Secured node detection technique based on artificial neural network for wireless sensor network

The wireless sensor network is becoming the most popular network in the last recent years as it can measure the environmental conditions and send them to process purposes. Many vital challenges face the deployment of WSNs such as energy consumption and security issues. Various attacks could be subje...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of electrical and computer engineering (Malacca, Malacca) Vol. 11; no. 1; p. 536
Main Authors Hasan, Bassam, Alani, Sameer, Saad, Mohammed Ayad
Format Journal Article
LanguageEnglish
Published Yogyakarta IAES Institute of Advanced Engineering and Science 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The wireless sensor network is becoming the most popular network in the last recent years as it can measure the environmental conditions and send them to process purposes. Many vital challenges face the deployment of WSNs such as energy consumption and security issues. Various attacks could be subjects against WSNs and cause damage either in the stability of communication or in the destruction of the sensitive data. Thus, the demands of intrusion detection-based energy-efficient techniques rise dramatically as the network deployment becomes vast and complicated. Qualnet simulation is used to measure the performance of the networks. This paper aims to optimize the energy-based intrusion detection technique using the artificial neural network by using MATLAB Simulink. The results show how the optimized method based on the biological nervous systems improves intrusion detection in WSN. In addition to that, the unsecured nodes are affected the network performance negatively and trouble its behavior. The regress analysis for both methods detects the variations when all nodes are secured and when some are unsecured. Thus, Node detection based on packet delivery ratio and energy consumption could efficiently be implemented in an artificial neural network.
AbstractList The wireless sensor network is becoming the most popular network in the last recent years as it can measure the environmental conditions and send them to process purposes. Many vital challenges face the deployment of WSNs such as energy consumption and security issues. Various attacks could be subjects against WSNs and cause damage either in the stability of communication or in the destruction of the sensitive data. Thus, the demands of intrusion detection-based energy-efficient techniques rise dramatically as the network deployment becomes vast and complicated. Qualnet simulation is used to measure the performance of the networks. This paper aims to optimize the energy-based intrusion detection technique using the artificial neural network by using MATLAB Simulink. The results show how the optimized method based on the biological nervous systems improves intrusion detection in WSN. In addition to that, the unsecured nodes are affected the network performance negatively and trouble its behavior. The regress analysis for both methods detects the variations when all nodes are secured and when some are unsecured. Thus, Node detection based on packet delivery ratio and energy consumption could efficiently be implemented in an artificial neural network.
Author Alani, Sameer
Saad, Mohammed Ayad
Hasan, Bassam
Author_xml – sequence: 1
  givenname: Bassam
  surname: Hasan
  fullname: Hasan, Bassam
– sequence: 2
  givenname: Sameer
  surname: Alani
  fullname: Alani, Sameer
– sequence: 3
  givenname: Mohammed Ayad
  surname: Saad
  fullname: Saad, Mohammed Ayad
BookMark eNqFkE1PxCAQholZE9d1_4Ih8dwVKNA28WI2fiWbeFDPhIUhslZaoXXjvxe7nrx4mXeGmXeA5xTNQhcAoXNKVpSKhl76HRhYfVLq6arvRSkLwfkRmrOKsYKJqp7lnNR1UVekPkHLlPyWcF5xUkkxR-oJzBjB4tBZwBYGMIPvAs76GvzHCHirU27nIx0H77zxusUBxjjJsO_iG3ZdxHsfoYWUcIKQcv3bO0PHTrcJlr-6QC-3N8_r-2LzePewvt4UhnHJC8M5Z5xCDQDCStOUjJNS8kpbwXIopXSmprIitjTUOWacdaxxDbcGBCnLBbo47O1jl1-dBrXrxhjylYrlz_KG1VLkKXmYMrFLKYJTffTvOn4pStTEU0081cRTTTxV5pmNV3-Mxg_6h9QQtW__s38DRQODnw
CitedBy_id crossref_primary_10_1155_2021_6560713
crossref_primary_10_1155_2023_2744706
crossref_primary_10_7717_peerj_cs_2491
ContentType Journal Article
Copyright Copyright IAES Institute of Advanced Engineering and Science Feb 2021
Copyright_xml – notice: Copyright IAES Institute of Advanced Engineering and Science Feb 2021
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BVBZV
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.11591/ijece.v11i1.pp536-544
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
East & South Asia Database
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
East & South Asia Database
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2722-2578
2088-8708
ExternalDocumentID 10_11591_ijece_v11i1_pp536_544
GroupedDBID .4S
.DC
8FE
8FG
AAKDD
AAYXX
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
CITATION
EOJEC
HCIFZ
I-F
K6V
K7-
KWQ
L6V
M7S
OBODZ
OK1
P62
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
TUS
AZQEC
DWQXO
GNUQQ
JQ2
PKEHL
PQEST
PQGLB
PQUKI
PRINS
ID FETCH-LOGICAL-c2464-c444241e8eee5d6c932403647ad527ad366fc81670d3c1ff2cfdf29f94dce5033
IEDL.DBID BENPR
ISSN 2088-8708
IngestDate Fri Jul 25 12:01:08 EDT 2025
Tue Jul 01 01:21:40 EDT 2025
Thu Apr 24 22:58:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2464-c444241e8eee5d6c932403647ad527ad366fc81670d3c1ff2cfdf29f94dce5033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://ijece.iaescore.com/index.php/IJECE/article/download/22550/14514
PQID 2474492865
PQPubID 1686344
ParticipantIDs proquest_journals_2474492865
crossref_primary_10_11591_ijece_v11i1_pp536_544
crossref_citationtrail_10_11591_ijece_v11i1_pp536_544
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Yogyakarta
PublicationPlace_xml – name: Yogyakarta
PublicationTitle International journal of electrical and computer engineering (Malacca, Malacca)
PublicationYear 2021
Publisher IAES Institute of Advanced Engineering and Science
Publisher_xml – name: IAES Institute of Advanced Engineering and Science
SSID ssib044740765
ssj0000866295
Score 2.154579
Snippet The wireless sensor network is becoming the most popular network in the last recent years as it can measure the environmental conditions and send them to...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 536
SubjectTerms Artificial neural networks
Energy consumption
Intrusion detection systems
Neural networks
Nodes
Regression analysis
Wireless networks
Wireless sensor networks
Title Secured node detection technique based on artificial neural network for wireless sensor network
URI https://www.proquest.com/docview/2474492865
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA5aL3oQn1itJQeva7vZSXb3JCqtIigiFryFbSYBRbbVVo_-didpWu1FL7skIZdJ8s0jk28YOzGFlEMEclNdhQkY6ZLKDoFOPEiErskEekfx9k5dD-DmST7FgNskplXOMTEANY6Mj5F3BOQApX9HeTZ-S3zVKH-7GktorLI1guCiaLC1i97d_cMiykIGuxKljE-DSXWnnecXa-zpZ5o-E0iNZaYSCbCslZZBOWia_hbbjCYiP5-t6TZbsfUO2_hFHLjLdAiTW-T1CC1HOw0JVTVfMLJyr52QU5ffGjOWCO65K8MvZH5zMle5Zyp-JbDjE3JnqR3H9tig33u8vE5iqYTECFCQGAAgXWwLa61EZcrAs6cgr1AK-mRKOVOkKu9iZlLnhHHoROlKQGP9TeY-a9Sj2h4wjkW3krnJwaEAVxVVmuZOYCWsq6R0WZPJuai0iTzivpzFqw7-BIlYBxHrIGIdRKxJxE3WWcwbz5g0_p3Rmq-Ejidron_2weHfw0dsXfj8k5Bh3WKN6fuHPSYDYjpss9Wif9WOe4Vat1-9b1Zgy84
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOACHqhQQFAo-tMewG2fsJIcKoZZleZ5A4uZmPbYEQtltdwviT_U3duxNtnApJy6JEis5fB7Pw575BuCzLZQaEHKY6itK0CqfVG6AvOJREXZtJikEiheXun-NpzfqZg7-tLUwIa2y1YlRUdPQhj3yjsQcsQx1lAejn0noGhVOV9sWGlOxOHNPjxyyjb-efOf5_SJl7-jqWz9pugokVqLGxCIimy1XOOcUaVtGSjqNeUVK8iXT2tsi1XmXMpt6L60nL0tfIlkXDv34v_OwiBlb8lCZ3jue7elweKBlqZpCZHYU0s7tnbNu_yFNb1kljlSmE4X40ga-NAHRrvXew7vGIRWHUwlahTlXf4CVZzSFa2DiprwjUQ_JCXKTmL5Vixn_qwi2kAS_CoI45aQQgSkz3mKeuWDnWARe5HtWrWLMwTM_N2PrcP0mEG7AQj2s3SYIKrqVym2OniT6qqjSNPeSKul8pZTPtkC1UBnbsJaH5hn3JkYvDLGJEJsIsYkQG4Z4Czqz70ZT3o5Xv9hpZ8I063hs_kndx_8P78FS_-ri3JyfXJ5tw7IMmS8xt3sHFia_frtP7LpMBrtRXgT8eGsB_QtYDAT-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secured+node+detection+technique+based+on+artificial+neural+network+for+wireless+sensor+network&rft.jtitle=International+journal+of+electrical+and+computer+engineering+%28Malacca%2C+Malacca%29&rft.au=Hasan%2C+Bassam&rft.au=Alani%2C+Sameer&rft.au=Saad%2C+Mohammed+Ayad&rft.date=2021-02-01&rft.issn=2088-8708&rft.eissn=2722-2578&rft.volume=11&rft.issue=1&rft.spage=536&rft_id=info:doi/10.11591%2Fijece.v11i1.pp536-544&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijece_v11i1_pp536_544
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-8708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-8708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-8708&client=summon