Graphene nanoribbons: current status, challenges and opportunities

Graphene nanoribbons (GNRs) are narrow strips of graphene with widths ranging from a few nanometers to a few tens of nanometers. GNRs possess most of the excellent properties of graphene, while also exhibiting unique physical characteristics not found in graphene, such as an adjustable band gap and...

Full description

Saved in:
Bibliographic Details
Published inQuantum frontiers Vol. 3; no. 1; pp. 1 - 12
Main Authors Lou, Shuo, Lyu, Bosai, Zhou, Xianliang, Shen, Peiyue, Chen, Jiajun, Shi, Zhiwen
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 20.02.2024
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene nanoribbons (GNRs) are narrow strips of graphene with widths ranging from a few nanometers to a few tens of nanometers. GNRs possess most of the excellent properties of graphene, while also exhibiting unique physical characteristics not found in graphene, such as an adjustable band gap and spin-polarized edge states. These properties make GNRs an appealing candidate for carbon-based electronics. In this review, we begin by introducing the edge geometry and electronic bands of GNRs. We then discuss various methods for fabricating GNRs and analyze the characteristics of each method. Subsequently, the performance of GNR field-effect transistor devices obtained from a few representative GNR fabrication methods is discussed and compared. We also investigate the use of GNRs as quantum dots and spintronic devices. Finally, the challenges and opportunities of GNRs as a quantum material for next-generation electronics and spintronics are explored and proposed.
AbstractList Abstract Graphene nanoribbons (GNRs) are narrow strips of graphene with widths ranging from a few nanometers to a few tens of nanometers. GNRs possess most of the excellent properties of graphene, while also exhibiting unique physical characteristics not found in graphene, such as an adjustable band gap and spin-polarized edge states. These properties make GNRs an appealing candidate for carbon-based electronics. In this review, we begin by introducing the edge geometry and electronic bands of GNRs. We then discuss various methods for fabricating GNRs and analyze the characteristics of each method. Subsequently, the performance of GNR field-effect transistor devices obtained from a few representative GNR fabrication methods is discussed and compared. We also investigate the use of GNRs as quantum dots and spintronic devices. Finally, the challenges and opportunities of GNRs as a quantum material for next-generation electronics and spintronics are explored and proposed.
Graphene nanoribbons (GNRs) are narrow strips of graphene with widths ranging from a few nanometers to a few tens of nanometers. GNRs possess most of the excellent properties of graphene, while also exhibiting unique physical characteristics not found in graphene, such as an adjustable band gap and spin-polarized edge states. These properties make GNRs an appealing candidate for carbon-based electronics. In this review, we begin by introducing the edge geometry and electronic bands of GNRs. We then discuss various methods for fabricating GNRs and analyze the characteristics of each method. Subsequently, the performance of GNR field-effect transistor devices obtained from a few representative GNR fabrication methods is discussed and compared. We also investigate the use of GNRs as quantum dots and spintronic devices. Finally, the challenges and opportunities of GNRs as a quantum material for next-generation electronics and spintronics are explored and proposed.
Abstract Graphene nanoribbons (GNRs) are narrow strips of graphene with widths ranging from a few nanometers to a few tens of nanometers. GNRs possess most of the excellent properties of graphene, while also exhibiting unique physical characteristics not found in graphene, such as an adjustable band gap and spin-polarized edge states. These properties make GNRs an appealing candidate for carbon-based electronics. In this review, we begin by introducing the edge geometry and electronic bands of GNRs. We then discuss various methods for fabricating GNRs and analyze the characteristics of each method. Subsequently, the performance of GNR field-effect transistor devices obtained from a few representative GNR fabrication methods is discussed and compared. We also investigate the use of GNRs as quantum dots and spintronic devices. Finally, the challenges and opportunities of GNRs as a quantum material for next-generation electronics and spintronics are explored and proposed.
ArticleNumber 3
Author Lyu, Bosai
Shi, Zhiwen
Chen, Jiajun
Shen, Peiyue
Lou, Shuo
Zhou, Xianliang
Author_xml – sequence: 1
  givenname: Shuo
  surname: Lou
  fullname: Lou, Shuo
  organization: Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Tsung-Dao Lee Institute, Shanghai Jiao Tong University
– sequence: 2
  givenname: Bosai
  surname: Lyu
  fullname: Lyu, Bosai
  organization: Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Tsung-Dao Lee Institute, Shanghai Jiao Tong University
– sequence: 3
  givenname: Xianliang
  surname: Zhou
  fullname: Zhou, Xianliang
  organization: Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Tsung-Dao Lee Institute, Shanghai Jiao Tong University
– sequence: 4
  givenname: Peiyue
  surname: Shen
  fullname: Shen, Peiyue
  organization: Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Tsung-Dao Lee Institute, Shanghai Jiao Tong University
– sequence: 5
  givenname: Jiajun
  surname: Chen
  fullname: Chen, Jiajun
  organization: Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Tsung-Dao Lee Institute, Shanghai Jiao Tong University
– sequence: 6
  givenname: Zhiwen
  surname: Shi
  fullname: Shi, Zhiwen
  email: zwshi@sjtu.edu.cn
  organization: Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Tsung-Dao Lee Institute, Shanghai Jiao Tong University
BookMark eNp9kMFOwzAMhiM0JMbYC3DqA1BwnDRNucEEY9IkLnCO3DbZOpVkSroDb0_ZEOLEwbJl-f8kf5ds4oO3jF1zuOUA5V2SErnMAccCKCDXZ2yKpeC54qAmf-YLNk9pNx6hLrECNWWPy0j7rfU28-RD7Oo6-HSfNYcYrR-yNNBwSDdZs6W-t35jU0a-zcJ-H-Jw8N3Q2XTFzh31yc5_-oy9Pz-9LV7y9etytXhY5w1KpXMqZF0VWCne1pZj3QjNLXBHlmqSEgoFWmlXNIjgqrYShZAtcnSIWnBFYsZWJ24baGf2sfug-GkCdea4CHFjKA5d01tDpUawXHKpW9loV4kK0AHVRaWEdOXIwhOriSGlaN0vj4P5lmpOUs0o1RylGj2GxCmUxuPRRTS7cIh-_Pm_1Bd1D3o2
CitedBy_id crossref_primary_10_1088_1361_648X_ad5cb8
crossref_primary_10_1016_j_est_2024_112445
Cites_doi 10.1021/acsnano.0c07835
10.1021/nl9041966
10.1038/s41928-021-00633-6
10.1038/nmat3207
10.1126/science.1152793
10.1038/17569
10.1021/nl0731872
10.1126/science.1102896
10.1038/nnano.2010.89
10.1126/science.1184289
10.1038/nnano.2011.138
10.1038/nchem.719
10.1038/34373
10.1103/PhysRevB.59.8271
10.1038/nnano.2010.192
10.1143/jpsj.65.1920
10.1021/acsami.1c14597
10.1038/nature09211
10.1038/nature04235
10.1038/nnano.2010.54
10.1126/science.1125925
10.1038/s41563-020-00806-2
10.1002/adma.201202746
10.1002/adma.201100633
10.1103/PhysRevB.54.17954
10.1126/science.1150878
10.1038/s41586-021-04201-y
10.1002/adfm.201302869
10.1038/nature17151
10.1021/nl0617033
10.1038/nature09405
10.1002/adma.201001798
10.1038/nature07919
10.1038/nature07872
10.1126/science.1157996
10.1038/nature13831
10.1038/nature05180
10.1038/nature04233
10.1002/adma.201003847
10.1103/PhysRevLett.102.056403
10.1063/1.4943940
10.1038/s41467-017-00692-4
10.1038/s43246-022-00326-3
10.1038/s41598-023-31573-0
10.1103/PhysRevLett.100.206803
10.1002/adma.202200956
10.1103/PhysRevLett.98.206805
10.1038/s41467-022-30563-6
10.1038/ncomms11797
10.1103/PhysRevB.77.075430
10.1103/PhysRevLett.97.216803
10.1038/ncomms14703
10.1038/s41467-017-00734-x
10.1103/PhysRevLett.99.166803
10.1103/PhysRevB.84.125411
10.1103/PhysRevB.81.115409
10.1063/1.3664091
10.1103/PhysRevB.73.045432
10.1103/PhysRevB.77.195428
10.1038/ncomms3023
10.1038/ncomms9006
ContentType Journal Article
Copyright The Author(s) 2024
Copyright_xml – notice: The Author(s) 2024
DBID C6C
AAYXX
CITATION
DOA
DOI 10.1007/s44214-024-00050-8
DatabaseName SpringerOpen
CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2731-6106
EndPage 12
ExternalDocumentID oai_doaj_org_article_a7820e14148d4c8f93902f0ab59634f7
10_1007_s44214_024_00050_8
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  grantid: Nos. 12074244 and 12374292
– fundername: the National Key R&D Program of China
  grantid: No. 2021YFA1202902
– fundername: the open research fund of Songshan Lake Materials Laboratory
  grantid: No.2021SLABFK07
GroupedDBID AAKKN
AAYZJ
ABDBF
ACACY
AFNRJ
ALMA_UNASSIGNED_HOLDINGS
C6C
EBS
GROUPED_DOAJ
RSV
SOJ
0R~
AAYXX
ABEEZ
ACULB
AFGXO
C24
CITATION
M~E
ID FETCH-LOGICAL-c2468-a54b952961dbe12bc381e01faeaba440560868f5c220f9d93534d212f228316a3
IEDL.DBID DOA
ISSN 2731-6106
IngestDate Tue Oct 22 15:13:22 EDT 2024
Fri Aug 23 00:28:42 EDT 2024
Wed Feb 21 01:30:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fabrication methods
Field-effect transistor device
Quantum dots
Graphene nanoribbons
Spintronic devices
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2468-a54b952961dbe12bc381e01faeaba440560868f5c220f9d93534d212f228316a3
OpenAccessLink https://doaj.org/article/a7820e14148d4c8f93902f0ab59634f7
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_a7820e14148d4c8f93902f0ab59634f7
crossref_primary_10_1007_s44214_024_00050_8
springer_journals_10_1007_s44214_024_00050_8
PublicationCentury 2000
PublicationDate 2-20-2024
PublicationDateYYYYMMDD 2024-02-20
PublicationDate_xml – month: 02
  year: 2024
  text: 2-20-2024
  day: 20
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Quantum frontiers
PublicationTitleAbbrev Quantum Front
PublicationYear 2024
Publisher Springer Nature Singapore
Springer
Publisher_xml – name: Springer Nature Singapore
– name: Springer
References Lee, Wei, Kysar, Hone (CR11) 2008; 321
Wang (CR5) 2008; 320
Nakada, Fujita, Dresselhaus, Dresselhaus (CR13) 1996; 54
CR33
CR30
Sprinkle (CR45) 2010; 5
Saraswat, Jacobberger, Arnold (CR32) 2021; 15
Bockrath (CR61) 1999; 397
Barone, Hod, Scuseria (CR16) 2006; 6
Johnson, Behnam, Pearton, Ural (CR24) 2010; 22
Chen (CR10) 2012; 11
Jiao, Wang, Diankov, Wang, Dai (CR40) 2010; 5
Ruffieux (CR43) 2016; 531
CR49
CR48
Liu (CR38) 2011; 23
CR47
Fujita, Wakabayashi, Nakada, Kusakabe (CR26) 1996; 65
CR44
Zhang, Tan, Stormer, Kim (CR2) 2005; 438
Magda (CR37) 2014; 514
Chen (CR41) 2021; 4
Blackwell (CR60) 2021; 600
Berger (CR4) 2006; 312
Liao (CR7) 2010; 467
Jiao, Zhang, Wang, Diankov, Dai (CR39) 2009; 458
Son, Cohen, Louie (CR31) 2006; 444
Cai (CR42) 2010; 466
Lin (CR6) 2010; 327
CR18
Cai (CR9) 2010; 10
CR17
CR15
CR14
CR58
CR57
CR56
Shi (CR36) 2011; 23
CR54
Novoselov (CR3) 2005; 438
CR53
CR51
CR50
Kosynkin (CR55) 2009; 458
Raju (CR12) 2014; 24
Balandin (CR8) 2008; 8
Goldhaber-Gordon (CR59) 1998; 391
CR29
Wang (CR52) 2021; 20
CR28
CR25
Li, Wang, Zhang, Lee, Dai (CR34) 2008; 319
CR22
Li (CR19) 2021; 13
CR21
Wang (CR20) 2011; 6
Wakabayashi, Fujita, Ajiki, Sigrist (CR27) 1999; 59
Novoselov (CR1) 2004; 306
Wang, Dai (CR35) 2010; 2
Schwierz (CR23) 2010; 5
Huang, Kim, Ali, Cho (CR46) 2013; 25
GZ Magda (50_CR37) 2014; 514
50_CR51
50_CR50
L Jiao (50_CR39) 2009; 458
F Schwierz (50_CR23) 2010; 5
J Cai (50_CR42) 2010; 466
50_CR17
K Wakabayashi (50_CR27) 1999; 59
50_CR18
50_CR57
50_CR56
50_CR15
50_CR14
50_CR58
50_CR53
YB Zhang (50_CR2) 2005; 438
50_CR54
C Berger (50_CR4) 2006; 312
M Bockrath (50_CR61) 1999; 397
W Cai (50_CR9) 2010; 10
KS Novoselov (50_CR1) 2004; 306
P Ruffieux (50_CR43) 2016; 531
Y-W Son (50_CR31) 2006; 444
L Liu (50_CR38) 2011; 23
AA Balandin (50_CR8) 2008; 8
X Wang (50_CR20) 2011; 6
50_CR49
V Barone (50_CR16) 2006; 6
KS Novoselov (50_CR3) 2005; 438
50_CR48
50_CR47
50_CR44
Q Huang (50_CR46) 2013; 25
JL Johnson (50_CR24) 2010; 22
V Saraswat (50_CR32) 2021; 15
L Jiao (50_CR40) 2010; 5
HS Wang (50_CR52) 2021; 20
DV Kosynkin (50_CR55) 2009; 458
YM Lin (50_CR6) 2010; 327
D Goldhaber-Gordon (50_CR59) 1998; 391
X Wang (50_CR35) 2010; 2
C Chen (50_CR41) 2021; 4
H Li (50_CR19) 2021; 13
50_CR30
50_CR33
M Fujita (50_CR26) 1996; 65
S Chen (50_CR10) 2012; 11
RE Blackwell (50_CR60) 2021; 600
K Nakada (50_CR13) 1996; 54
F Wang (50_CR5) 2008; 320
L Liao (50_CR7) 2010; 467
50_CR28
Z Shi (50_CR36) 2011; 23
APA Raju (50_CR12) 2014; 24
50_CR29
X Li (50_CR34) 2008; 319
C Lee (50_CR11) 2008; 321
50_CR25
M Sprinkle (50_CR45) 2010; 5
50_CR22
50_CR21
References_xml – volume: 15
  start-page: 3674
  year: 2021
  end-page: 3708
  ident: CR32
  article-title: Materials science challenges to graphene nanoribbon electronics
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c07835
  contributor:
    fullname: Arnold
– ident: CR22
– volume: 10
  start-page: 1645
  year: 2010
  end-page: 1651
  ident: CR9
  article-title: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition
  publication-title: Nano Lett
  doi: 10.1021/nl9041966
  contributor:
    fullname: Cai
– volume: 4
  start-page: 653
  year: 2021
  end-page: 663
  ident: CR41
  article-title: Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes
  publication-title: Nat Electron
  doi: 10.1038/s41928-021-00633-6
  contributor:
    fullname: Chen
– ident: CR49
– volume: 11
  start-page: 203
  year: 2012
  end-page: 207
  ident: CR10
  article-title: Thermal conductivity of isotopically modified graphene
  publication-title: Nat Mater
  doi: 10.1038/nmat3207
  contributor:
    fullname: Chen
– ident: CR51
– volume: 320
  start-page: 206
  year: 2008
  end-page: 209
  ident: CR5
  article-title: Gate-variable optical transitions in graphene
  publication-title: Science
  doi: 10.1126/science.1152793
  contributor:
    fullname: Wang
– volume: 397
  start-page: 598
  year: 1999
  end-page: 601
  ident: CR61
  article-title: Luttinger-liquid behaviour in carbon nanotubes
  publication-title: Nature
  doi: 10.1038/17569
  contributor:
    fullname: Bockrath
– volume: 8
  start-page: 902
  year: 2008
  end-page: 907
  ident: CR8
  article-title: Superior thermal conductivity of single-layer graphene
  publication-title: Nano Lett
  doi: 10.1021/nl0731872
  contributor:
    fullname: Balandin
– volume: 306
  start-page: 666
  year: 2004
  end-page: 669
  ident: CR1
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
  doi: 10.1126/science.1102896
  contributor:
    fullname: Novoselov
– volume: 5
  start-page: 487
  year: 2010
  end-page: 496
  ident: CR23
  article-title: Graphene transistors
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2010.89
  contributor:
    fullname: Schwierz
– ident: CR29
– ident: CR54
– volume: 327
  start-page: 662
  year: 2010
  end-page: 662
  ident: CR6
  article-title: 100-GHz transistors from wafer-scale epitaxial graphene
  publication-title: Science
  doi: 10.1126/science.1184289
  contributor:
    fullname: Lin
– volume: 6
  start-page: 563
  year: 2011
  end-page: 567
  ident: CR20
  article-title: Graphene nanoribbons with smooth edges behave as quantum wires
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2011.138
  contributor:
    fullname: Wang
– volume: 2
  start-page: 661
  year: 2010
  end-page: 665
  ident: CR35
  article-title: Etching and narrowing of graphene from the edges
  publication-title: Nat Chem
  doi: 10.1038/nchem.719
  contributor:
    fullname: Dai
– ident: CR58
– ident: CR25
– volume: 391
  start-page: 156
  year: 1998
  end-page: 159
  ident: CR59
  article-title: Kondo effect in a single-electron transistor
  publication-title: Nature
  doi: 10.1038/34373
  contributor:
    fullname: Goldhaber-Gordon
– ident: CR21
– volume: 59
  start-page: 8271
  year: 1999
  end-page: 8282
  ident: CR27
  article-title: Electronic and magnetic properties of nanographite ribbons
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.59.8271
  contributor:
    fullname: Sigrist
– volume: 5
  start-page: 727
  year: 2010
  end-page: 731
  ident: CR45
  article-title: Scalable templated growth of graphene nanoribbons on SiC
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2010.192
  contributor:
    fullname: Sprinkle
– volume: 65
  start-page: 1920
  year: 1996
  end-page: 1923
  ident: CR26
  article-title: Peculiar localized state at zigzag graphite edge
  publication-title: J Phys Soc Jpn
  doi: 10.1143/jpsj.65.1920
  contributor:
    fullname: Kusakabe
– ident: CR15
– volume: 13
  start-page: 52892
  year: 2021
  end-page: 52900
  ident: CR19
  article-title: Photoluminescent semiconducting graphene nanoribbons via longitudinally unzipping single-walled carbon nanotubes
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.1c14597
  contributor:
    fullname: Li
– ident: CR50
– ident: CR57
– volume: 466
  start-page: 470
  year: 2010
  end-page: 473
  ident: CR42
  article-title: Atomically precise bottom-up fabrication of graphene nanoribbons
  publication-title: Nature
  doi: 10.1038/nature09211
  contributor:
    fullname: Cai
– volume: 438
  start-page: 201
  year: 2005
  end-page: 204
  ident: CR2
  article-title: Experimental observation of the quantum Hall effect and Berry’s phase in graphene
  publication-title: Nature
  doi: 10.1038/nature04235
  contributor:
    fullname: Kim
– volume: 5
  start-page: 321
  year: 2010
  end-page: 325
  ident: CR40
  article-title: Facile synthesis of high-quality graphene nanoribbons
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2010.54
  contributor:
    fullname: Dai
– volume: 312
  start-page: 1191
  year: 2006
  end-page: 1196
  ident: CR4
  article-title: Electronic confinement and coherence in patterned epitaxial graphene
  publication-title: Science
  doi: 10.1126/science.1125925
  contributor:
    fullname: Berger
– volume: 20
  start-page: 202
  year: 2021
  ident: CR52
  article-title: Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride
  publication-title: Nat Mater
  doi: 10.1038/s41563-020-00806-2
  contributor:
    fullname: Wang
– volume: 25
  start-page: 1144
  year: 2013
  end-page: 1148
  ident: CR46
  article-title: Width-tunable graphene nanoribbons on a SiC substrate with a controlled step height
  publication-title: Adv Mater
  doi: 10.1002/adma.201202746
  contributor:
    fullname: Cho
– volume: 23
  start-page: 3061
  year: 2011
  ident: CR36
  article-title: Patterning graphene with zigzag edges by self-aligned anisotropic etching
  publication-title: Adv Mater
  doi: 10.1002/adma.201100633
  contributor:
    fullname: Shi
– volume: 54
  start-page: 17954
  year: 1996
  end-page: 17961
  ident: CR13
  article-title: Edge state in graphene ribbons: nanometer size effect and edge shape dependence
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.54.17954
  contributor:
    fullname: Dresselhaus
– ident: CR18
– volume: 319
  start-page: 1229
  year: 2008
  end-page: 1232
  ident: CR34
  article-title: Chemically derived, ultrasmooth graphene nanoribbon semiconductors
  publication-title: Science
  doi: 10.1126/science.1150878
  contributor:
    fullname: Dai
– volume: 600
  start-page: 647
  year: 2021
  ident: CR60
  article-title: Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons
  publication-title: Nature
  doi: 10.1038/s41586-021-04201-y
  contributor:
    fullname: Blackwell
– ident: CR47
– ident: CR14
– volume: 24
  start-page: 2865
  year: 2014
  end-page: 2874
  ident: CR12
  article-title: Wide-area strain sensors based upon graphene-polymer composite coatings probed by Raman spectroscopy
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201302869
  contributor:
    fullname: Raju
– ident: CR53
– ident: CR30
– ident: CR33
– volume: 531
  start-page: 489
  year: 2016
  ident: CR43
  article-title: On-surface synthesis of graphene nanoribbons with zigzag edge topology
  publication-title: Nature
  doi: 10.1038/nature17151
  contributor:
    fullname: Ruffieux
– volume: 6
  start-page: 2748
  year: 2006
  end-page: 2754
  ident: CR16
  article-title: Electronic structure and stability of semiconducting graphene nanoribbons
  publication-title: Nano Lett
  doi: 10.1021/nl0617033
  contributor:
    fullname: Scuseria
– ident: CR56
– volume: 467
  start-page: 305
  year: 2010
  end-page: 308
  ident: CR7
  article-title: High-speed graphene transistors with a self-aligned nanowire gate
  publication-title: Nature
  doi: 10.1038/nature09405
  contributor:
    fullname: Liao
– volume: 22
  start-page: 4877
  year: 2010
  ident: CR24
  article-title: Hydrogen sensing using Pd-functionalized multi-layer graphene nanoribbon networks
  publication-title: Adv Mater
  doi: 10.1002/adma.201001798
  contributor:
    fullname: Ural
– volume: 458
  start-page: 877
  year: 2009
  end-page: 880
  ident: CR39
  article-title: Narrow graphene nanoribbons from carbon nanotubes
  publication-title: Nature
  doi: 10.1038/nature07919
  contributor:
    fullname: Dai
– volume: 458
  start-page: 872
  year: 2009
  end-page: 875
  ident: CR55
  article-title: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons
  publication-title: Nature
  doi: 10.1038/nature07872
  contributor:
    fullname: Kosynkin
– ident: CR44
– ident: CR48
– volume: 321
  start-page: 385
  year: 2008
  end-page: 388
  ident: CR11
  article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene
  publication-title: Science
  doi: 10.1126/science.1157996
  contributor:
    fullname: Hone
– volume: 514
  start-page: 608
  year: 2014
  ident: CR37
  article-title: Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons
  publication-title: Nature
  doi: 10.1038/nature13831
  contributor:
    fullname: Magda
– ident: CR17
– volume: 444
  start-page: 347
  year: 2006
  end-page: 349
  ident: CR31
  article-title: Half-metallic graphene nanoribbons
  publication-title: Nature
  doi: 10.1038/nature05180
  contributor:
    fullname: Louie
– volume: 438
  start-page: 197
  year: 2005
  end-page: 200
  ident: CR3
  article-title: Two-dimensional gas of massless Dirac fermions in graphene
  publication-title: Nature
  doi: 10.1038/nature04233
  contributor:
    fullname: Novoselov
– volume: 23
  start-page: 1246
  year: 2011
  ident: CR38
  article-title: Nanosphere lithography for the fabrication of ultranarrow graphene nanoribbons and on- chip bandgap tuning of graphene
  publication-title: Adv Mater
  doi: 10.1002/adma.201003847
  contributor:
    fullname: Liu
– ident: CR28
– volume: 438
  start-page: 201
  year: 2005
  ident: 50_CR2
  publication-title: Nature
  doi: 10.1038/nature04235
  contributor:
    fullname: YB Zhang
– volume: 321
  start-page: 385
  year: 2008
  ident: 50_CR11
  publication-title: Science
  doi: 10.1126/science.1157996
  contributor:
    fullname: C Lee
– volume: 23
  start-page: 3061
  year: 2011
  ident: 50_CR36
  publication-title: Adv Mater
  doi: 10.1002/adma.201100633
  contributor:
    fullname: Z Shi
– volume: 444
  start-page: 347
  year: 2006
  ident: 50_CR31
  publication-title: Nature
  doi: 10.1038/nature05180
  contributor:
    fullname: Y-W Son
– ident: 50_CR58
  doi: 10.1103/PhysRevLett.102.056403
– volume: 5
  start-page: 321
  year: 2010
  ident: 50_CR40
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2010.54
  contributor:
    fullname: L Jiao
– volume: 59
  start-page: 8271
  year: 1999
  ident: 50_CR27
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.59.8271
  contributor:
    fullname: K Wakabayashi
– ident: 50_CR22
  doi: 10.1063/1.4943940
– ident: 50_CR25
  doi: 10.1038/s41467-017-00692-4
– volume: 458
  start-page: 872
  year: 2009
  ident: 50_CR55
  publication-title: Nature
  doi: 10.1038/nature07872
  contributor:
    fullname: DV Kosynkin
– volume: 397
  start-page: 598
  year: 1999
  ident: 50_CR61
  publication-title: Nature
  doi: 10.1038/17569
  contributor:
    fullname: M Bockrath
– volume: 466
  start-page: 470
  year: 2010
  ident: 50_CR42
  publication-title: Nature
  doi: 10.1038/nature09211
  contributor:
    fullname: J Cai
– volume: 22
  start-page: 4877
  year: 2010
  ident: 50_CR24
  publication-title: Adv Mater
  doi: 10.1002/adma.201001798
  contributor:
    fullname: JL Johnson
– ident: 50_CR48
  doi: 10.1038/s43246-022-00326-3
– ident: 50_CR54
  doi: 10.1038/s41598-023-31573-0
– ident: 50_CR18
  doi: 10.1103/PhysRevLett.100.206803
– ident: 50_CR53
  doi: 10.1002/adma.202200956
– volume: 391
  start-page: 156
  year: 1998
  ident: 50_CR59
  publication-title: Nature
  doi: 10.1038/34373
  contributor:
    fullname: D Goldhaber-Gordon
– volume: 54
  start-page: 17954
  year: 1996
  ident: 50_CR13
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.54.17954
  contributor:
    fullname: K Nakada
– ident: 50_CR33
  doi: 10.1103/PhysRevLett.98.206805
– volume: 23
  start-page: 1246
  year: 2011
  ident: 50_CR38
  publication-title: Adv Mater
  doi: 10.1002/adma.201003847
  contributor:
    fullname: L Liu
– ident: 50_CR50
  doi: 10.1038/s41467-022-30563-6
– volume: 320
  start-page: 206
  year: 2008
  ident: 50_CR5
  publication-title: Science
  doi: 10.1126/science.1152793
  contributor:
    fullname: F Wang
– volume: 319
  start-page: 1229
  year: 2008
  ident: 50_CR34
  publication-title: Science
  doi: 10.1126/science.1150878
  contributor:
    fullname: X Li
– ident: 50_CR47
  doi: 10.1038/ncomms11797
– ident: 50_CR30
  doi: 10.1103/PhysRevB.77.075430
– volume: 458
  start-page: 877
  year: 2009
  ident: 50_CR39
  publication-title: Nature
  doi: 10.1038/nature07919
  contributor:
    fullname: L Jiao
– volume: 15
  start-page: 3674
  year: 2021
  ident: 50_CR32
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c07835
  contributor:
    fullname: V Saraswat
– ident: 50_CR14
  doi: 10.1103/PhysRevLett.97.216803
– volume: 312
  start-page: 1191
  year: 2006
  ident: 50_CR4
  publication-title: Science
  doi: 10.1126/science.1125925
  contributor:
    fullname: C Berger
– ident: 50_CR51
  doi: 10.1038/ncomms14703
– volume: 5
  start-page: 487
  year: 2010
  ident: 50_CR23
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2010.89
  contributor:
    fullname: F Schwierz
– volume: 514
  start-page: 608
  year: 2014
  ident: 50_CR37
  publication-title: Nature
  doi: 10.1038/nature13831
  contributor:
    fullname: GZ Magda
– volume: 10
  start-page: 1645
  year: 2010
  ident: 50_CR9
  publication-title: Nano Lett
  doi: 10.1021/nl9041966
  contributor:
    fullname: W Cai
– volume: 600
  start-page: 647
  year: 2021
  ident: 50_CR60
  publication-title: Nature
  doi: 10.1038/s41586-021-04201-y
  contributor:
    fullname: RE Blackwell
– ident: 50_CR17
  doi: 10.1038/s41467-017-00734-x
– ident: 50_CR56
  doi: 10.1103/PhysRevLett.99.166803
– volume: 438
  start-page: 197
  year: 2005
  ident: 50_CR3
  publication-title: Nature
  doi: 10.1038/nature04233
  contributor:
    fullname: KS Novoselov
– volume: 6
  start-page: 2748
  year: 2006
  ident: 50_CR16
  publication-title: Nano Lett
  doi: 10.1021/nl0617033
  contributor:
    fullname: V Barone
– volume: 11
  start-page: 203
  year: 2012
  ident: 50_CR10
  publication-title: Nat Mater
  doi: 10.1038/nmat3207
  contributor:
    fullname: S Chen
– volume: 24
  start-page: 2865
  year: 2014
  ident: 50_CR12
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201302869
  contributor:
    fullname: APA Raju
– volume: 25
  start-page: 1144
  year: 2013
  ident: 50_CR46
  publication-title: Adv Mater
  doi: 10.1002/adma.201202746
  contributor:
    fullname: Q Huang
– volume: 306
  start-page: 666
  year: 2004
  ident: 50_CR1
  publication-title: Science
  doi: 10.1126/science.1102896
  contributor:
    fullname: KS Novoselov
– volume: 5
  start-page: 727
  year: 2010
  ident: 50_CR45
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2010.192
  contributor:
    fullname: M Sprinkle
– volume: 6
  start-page: 563
  year: 2011
  ident: 50_CR20
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2011.138
  contributor:
    fullname: X Wang
– ident: 50_CR21
  doi: 10.1103/PhysRevB.84.125411
– volume: 327
  start-page: 662
  year: 2010
  ident: 50_CR6
  publication-title: Science
  doi: 10.1126/science.1184289
  contributor:
    fullname: YM Lin
– volume: 65
  start-page: 1920
  year: 1996
  ident: 50_CR26
  publication-title: J Phys Soc Jpn
  doi: 10.1143/jpsj.65.1920
  contributor:
    fullname: M Fujita
– volume: 8
  start-page: 902
  year: 2008
  ident: 50_CR8
  publication-title: Nano Lett
  doi: 10.1021/nl0731872
  contributor:
    fullname: AA Balandin
– volume: 467
  start-page: 305
  year: 2010
  ident: 50_CR7
  publication-title: Nature
  doi: 10.1038/nature09405
  contributor:
    fullname: L Liao
– volume: 20
  start-page: 202
  year: 2021
  ident: 50_CR52
  publication-title: Nat Mater
  doi: 10.1038/s41563-020-00806-2
  contributor:
    fullname: HS Wang
– ident: 50_CR57
  doi: 10.1103/PhysRevB.81.115409
– ident: 50_CR15
  doi: 10.1063/1.3664091
– ident: 50_CR28
  doi: 10.1103/PhysRevB.73.045432
– ident: 50_CR29
  doi: 10.1103/PhysRevB.77.195428
– ident: 50_CR44
  doi: 10.1038/ncomms3023
– volume: 531
  start-page: 489
  year: 2016
  ident: 50_CR43
  publication-title: Nature
  doi: 10.1038/nature17151
  contributor:
    fullname: P Ruffieux
– volume: 4
  start-page: 653
  year: 2021
  ident: 50_CR41
  publication-title: Nat Electron
  doi: 10.1038/s41928-021-00633-6
  contributor:
    fullname: C Chen
– ident: 50_CR49
  doi: 10.1038/ncomms9006
– volume: 2
  start-page: 661
  year: 2010
  ident: 50_CR35
  publication-title: Nat Chem
  doi: 10.1038/nchem.719
  contributor:
    fullname: X Wang
– volume: 13
  start-page: 52892
  year: 2021
  ident: 50_CR19
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.1c14597
  contributor:
    fullname: H Li
SSID ssj0002872906
Score 2.2964907
SecondaryResourceType review_article
Snippet Graphene nanoribbons (GNRs) are narrow strips of graphene with widths ranging from a few nanometers to a few tens of nanometers. GNRs possess most of the...
Abstract Graphene nanoribbons (GNRs) are narrow strips of graphene with widths ranging from a few nanometers to a few tens of nanometers. GNRs possess most of...
Abstract Graphene nanoribbons (GNRs) are narrow strips of graphene with widths ranging from a few nanometers to a few tens of nanometers. GNRs possess most of...
SourceID doaj
crossref
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 1
SubjectTerms Condensed Matter Physics
Fabrication methods
Field-effect transistor device
Graphene nanoribbons
Physics
Physics and Astronomy
Quantum dots
Quantum Physics
Review
Spintronic devices
SummonAdditionalLinks – databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwGMaDTgQv4ifWL3Lw5oJNmrSpNzecw4MnB7uFfIKXbqzb_--brBv4geC1TSk8edPnTZP3F4TuchF4FYQlToac8BJyOGnqmsBEDPzVUuNcon2-leMJf52KaYfJibUw39bvH1rOGeUEnIQkVgmRu2gPPFjG7VvDcrj9nwKZfySXd3Uxvz_6xXsSov_H-meyldEROuzyQfy07sBjtOObE7Sf9mXa9hQNXiJQGr5HuNHNbPFhDETJI7ZrqhKO5UCrto_t5kiUFuvG4dk8ZtWrJtFSz9Bk9Pw-HJPu2ANiWayD0oKbOi6HUmc8ZcaCqfqcBu210ZxHDWUpQV_G8lC7uhAFd-BAIZJsaKmLc9RrZo2_QLhwVPuKchOC4aEUWlBvCyugVQX3WIbuN4Ko-ZpuobYc4ySfAvlUkk_JDA2iZtuWkUydLkCHqS7QlY4APk85TLMctzLURZ2zkGsjYKjzUGWov1FcdcOl_eOdl_9rfoUOWOpwBsP_GvWWi5W_gaxhaW5TuHwCUPq3GA
  priority: 102
  providerName: Springer Nature
Title Graphene nanoribbons: current status, challenges and opportunities
URI https://link.springer.com/article/10.1007/s44214-024-00050-8
https://doaj.org/article/a7820e14148d4c8f93902f0ab59634f7
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEMct6MSCQIAoj8oDG7WInXOasNGKUjEwUamb5acEQ1r18f05O2lVhAQLS4bEkqP_XXzn2PczIXeZDDAI0jJXhoxBgTlcaaqK4UQM46vlxrlE-3wrJlN4ncnZ3lFfcU9YgwduhHvQEejmOWDa7sCWocJJugiZNhJdB0JTR55Ve5Opz_TLaBA55m2VTKqVAxAcGIYklqAnrPwWiRKw_8dqaAoy4xNy3GaH9Kl5q1Ny4OszMnyJUGkck2it6_nywxj0lEdqG7ISjSVBm1Wf2u2xKCuqa0fni5hZb-pETD0n0_Hz-2jC2qMPmBWxFkpLMFVcEuXOeC6MxcDqMx6010YDRB3LokSNhchC5apc5uAwCoVIs-GFzi9Ip57X_pLQ3HHtBxxMCAZCIbXk3uZWYqsBPhNdcr-VQS0awoXasYyTaApFU0k0VXbJMCq1axnp1OkG2ky1NlN_2axL-ludVfvJrH7p8-o_-rwmRyIZX-DAcEM66-XG32I-sTY9cjgSEK_FqJfc6AsqcsSO
link.rule.ids 315,783,787,867,2109,27936,27937,41131,41132,42200,42201,51588,52245
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1JT8MwEIUtKEJwQayirD5woxaxY6cJN6goBUpPrdSb5VXiklZN-_8Zu2klFiFxTRxFel7eOJP5jNBNIjxve2GIzX1CeAYxXK6LgsBGDPzVUG1tpH0Ost6Iv47FuMbkhFqYb_n7u4pzRjkBJyGRVULyTbTFGdhWSMxmnfX3FIj8A7m8rov5_dEv3hMR_T_yn9FWuvtor44H8cOyAw_QhisP0Xb8L9NUR-jxOQClYT3CpSonsw-tYZTcY7OkKuFQDrSoWtisjkSpsCotnkxDVL0oIy31GI26T8NOj9THHhDDQh2UElwXIR1KrXaUaQOm6hLqlVNacR40zLMc9AUVfGGLVKTcggP5QLKhmUpPUKOclO4U4dRS5dqUa-8195lQgjqTGgGt2nCPNdHtShA5XdIt5JpjHOWTIJ-M8sm8iR6DZuuWgUwdL0CHyXqgSxUAfI5y2GZZbnJfpEXCfKK0gKnOfbuJWivFZT1dqj_eefa_5tdopzd878v-y-DtHO2y2PkMloIL1JjPFu4SIoi5vopD5xPgYbnw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3JTsMwEIYtKAJxQayirDlwo1Fjx87CjRZKWVRxoFJvllfExa26vD9jJ61AICSuyUSRfjuemYznM0JXCbM0t0zFurBJTDOI4QpZljEkYuBfFZZaB9rnIOsP6dOIjb508Yfd7suSZNXT4ClNbt6eaNteNb5RSjCNwb_EgWASF-tog_pD0325Nuuu_rJAPuB55nW3zO-PfvNIAdz_oyoanE1vF-3UUWJ0Ww3rHlozbh9tht2aanaAOg8eMw2rVOSEG08_pIS5cxOpirUU-SahxawVqeVBKbNIOB2NJz7WXrjAUD1Ew979W7cf14chxIr47ijBqCx9kRRraTCRClytSbAVRkhBqVe2yApQnZDElrpMWUo1-CXr-TY4E-kRarixM8coSjUWJsdUWiupzZhg2KhUMbDK4R5pouulIHxSMS_4im4c5OMgHw_y8aKJOl6zlaXnVYcL4-k7r6c_Fx7LZzCF5EtTVdgyLRNiEyEZLADU5k3UWirO649o9sc7T_5nfom2Xu96_OVx8HyKtkkYewLrwxlqzKcLcw5hxVxehJnzCcPpwkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene+nanoribbons%3A+current+status%2C+challenges+and+opportunities&rft.jtitle=Quantum+frontiers&rft.au=Shuo+Lou&rft.au=Bosai+Lyu&rft.au=Xianliang+Zhou&rft.au=Peiyue+Shen&rft.date=2024-02-20&rft.pub=Springer&rft.eissn=2731-6106&rft.volume=3&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1007%2Fs44214-024-00050-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a7820e14148d4c8f93902f0ab59634f7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2731-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2731-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2731-6106&client=summon