The Computer Intelligent Selection of Scientific Research Subjects Through Ensemble Learning for Large-Scale Data Sources and Deep Neural Network

Selecting a proper scientific research subject is critical for scientific researchers and managers. Scientific researching data are from massive sources and have various attributes. For the problem of subject selection, feature extraction and prediction model play important role in performance optim...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 2083; no. 3; pp. 32094 - 32100
Main Authors Ma, Yan, Zou, Lida, Liu, Ke, Han, Yingkun, Ma, Lei
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Selecting a proper scientific research subject is critical for scientific researchers and managers. Scientific researching data are from massive sources and have various attributes. For the problem of subject selection, feature extraction and prediction model play important role in performance optimization. In the paper we introduce ensemble learning method to help find the best fit attributes describing data. Our ensemble learning models include random forests, support vector machine, Boltzmann machine and decision tree. Since the data are from many data sources, we adopt multiple models of deep neural network. An acceleration method is used to reduce the training time as well. Experiments shows that the proposed approach performs better than RNN algorithm both in accuracy ratio and recall ratio. The model selection module and acceleration method help optimize the time cost largely.
AbstractList Selecting a proper scientific research subject is critical for scientific researchers and managers. Scientific researching data are from massive sources and have various attributes. For the problem of subject selection, feature extraction and prediction model play important role in performance optimization. In the paper we introduce ensemble learning method to help find the best fit attributes describing data. Our ensemble learning models include random forests, support vector machine, Boltzmann machine and decision tree. Since the data are from many data sources, we adopt multiple models of deep neural network. An acceleration method is used to reduce the training time as well. Experiments shows that the proposed approach performs better than RNN algorithm both in accuracy ratio and recall ratio. The model selection module and acceleration method help optimize the time cost largely.
Author Zou, Lida
Han, Yingkun
Ma, Lei
Liu, Ke
Ma, Yan
Author_xml – sequence: 1
  givenname: Yan
  surname: Ma
  fullname: Ma, Yan
  organization: State Grid Shandong Electric Power Research Institute , China
– sequence: 2
  givenname: Lida
  surname: Zou
  fullname: Zou, Lida
  organization: Shandong University of Finance and Economics , China
– sequence: 3
  givenname: Ke
  surname: Liu
  fullname: Liu, Ke
  organization: Shandong Electric Power Research Institute , China
– sequence: 4
  givenname: Yingkun
  surname: Han
  fullname: Han, Yingkun
  organization: State Grid Shandong Electric Power Research Institute , China
– sequence: 5
  givenname: Lei
  surname: Ma
  fullname: Ma, Lei
  organization: State Grid Shandong Electric Power Research Institute , China
BookMark eNqNkNFKwzAUhoMouE2fwVwLdVnTpumlbFMnQ8XO65ClJ1tnl5SkRXwM39iUyUDwwuTiHPL__-HkG6JTYw0gdDUhNxPC-XiSJXHE0pyNY8LpmI4JjUmenKDBUTk99pyfo6H3O0JoONkAfa22gKd233QtOLwwLdR1tQHT4gJqUG1lDbYaF6oKb5WuFH4FD9KpLS669S44PF5tne02Wzw3HvbrGvAyGExlNlhbh5fSbSAqlAzCTLYSF7ZzCjyWpsQzgAY_QedkHUr7Yd37BTrTsvZw-VNH6O1uvpo-RMvn-8X0dhmpOGFJJKmmpdYklYzrVOU045JRleosi5OYMZkSyUpFc815yTn0N6NJpsqcqpgwOkLZYa5y1nsHWjSu2kv3KSZE9GRFz0z0_ERPVlBxIBuS9JCsbCN24Tcm7PmP1PUfqceXafHbKJpS02_txIxU
Cites_doi 10.1109/TPAMI.2013.50
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
DOI 10.1088/1742-6596/2083/3/032094
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_2083_3_032094
JPCS_2083_3_032094
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
CITATION
OVT
PHGZM
PHGZT
ROL
ID FETCH-LOGICAL-c2464-a3f3dff05a68f5c9378a63c5f7724266a50a6dc39f88d88e8e8e7347cd93c2063
IEDL.DBID O3W
ISSN 1742-6588
IngestDate Tue Jul 01 00:56:14 EDT 2025
Wed Aug 21 03:42:40 EDT 2024
Tue Dec 07 22:40:54 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2464-a3f3dff05a68f5c9378a63c5f7724266a50a6dc39f88d88e8e8e7347cd93c2063
OpenAccessLink https://iopscience.iop.org/article/10.1088/1742-6596/2083/3/032094
PageCount 7
ParticipantIDs iop_journals_10_1088_1742_6596_2083_3_032094
crossref_primary_10_1088_1742_6596_2083_3_032094
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 20211101
  day: 01
PublicationDecade 2020
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Sun (JPCS_2083_3_032094bib4) 2015
Han (JPCS_2083_3_032094bib1) 2020; 357
Han (JPCS_2083_3_032094bib11) 2019; 33
Bian (JPCS_2083_3_032094bib3) 2018; 26
Liu (JPCS_2083_3_032094bib6) 2014
Fu (JPCS_2083_3_032094bib8) 2014; 35
Bengio (JPCS_2083_3_032094bib12) 2013; 35
Hu (JPCS_2083_3_032094bib9) 2016; 37
Wang (JPCS_2083_3_032094bib10) 2019; 1
Zhang (JPCS_2083_3_032094bib7) 2013; 34
Ji (JPCS_2083_3_032094bib5); 34
Kang (JPCS_2083_3_032094bib2) 2018; 12
References_xml – volume: 26
  start-page: 38
  year: 2018
  ident: JPCS_2083_3_032094bib3
  article-title: The design and implementation of publishing title selection system based on collaborative filtering algorithm [J]
  publication-title: Journal of Beijing Institute of Graphic Communication
– year: 2015
  ident: JPCS_2083_3_032094bib4
– volume: 35
  start-page: 33
  year: 2014
  ident: JPCS_2083_3_032094bib8
  article-title: Design and Implementation Based on Web Mining for the Recommended Service System of the Educational Resources [J]
  publication-title: Software
– volume: 37
  start-page: 119
  year: 2016
  ident: JPCS_2083_3_032094bib9
  article-title: Research on Data Mining in Course Recommendation [J]
  publication-title: Software
– volume: 33
  start-page: 10
  year: 2019
  ident: JPCS_2083_3_032094bib11
  article-title: The important role of scientific document retrieval in scientific subjects selection [J]
  publication-title: Jiangsu Science and Technology Information
– volume: 34
  start-page: 57
  year: 2013
  ident: JPCS_2083_3_032094bib7
  article-title: E-commerce Travel Routes Recommended System Based on Data Mining Technology [J]
  publication-title: Software
– volume: 357
  start-page: 28
  year: 2020
  ident: JPCS_2083_3_032094bib1
  article-title: The application of time series analysis on selecting book title [J]
  publication-title: Chinese Academic journal Electronic Publishing House
– volume: 34
  start-page: 40
  ident: JPCS_2083_3_032094bib5
  article-title: Research and application of personalized recommendation elective course in Higher Vocational School [J]
  publication-title: Software
– start-page: 261
  year: 2014
  ident: JPCS_2083_3_032094bib6
  article-title: The graduation design topic selection system based on web design and implementation [J]
  publication-title: Computer CD Software and Applications
– volume: 1
  start-page: 11
  year: 2019
  ident: JPCS_2083_3_032094bib10
  article-title: The Thought and Selection of scientific subjects about think tank [J]
  publication-title: Journal of Documents and Data
– volume: 12
  start-page: 82
  year: 2018
  ident: JPCS_2083_3_032094bib2
  article-title: The prediction model of selecting publishing titles based on neural network [J]
  publication-title: Information Research
– volume: 35
  start-page: 1798
  year: 2013
  ident: JPCS_2083_3_032094bib12
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE transactions on pattern analysis and machine intelligence
  doi: 10.1109/TPAMI.2013.50
SSID ssj0033337
Score 2.2764494
Snippet Selecting a proper scientific research subject is critical for scientific researchers and managers. Scientific researching data are from massive sources and...
SourceID crossref
iop
SourceType Index Database
Enrichment Source
Publisher
StartPage 32094
SubjectTerms deep neural network
ensemble learning
large-scale data sources
Select scientific research subjects
Title The Computer Intelligent Selection of Scientific Research Subjects Through Ensemble Learning for Large-Scale Data Sources and Deep Neural Network
URI https://iopscience.iop.org/article/10.1088/1742-6596/2083/3/032094
Volume 2083
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7uiuBFfOL6YkCP1u1uHk2P4gMVdRdW0VtI08SLdhdbf4j_2EnainsQsYXSQhqGmWbmS_plhpAjnWn0AJxGOkl0xIyJI53jI0P0LFPnLAt5Zu_uxdUju3nmzz_3wkxnjes_wds6UXCtwoYQJ_uIoYeR4KnAibukfdr3NcBT1iGLVArpJ2Aj-tR6Y4pHUm-K9C9J2XK8fu9oLkJ1UIofAedylaw0SBFOa7nWyIIt1slSYGyacoN8ooGhrckA19-ZNSuYhNI2qG-YOghjN_CBoCXZAToLv_pSwkNdpAcuitK-Za8WmmyrL4BQFm49STyaoBEtnOtKwyQs9JegixzOrZ2Bz-yBIt7XVPJN8nh58XB2FTX1FSIzZIJFmjqaOxdzLaTjBoGK1IIa7hBx-8CteaxFbmjqpMyltP5MKEtMnlIzRGyzRbrFtLDbBLKUpTGVzibal_gbZCJ3nGVmkCHepDzrkbjVqZrVaTRU-P0tpfJmUN4MyptBUVWboUeOUfeqGVLl380P55rfjM8m8y3ULHc7_-t0lywPPYcl7D3cI93q_cPuIwipsgMfAjher0fjg_DFfQEaitDL
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYBOKCWMXOSHAkNNRLnCOiVC1LQSoIbpbj2FwgrUj5EP6YsZMgekCI5JJIjmXN2ONn53keIcc60xgBOI10kuiIGRNHOsdXhuhZps5ZFvLM3g5E75FdPfPnGdL9PgszGteh_xQfq0TBlQlrQpxsIYZuR4KnAhfukrZoy2uAp6w1zt0smedUCC_hcEefmohM8Uqqg5H-QykbntfvlU3NUrPYkh-TTneFLNdoEc6rtq2SGVuskYXA2jTlOvlEJ0OjywD97-yaExgGeRu0OYwchPEbOEHQEO0AA4bfgSnhoRLqgcuitG_Zq4U64-oLIJyFG08Uj4boSAsdPdEwDJv9Jegih461Y_DZPbCJg4pOvkEeu5cPF72o1liITJsJFmnqaO5czLWQjhsEK1ILarhD1O0nb81jLXJDUydlLqX1d0JZYvKUmjbim00yV4wKu0UgS1kaU-lsor3M31kmcsdZZs4yxJyUZ9skbmyqxlUqDRV-gUupvBuUd4PyblBUVW7YJidoe1UPq_Lv4kdTxa_uL4bTJRR2kp3_VXpIFu87XXXTH1zvkqW2p7SEo4h7ZG7y_mH3EZNMsoPQ4b4AUanSyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Computer+Intelligent+Selection+of+Scientific+Research+Subjects+Through+Ensemble+Learning+for+Large-Scale+Data+Sources+and+Deep+Neural+Network&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Ma%2C+Yan&rft.au=Zou%2C+Lida&rft.au=Liu%2C+Ke&rft.au=Han%2C+Yingkun&rft.date=2021-11-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2083&rft.issue=3&rft.spage=32094&rft_id=info:doi/10.1088%2F1742-6596%2F2083%2F3%2F032094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_2083_3_032094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon