXNIjgqrYShZAtcnSIWnBFYsZWJ24baGf2sfug-GkCdea4CHFjKA5d01tDpUawXHKpW9loV4kK0AHVRaWEdOXIwhOriSGlaN0vj4P5lmpOUs0o1RylGj2GxCmUxuPRRTS7cIh-_Pm_1Bd1D3o2 |
CitedBy_id | crossref_primary_10_1088_1361_648X_ad5cb8 crossref_primary_10_1016_j_est_2024_112445 |
Cites_doi | 10.1021/acsnano.0c07835 10.1021/nl9041966 10.1038/s41928-021-00633-6 10.1038/nmat3207 10.1126/science.1152793 10.1038/17569 10.1021/nl0731872 10.1126/science.1102896 10.1038/nnano.2010.89 10.1126/science.1184289 10.1038/nnano.2011.138 10.1038/nchem.719 10.1038/34373 10.1103/PhysRevB.59.8271 10.1038/nnano.2010.192 10.1143/jpsj.65.1920 10.1021/acsami.1c14597 10.1038/nature09211 10.1038/nature04235 10.1038/nnano.2010.54 10.1126/science.1125925 10.1038/s41563-020-00806-2 10.1002/adma.201202746 10.1002/adma.201100633 10.1103/PhysRevB.54.17954 10.1126/science.1150878 10.1038/s41586-021-04201-y 10.1002/adfm.201302869 10.1038/nature17151 10.1021/nl0617033 10.1038/nature09405 10.1002/adma.201001798 10.1038/nature07919 10.1038/nature07872 10.1126/science.1157996 10.1038/nature13831 10.1038/nature05180 10.1038/nature04233 10.1002/adma.201003847 10.1103/PhysRevLett.102.056403 10.1063/1.4943940 10.1038/s41467-017-00692-4 10.1038/s43246-022-00326-3 10.1038/s41598-023-31573-0 10.1103/PhysRevLett.100.206803 10.1002/adma.202200956 10.1103/PhysRevLett.98.206805 10.1038/s41467-022-30563-6 10.1038/ncomms11797 10.1103/PhysRevB.77.075430 10.1103/PhysRevLett.97.216803 10.1038/ncomms14703 10.1038/s41467-017-00734-x 10.1103/PhysRevLett.99.166803 10.1103/PhysRevB.84.125411 10.1103/PhysRevB.81.115409 10.1063/1.3664091 10.1103/PhysRevB.73.045432 10.1103/PhysRevB.77.195428 10.1038/ncomms3023 10.1038/ncomms9006 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 |
Copyright_xml | – notice: The Author(s) 2024 |
DBID | C6C AAYXX CITATION DOA |
DOI | 10.1007/s44214-024-00050-8 |
DatabaseName | SpringerOpen CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2731-6106 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_a7820e14148d4c8f93902f0ab59634f7 10_1007_s44214_024_00050_8 |
GrantInformation_xml | – fundername: the National Natural Science Foundation of China grantid: Nos. 12074244 and 12374292 – fundername: the National Key R&D Program of China grantid: No. 2021YFA1202902 – fundername: the open research fund of Songshan Lake Materials Laboratory grantid: No.2021SLABFK07 |
GroupedDBID | AAKKN AAYZJ ABDBF ACACY AFNRJ ALMA_UNASSIGNED_HOLDINGS C6C EBS GROUPED_DOAJ RSV SOJ 0R~ AAYXX ABEEZ ACULB AFGXO C24 CITATION M~E |
ID | FETCH-LOGICAL-c2468-a54b952961dbe12bc381e01faeaba440560868f5c220f9d93534d212f228316a3 |
IEDL.DBID | DOA |
ISSN | 2731-6106 |
IngestDate | Tue Oct 22 15:13:22 EDT 2024 Fri Aug 23 00:28:42 EDT 2024 Wed Feb 21 01:30:03 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Fabrication methods Field-effect transistor device Quantum dots Graphene nanoribbons Spintronic devices |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2468-a54b952961dbe12bc381e01faeaba440560868f5c220f9d93534d212f228316a3 |
OpenAccessLink | https://doaj.org/article/a7820e14148d4c8f93902f0ab59634f7 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a7820e14148d4c8f93902f0ab59634f7 crossref_primary_10_1007_s44214_024_00050_8 springer_journals_10_1007_s44214_024_00050_8 |
PublicationCentury | 2000 |
PublicationDate | 2-20-2024 |
PublicationDateYYYYMMDD | 2024-02-20 |
PublicationDate_xml | – month: 02 year: 2024 text: 2-20-2024 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Quantum frontiers |
PublicationTitleAbbrev | Quantum Front |
PublicationYear | 2024 |
Publisher | Springer Nature Singapore Springer |
Publisher_xml | – name: Springer Nature Singapore – name: Springer |
References | Lee, Wei, Kysar, Hone (CR11) 2008; 321 Wang (CR5) 2008; 320 Nakada, Fujita, Dresselhaus, Dresselhaus (CR13) 1996; 54 CR33 CR30 Sprinkle (CR45) 2010; 5 Saraswat, Jacobberger, Arnold (CR32) 2021; 15 Bockrath (CR61) 1999; 397 Barone, Hod, Scuseria (CR16) 2006; 6 Johnson, Behnam, Pearton, Ural (CR24) 2010; 22 Chen (CR10) 2012; 11 Jiao, Wang, Diankov, Wang, Dai (CR40) 2010; 5 Ruffieux (CR43) 2016; 531 CR49 CR48 Liu (CR38) 2011; 23 CR47 Fujita, Wakabayashi, Nakada, Kusakabe (CR26) 1996; 65 CR44 Zhang, Tan, Stormer, Kim (CR2) 2005; 438 Magda (CR37) 2014; 514 Chen (CR41) 2021; 4 Blackwell (CR60) 2021; 600 Berger (CR4) 2006; 312 Liao (CR7) 2010; 467 Jiao, Zhang, Wang, Diankov, Dai (CR39) 2009; 458 Son, Cohen, Louie (CR31) 2006; 444 Cai (CR42) 2010; 466 Lin (CR6) 2010; 327 CR18 Cai (CR9) 2010; 10 CR17 CR15 CR14 CR58 CR57 CR56 Shi (CR36) 2011; 23 CR54 Novoselov (CR3) 2005; 438 CR53 CR51 CR50 Kosynkin (CR55) 2009; 458 Raju (CR12) 2014; 24 Balandin (CR8) 2008; 8 Goldhaber-Gordon (CR59) 1998; 391 CR29 Wang (CR52) 2021; 20 CR28 CR25 Li, Wang, Zhang, Lee, Dai (CR34) 2008; 319 CR22 Li (CR19) 2021; 13 CR21 Wang (CR20) 2011; 6 Wakabayashi, Fujita, Ajiki, Sigrist (CR27) 1999; 59 Novoselov (CR1) 2004; 306 Wang, Dai (CR35) 2010; 2 Schwierz (CR23) 2010; 5 Huang, Kim, Ali, Cho (CR46) 2013; 25 GZ Magda (50_CR37) 2014; 514 50_CR51 50_CR50 L Jiao (50_CR39) 2009; 458 F Schwierz (50_CR23) 2010; 5 J Cai (50_CR42) 2010; 466 50_CR17 K Wakabayashi (50_CR27) 1999; 59 50_CR18 50_CR57 50_CR56 50_CR15 50_CR14 50_CR58 50_CR53 YB Zhang (50_CR2) 2005; 438 50_CR54 C Berger (50_CR4) 2006; 312 M Bockrath (50_CR61) 1999; 397 W Cai (50_CR9) 2010; 10 KS Novoselov (50_CR1) 2004; 306 P Ruffieux (50_CR43) 2016; 531 Y-W Son (50_CR31) 2006; 444 L Liu (50_CR38) 2011; 23 AA Balandin (50_CR8) 2008; 8 X Wang (50_CR20) 2011; 6 50_CR49 V Barone (50_CR16) 2006; 6 KS Novoselov (50_CR3) 2005; 438 50_CR48 50_CR47 50_CR44 Q Huang (50_CR46) 2013; 25 JL Johnson (50_CR24) 2010; 22 V Saraswat (50_CR32) 2021; 15 L Jiao (50_CR40) 2010; 5 HS Wang (50_CR52) 2021; 20 DV Kosynkin (50_CR55) 2009; 458 YM Lin (50_CR6) 2010; 327 D Goldhaber-Gordon (50_CR59) 1998; 391 X Wang (50_CR35) 2010; 2 C Chen (50_CR41) 2021; 4 H Li (50_CR19) 2021; 13 50_CR30 50_CR33 M Fujita (50_CR26) 1996; 65 S Chen (50_CR10) 2012; 11 RE Blackwell (50_CR60) 2021; 600 K Nakada (50_CR13) 1996; 54 F Wang (50_CR5) 2008; 320 L Liao (50_CR7) 2010; 467 50_CR28 Z Shi (50_CR36) 2011; 23 APA Raju (50_CR12) 2014; 24 50_CR29 X Li (50_CR34) 2008; 319 C Lee (50_CR11) 2008; 321 50_CR25 M Sprinkle (50_CR45) 2010; 5 50_CR22 50_CR21 |
References_xml | – volume: 15 start-page: 3674 year: 2021 end-page: 3708 ident: CR32 article-title: Materials science challenges to graphene nanoribbon electronics publication-title: ACS Nano doi: 10.1021/acsnano.0c07835 contributor: fullname: Arnold – ident: CR22 – volume: 10 start-page: 1645 year: 2010 end-page: 1651 ident: CR9 article-title: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition publication-title: Nano Lett doi: 10.1021/nl9041966 contributor: fullname: Cai – volume: 4 start-page: 653 year: 2021 end-page: 663 ident: CR41 article-title: Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes publication-title: Nat Electron doi: 10.1038/s41928-021-00633-6 contributor: fullname: Chen – ident: CR49 – volume: 11 start-page: 203 year: 2012 end-page: 207 ident: CR10 article-title: Thermal conductivity of isotopically modified graphene publication-title: Nat Mater doi: 10.1038/nmat3207 contributor: fullname: Chen – ident: CR51 – volume: 320 start-page: 206 year: 2008 end-page: 209 ident: CR5 article-title: Gate-variable optical transitions in graphene publication-title: Science doi: 10.1126/science.1152793 contributor: fullname: Wang – volume: 397 start-page: 598 year: 1999 end-page: 601 ident: CR61 article-title: Luttinger-liquid behaviour in carbon nanotubes publication-title: Nature doi: 10.1038/17569 contributor: fullname: Bockrath – volume: 8 start-page: 902 year: 2008 end-page: 907 ident: CR8 article-title: Superior thermal conductivity of single-layer graphene publication-title: Nano Lett doi: 10.1021/nl0731872 contributor: fullname: Balandin – volume: 306 start-page: 666 year: 2004 end-page: 669 ident: CR1 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 contributor: fullname: Novoselov – volume: 5 start-page: 487 year: 2010 end-page: 496 ident: CR23 article-title: Graphene transistors publication-title: Nat Nanotechnol doi: 10.1038/nnano.2010.89 contributor: fullname: Schwierz – ident: CR29 – ident: CR54 – volume: 327 start-page: 662 year: 2010 end-page: 662 ident: CR6 article-title: 100-GHz transistors from wafer-scale epitaxial graphene publication-title: Science doi: 10.1126/science.1184289 contributor: fullname: Lin – volume: 6 start-page: 563 year: 2011 end-page: 567 ident: CR20 article-title: Graphene nanoribbons with smooth edges behave as quantum wires publication-title: Nat Nanotechnol doi: 10.1038/nnano.2011.138 contributor: fullname: Wang – volume: 2 start-page: 661 year: 2010 end-page: 665 ident: CR35 article-title: Etching and narrowing of graphene from the edges publication-title: Nat Chem doi: 10.1038/nchem.719 contributor: fullname: Dai – ident: CR58 – ident: CR25 – volume: 391 start-page: 156 year: 1998 end-page: 159 ident: CR59 article-title: Kondo effect in a single-electron transistor publication-title: Nature doi: 10.1038/34373 contributor: fullname: Goldhaber-Gordon – ident: CR21 – volume: 59 start-page: 8271 year: 1999 end-page: 8282 ident: CR27 article-title: Electronic and magnetic properties of nanographite ribbons publication-title: Phys Rev B doi: 10.1103/PhysRevB.59.8271 contributor: fullname: Sigrist – volume: 5 start-page: 727 year: 2010 end-page: 731 ident: CR45 article-title: Scalable templated growth of graphene nanoribbons on SiC publication-title: Nat Nanotechnol doi: 10.1038/nnano.2010.192 contributor: fullname: Sprinkle – volume: 65 start-page: 1920 year: 1996 end-page: 1923 ident: CR26 article-title: Peculiar localized state at zigzag graphite edge publication-title: J Phys Soc Jpn doi: 10.1143/jpsj.65.1920 contributor: fullname: Kusakabe – ident: CR15 – volume: 13 start-page: 52892 year: 2021 end-page: 52900 ident: CR19 article-title: Photoluminescent semiconducting graphene nanoribbons via longitudinally unzipping single-walled carbon nanotubes publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c14597 contributor: fullname: Li – ident: CR50 – ident: CR57 – volume: 466 start-page: 470 year: 2010 end-page: 473 ident: CR42 article-title: Atomically precise bottom-up fabrication of graphene nanoribbons publication-title: Nature doi: 10.1038/nature09211 contributor: fullname: Cai – volume: 438 start-page: 201 year: 2005 end-page: 204 ident: CR2 article-title: Experimental observation of the quantum Hall effect and Berry’s phase in graphene publication-title: Nature doi: 10.1038/nature04235 contributor: fullname: Kim – volume: 5 start-page: 321 year: 2010 end-page: 325 ident: CR40 article-title: Facile synthesis of high-quality graphene nanoribbons publication-title: Nat Nanotechnol doi: 10.1038/nnano.2010.54 contributor: fullname: Dai – volume: 312 start-page: 1191 year: 2006 end-page: 1196 ident: CR4 article-title: Electronic confinement and coherence in patterned epitaxial graphene publication-title: Science doi: 10.1126/science.1125925 contributor: fullname: Berger – volume: 20 start-page: 202 year: 2021 ident: CR52 article-title: Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride publication-title: Nat Mater doi: 10.1038/s41563-020-00806-2 contributor: fullname: Wang – volume: 25 start-page: 1144 year: 2013 end-page: 1148 ident: CR46 article-title: Width-tunable graphene nanoribbons on a SiC substrate with a controlled step height publication-title: Adv Mater doi: 10.1002/adma.201202746 contributor: fullname: Cho – volume: 23 start-page: 3061 year: 2011 ident: CR36 article-title: Patterning graphene with zigzag edges by self-aligned anisotropic etching publication-title: Adv Mater doi: 10.1002/adma.201100633 contributor: fullname: Shi – volume: 54 start-page: 17954 year: 1996 end-page: 17961 ident: CR13 article-title: Edge state in graphene ribbons: nanometer size effect and edge shape dependence publication-title: Phys Rev B doi: 10.1103/PhysRevB.54.17954 contributor: fullname: Dresselhaus – ident: CR18 – volume: 319 start-page: 1229 year: 2008 end-page: 1232 ident: CR34 article-title: Chemically derived, ultrasmooth graphene nanoribbon semiconductors publication-title: Science doi: 10.1126/science.1150878 contributor: fullname: Dai – volume: 600 start-page: 647 year: 2021 ident: CR60 article-title: Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons publication-title: Nature doi: 10.1038/s41586-021-04201-y contributor: fullname: Blackwell – ident: CR47 – ident: CR14 – volume: 24 start-page: 2865 year: 2014 end-page: 2874 ident: CR12 article-title: Wide-area strain sensors based upon graphene-polymer composite coatings probed by Raman spectroscopy publication-title: Adv Funct Mater doi: 10.1002/adfm.201302869 contributor: fullname: Raju – ident: CR53 – ident: CR30 – ident: CR33 – volume: 531 start-page: 489 year: 2016 ident: CR43 article-title: On-surface synthesis of graphene nanoribbons with zigzag edge topology publication-title: Nature doi: 10.1038/nature17151 contributor: fullname: Ruffieux – volume: 6 start-page: 2748 year: 2006 end-page: 2754 ident: CR16 article-title: Electronic structure and stability of semiconducting graphene nanoribbons publication-title: Nano Lett doi: 10.1021/nl0617033 contributor: fullname: Scuseria – ident: CR56 – volume: 467 start-page: 305 year: 2010 end-page: 308 ident: CR7 article-title: High-speed graphene transistors with a self-aligned nanowire gate publication-title: Nature doi: 10.1038/nature09405 contributor: fullname: Liao – volume: 22 start-page: 4877 year: 2010 ident: CR24 article-title: Hydrogen sensing using Pd-functionalized multi-layer graphene nanoribbon networks publication-title: Adv Mater doi: 10.1002/adma.201001798 contributor: fullname: Ural – volume: 458 start-page: 877 year: 2009 end-page: 880 ident: CR39 article-title: Narrow graphene nanoribbons from carbon nanotubes publication-title: Nature doi: 10.1038/nature07919 contributor: fullname: Dai – volume: 458 start-page: 872 year: 2009 end-page: 875 ident: CR55 article-title: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons publication-title: Nature doi: 10.1038/nature07872 contributor: fullname: Kosynkin – ident: CR44 – ident: CR48 – volume: 321 start-page: 385 year: 2008 end-page: 388 ident: CR11 article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene publication-title: Science doi: 10.1126/science.1157996 contributor: fullname: Hone – volume: 514 start-page: 608 year: 2014 ident: CR37 article-title: Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons publication-title: Nature doi: 10.1038/nature13831 contributor: fullname: Magda – ident: CR17 – volume: 444 start-page: 347 year: 2006 end-page: 349 ident: CR31 article-title: Half-metallic graphene nanoribbons publication-title: Nature doi: 10.1038/nature05180 contributor: fullname: Louie – volume: 438 start-page: 197 year: 2005 end-page: 200 ident: CR3 article-title: Two-dimensional gas of massless Dirac fermions in graphene publication-title: Nature doi: 10.1038/nature04233 contributor: fullname: Novoselov – volume: 23 start-page: 1246 year: 2011 ident: CR38 article-title: Nanosphere lithography for the fabrication of ultranarrow graphene nanoribbons and on- chip bandgap tuning of graphene publication-title: Adv Mater doi: 10.1002/adma.201003847 contributor: fullname: Liu – ident: CR28 – volume: 438 start-page: 201 year: 2005 ident: 50_CR2 publication-title: Nature doi: 10.1038/nature04235 contributor: fullname: YB Zhang – volume: 321 start-page: 385 year: 2008 ident: 50_CR11 publication-title: Science doi: 10.1126/science.1157996 contributor: fullname: C Lee – volume: 23 start-page: 3061 year: 2011 ident: 50_CR36 publication-title: Adv Mater doi: 10.1002/adma.201100633 contributor: fullname: Z Shi – volume: 444 start-page: 347 year: 2006 ident: 50_CR31 publication-title: Nature doi: 10.1038/nature05180 contributor: fullname: Y-W Son – ident: 50_CR58 doi: 10.1103/PhysRevLett.102.056403 – volume: 5 start-page: 321 year: 2010 ident: 50_CR40 publication-title: Nat Nanotechnol doi: 10.1038/nnano.2010.54 contributor: fullname: L Jiao – volume: 59 start-page: 8271 year: 1999 ident: 50_CR27 publication-title: Phys Rev B doi: 10.1103/PhysRevB.59.8271 contributor: fullname: K Wakabayashi – ident: 50_CR22 doi: 10.1063/1.4943940 – ident: 50_CR25 doi: 10.1038/s41467-017-00692-4 – volume: 458 start-page: 872 year: 2009 ident: 50_CR55 publication-title: Nature doi: 10.1038/nature07872 contributor: fullname: DV Kosynkin – volume: 397 start-page: 598 year: 1999 ident: 50_CR61 publication-title: Nature doi: 10.1038/17569 contributor: fullname: M Bockrath – volume: 466 start-page: 470 year: 2010 ident: 50_CR42 publication-title: Nature doi: 10.1038/nature09211 contributor: fullname: J Cai – volume: 22 start-page: 4877 year: 2010 ident: 50_CR24 publication-title: Adv Mater doi: 10.1002/adma.201001798 contributor: fullname: JL Johnson – ident: 50_CR48 doi: 10.1038/s43246-022-00326-3 – ident: 50_CR54 doi: 10.1038/s41598-023-31573-0 – ident: 50_CR18 doi: 10.1103/PhysRevLett.100.206803 – ident: 50_CR53 doi: 10.1002/adma.202200956 – volume: 391 start-page: 156 year: 1998 ident: 50_CR59 publication-title: Nature doi: 10.1038/34373 contributor: fullname: D Goldhaber-Gordon – volume: 54 start-page: 17954 year: 1996 ident: 50_CR13 publication-title: Phys Rev B doi: 10.1103/PhysRevB.54.17954 contributor: fullname: K Nakada – ident: 50_CR33 doi: 10.1103/PhysRevLett.98.206805 – volume: 23 start-page: 1246 year: 2011 ident: 50_CR38 publication-title: Adv Mater doi: 10.1002/adma.201003847 contributor: fullname: L Liu – ident: 50_CR50 doi: 10.1038/s41467-022-30563-6 – volume: 320 start-page: 206 year: 2008 ident: 50_CR5 publication-title: Science doi: 10.1126/science.1152793 contributor: fullname: F Wang – volume: 319 start-page: 1229 year: 2008 ident: 50_CR34 publication-title: Science doi: 10.1126/science.1150878 contributor: fullname: X Li – ident: 50_CR47 doi: 10.1038/ncomms11797 – ident: 50_CR30 doi: 10.1103/PhysRevB.77.075430 – volume: 458 start-page: 877 year: 2009 ident: 50_CR39 publication-title: Nature doi: 10.1038/nature07919 contributor: fullname: L Jiao – volume: 15 start-page: 3674 year: 2021 ident: 50_CR32 publication-title: ACS Nano doi: 10.1021/acsnano.0c07835 contributor: fullname: V Saraswat – ident: 50_CR14 doi: 10.1103/PhysRevLett.97.216803 – volume: 312 start-page: 1191 year: 2006 ident: 50_CR4 publication-title: Science doi: 10.1126/science.1125925 contributor: fullname: C Berger – ident: 50_CR51 doi: 10.1038/ncomms14703 – volume: 5 start-page: 487 year: 2010 ident: 50_CR23 publication-title: Nat Nanotechnol doi: 10.1038/nnano.2010.89 contributor: fullname: F Schwierz – volume: 514 start-page: 608 year: 2014 ident: 50_CR37 publication-title: Nature doi: 10.1038/nature13831 contributor: fullname: GZ Magda – volume: 10 start-page: 1645 year: 2010 ident: 50_CR9 publication-title: Nano Lett doi: 10.1021/nl9041966 contributor: fullname: W Cai – volume: 600 start-page: 647 year: 2021 ident: 50_CR60 publication-title: Nature doi: 10.1038/s41586-021-04201-y contributor: fullname: RE Blackwell – ident: 50_CR17 doi: 10.1038/s41467-017-00734-x – ident: 50_CR56 doi: 10.1103/PhysRevLett.99.166803 – volume: 438 start-page: 197 year: 2005 ident: 50_CR3 publication-title: Nature doi: 10.1038/nature04233 contributor: fullname: KS Novoselov – volume: 6 start-page: 2748 year: 2006 ident: 50_CR16 publication-title: Nano Lett doi: 10.1021/nl0617033 contributor: fullname: V Barone – volume: 11 start-page: 203 year: 2012 ident: 50_CR10 publication-title: Nat Mater doi: 10.1038/nmat3207 contributor: fullname: S Chen – volume: 24 start-page: 2865 year: 2014 ident: 50_CR12 publication-title: Adv Funct Mater doi: 10.1002/adfm.201302869 contributor: fullname: APA Raju – volume: 25 start-page: 1144 year: 2013 ident: 50_CR46 publication-title: Adv Mater doi: 10.1002/adma.201202746 contributor: fullname: Q Huang – volume: 306 start-page: 666 year: 2004 ident: 50_CR1 publication-title: Science doi: 10.1126/science.1102896 contributor: fullname: KS Novoselov – volume: 5 start-page: 727 year: 2010 ident: 50_CR45 publication-title: Nat Nanotechnol doi: 10.1038/nnano.2010.192 contributor: fullname: M Sprinkle – volume: 6 start-page: 563 year: 2011 ident: 50_CR20 publication-title: Nat Nanotechnol doi: 10.1038/nnano.2011.138 contributor: fullname: X Wang – ident: 50_CR21 doi: 10.1103/PhysRevB.84.125411 – volume: 327 start-page: 662 year: 2010 ident: 50_CR6 publication-title: Science doi: 10.1126/science.1184289 contributor: fullname: YM Lin – volume: 65 start-page: 1920 year: 1996 ident: 50_CR26 publication-title: J Phys Soc Jpn doi: 10.1143/jpsj.65.1920 contributor: fullname: M Fujita – volume: 8 start-page: 902 year: 2008 ident: 50_CR8 publication-title: Nano Lett doi: 10.1021/nl0731872 contributor: fullname: AA Balandin – volume: 467 start-page: 305 year: 2010 ident: 50_CR7 publication-title: Nature doi: 10.1038/nature09405 contributor: fullname: L Liao – volume: 20 start-page: 202 year: 2021 ident: 50_CR52 publication-title: Nat Mater doi: 10.1038/s41563-020-00806-2 contributor: fullname: HS Wang – ident: 50_CR57 doi: 10.1103/PhysRevB.81.115409 – ident: 50_CR15 doi: 10.1063/1.3664091 – ident: 50_CR28 doi: 10.1103/PhysRevB.73.045432 – ident: 50_CR29 doi: 10.1103/PhysRevB.77.195428 – ident: 50_CR44 doi: 10.1038/ncomms3023 – volume: 531 start-page: 489 year: 2016 ident: 50_CR43 publication-title: Nature doi: 10.1038/nature17151 contributor: fullname: P Ruffieux – volume: 4 start-page: 653 year: 2021 ident: 50_CR41 publication-title: Nat Electron doi: 10.1038/s41928-021-00633-6 contributor: fullname: C Chen – ident: 50_CR49 doi: 10.1038/ncomms9006 – volume: 2 start-page: 661 year: 2010 ident: 50_CR35 publication-title: Nat Chem doi: 10.1038/nchem.719 contributor: fullname: X Wang – volume: 13 start-page: 52892 year: 2021 ident: 50_CR19 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c14597 contributor: fullname: H Li |
SSID | ssj0002872906 |
Score | 2.2964907 |
SecondaryResourceType | review_article |
Snippet | Graphene nanoribbons (GNRs) are narrow strips of graphene with widths ranging from a few nanometers to a few tens of nanometers. GNRs possess most of the... Abstract Graphene nanoribbons (GNRs) are narrow strips of graphene with widths ranging from a few nanometers to a few tens of nanometers. GNRs possess most of... Abstract Graphene nanoribbons (GNRs) are narrow strips of graphene with widths ranging from a few nanometers to a few tens of nanometers. GNRs possess most of... |
SourceID | doaj crossref springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Condensed Matter Physics Fabrication methods Field-effect transistor device Graphene nanoribbons Physics Physics and Astronomy Quantum dots Quantum Physics Review Spintronic devices |
SummonAdditionalLinks | – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwGMaDTgQv4ifWL3Lw5oJNmrSpNzecw4MnB7uFfIKXbqzb_--brBv4geC1TSk8edPnTZP3F4TuchF4FYQlToac8BJyOGnqmsBEDPzVUuNcon2-leMJf52KaYfJibUw39bvH1rOGeUEnIQkVgmRu2gPPFjG7VvDcrj9nwKZfySXd3Uxvz_6xXsSov_H-meyldEROuzyQfy07sBjtOObE7Sf9mXa9hQNXiJQGr5HuNHNbPFhDETJI7ZrqhKO5UCrto_t5kiUFuvG4dk8ZtWrJtFSz9Bk9Pw-HJPu2ANiWayD0oKbOi6HUmc8ZcaCqfqcBu210ZxHDWUpQV_G8lC7uhAFd-BAIZJsaKmLc9RrZo2_QLhwVPuKchOC4aEUWlBvCyugVQX3WIbuN4Ko-ZpuobYc4ySfAvlUkk_JDA2iZtuWkUydLkCHqS7QlY4APk85TLMctzLURZ2zkGsjYKjzUGWov1FcdcOl_eOdl_9rfoUOWOpwBsP_GvWWi5W_gaxhaW5TuHwCUPq3GA priority: 102 providerName: Springer Nature |
Title | Graphene nanoribbons: current status, challenges and opportunities |
URI | https://link.springer.com/article/10.1007/s44214-024-00050-8 https://doaj.org/article/a7820e14148d4c8f93902f0ab59634f7 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEMct6MSCQIAoj8oDG7WInXOasNGKUjEwUamb5acEQ1r18f05O2lVhAQLS4bEkqP_XXzn2PczIXeZDDAI0jJXhoxBgTlcaaqK4UQM46vlxrlE-3wrJlN4ncnZ3lFfcU9YgwduhHvQEejmOWDa7sCWocJJugiZNhJdB0JTR55Ve5Opz_TLaBA55m2VTKqVAxAcGIYklqAnrPwWiRKw_8dqaAoy4xNy3GaH9Kl5q1Ny4OszMnyJUGkck2it6_nywxj0lEdqG7ISjSVBm1Wf2u2xKCuqa0fni5hZb-pETD0n0_Hz-2jC2qMPmBWxFkpLMFVcEuXOeC6MxcDqMx6010YDRB3LokSNhchC5apc5uAwCoVIs-GFzi9Ip57X_pLQ3HHtBxxMCAZCIbXk3uZWYqsBPhNdcr-VQS0awoXasYyTaApFU0k0VXbJMCq1axnp1OkG2ky1NlN_2axL-ludVfvJrH7p8-o_-rwmRyIZX-DAcEM66-XG32I-sTY9cjgSEK_FqJfc6AsqcsSO |
link.rule.ids | 315,783,787,867,2109,27936,27937,41131,41132,42200,42201,51588,52245 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1JT8MwEIUtKEJwQayirD5woxaxY6cJN6goBUpPrdSb5VXiklZN-_8Zu2klFiFxTRxFel7eOJP5jNBNIjxve2GIzX1CeAYxXK6LgsBGDPzVUG1tpH0Ost6Iv47FuMbkhFqYb_n7u4pzRjkBJyGRVULyTbTFGdhWSMxmnfX3FIj8A7m8rov5_dEv3hMR_T_yn9FWuvtor44H8cOyAw_QhisP0Xb8L9NUR-jxOQClYT3CpSonsw-tYZTcY7OkKuFQDrSoWtisjkSpsCotnkxDVL0oIy31GI26T8NOj9THHhDDQh2UElwXIR1KrXaUaQOm6hLqlVNacR40zLMc9AUVfGGLVKTcggP5QLKhmUpPUKOclO4U4dRS5dqUa-8195lQgjqTGgGt2nCPNdHtShA5XdIt5JpjHOWTIJ-M8sm8iR6DZuuWgUwdL0CHyXqgSxUAfI5y2GZZbnJfpEXCfKK0gKnOfbuJWivFZT1dqj_eefa_5tdopzd878v-y-DtHO2y2PkMloIL1JjPFu4SIoi5vopD5xPgYbnw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3JTsMwEIYtKAJxQayirDlwo1Fjx87CjRZKWVRxoFJvllfExa26vD9jJ61AICSuyUSRfjuemYznM0JXCbM0t0zFurBJTDOI4QpZljEkYuBfFZZaB9rnIOsP6dOIjb508Yfd7suSZNXT4ClNbt6eaNteNb5RSjCNwb_EgWASF-tog_pD0325Nuuu_rJAPuB55nW3zO-PfvNIAdz_oyoanE1vF-3UUWJ0Ww3rHlozbh9tht2aanaAOg8eMw2rVOSEG08_pIS5cxOpirUU-SahxawVqeVBKbNIOB2NJz7WXrjAUD1Ew979W7cf14chxIr47ijBqCx9kRRraTCRClytSbAVRkhBqVe2yApQnZDElrpMWUo1-CXr-TY4E-kRarixM8coSjUWJsdUWiupzZhg2KhUMbDK4R5pouulIHxSMS_4im4c5OMgHw_y8aKJOl6zlaXnVYcL4-k7r6c_Fx7LZzCF5EtTVdgyLRNiEyEZLADU5k3UWirO649o9sc7T_5nfom2Xu96_OVx8HyKtkkYewLrwxlqzKcLcw5hxVxehJnzCcPpwkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene+nanoribbons%3A+current+status%2C+challenges+and+opportunities&rft.jtitle=Quantum+frontiers&rft.au=Shuo+Lou&rft.au=Bosai+Lyu&rft.au=Xianliang+Zhou&rft.au=Peiyue+Shen&rft.date=2024-02-20&rft.pub=Springer&rft.eissn=2731-6106&rft.volume=3&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1007%2Fs44214-024-00050-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a7820e14148d4c8f93902f0ab59634f7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2731-6106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2731-6106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2731-6106&client=summon |