The Computer Intelligent Selection of Scientific Research Subjects Through Ensemble Learning for Large-Scale Data Sources and Deep Neural Network
Selecting a proper scientific research subject is critical for scientific researchers and managers. Scientific researching data are from massive sources and have various attributes. For the problem of subject selection, feature extraction and prediction model play important role in performance optim...
Saved in:
Published in | Journal of physics. Conference series Vol. 2083; no. 3; pp. 32094 - 32100 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Selecting a proper scientific research subject is critical for scientific researchers and managers. Scientific researching data are from massive sources and have various attributes. For the problem of subject selection, feature extraction and prediction model play important role in performance optimization. In the paper we introduce ensemble learning method to help find the best fit attributes describing data. Our ensemble learning models include random forests, support vector machine, Boltzmann machine and decision tree. Since the data are from many data sources, we adopt multiple models of deep neural network. An acceleration method is used to reduce the training time as well. Experiments shows that the proposed approach performs better than RNN algorithm both in accuracy ratio and recall ratio. The model selection module and acceleration method help optimize the time cost largely. |
---|---|
AbstractList | Selecting a proper scientific research subject is critical for scientific researchers and managers. Scientific researching data are from massive sources and have various attributes. For the problem of subject selection, feature extraction and prediction model play important role in performance optimization. In the paper we introduce ensemble learning method to help find the best fit attributes describing data. Our ensemble learning models include random forests, support vector machine, Boltzmann machine and decision tree. Since the data are from many data sources, we adopt multiple models of deep neural network. An acceleration method is used to reduce the training time as well. Experiments shows that the proposed approach performs better than RNN algorithm both in accuracy ratio and recall ratio. The model selection module and acceleration method help optimize the time cost largely. |
Author | Zou, Lida Han, Yingkun Ma, Lei Liu, Ke Ma, Yan |
Author_xml | – sequence: 1 givenname: Yan surname: Ma fullname: Ma, Yan organization: State Grid Shandong Electric Power Research Institute , China – sequence: 2 givenname: Lida surname: Zou fullname: Zou, Lida organization: Shandong University of Finance and Economics , China – sequence: 3 givenname: Ke surname: Liu fullname: Liu, Ke organization: Shandong Electric Power Research Institute , China – sequence: 4 givenname: Yingkun surname: Han fullname: Han, Yingkun organization: State Grid Shandong Electric Power Research Institute , China – sequence: 5 givenname: Lei surname: Ma fullname: Ma, Lei organization: State Grid Shandong Electric Power Research Institute , China |
BookMark | eNqNkNFKwzAUhoMouE2fwVwLdVnTpumlbFMnQ8XO65ClJ1tnl5SkRXwM39iUyUDwwuTiHPL__-HkG6JTYw0gdDUhNxPC-XiSJXHE0pyNY8LpmI4JjUmenKDBUTk99pyfo6H3O0JoONkAfa22gKd233QtOLwwLdR1tQHT4gJqUG1lDbYaF6oKb5WuFH4FD9KpLS669S44PF5tne02Wzw3HvbrGvAyGExlNlhbh5fSbSAqlAzCTLYSF7ZzCjyWpsQzgAY_QedkHUr7Yd37BTrTsvZw-VNH6O1uvpo-RMvn-8X0dhmpOGFJJKmmpdYklYzrVOU045JRleosi5OYMZkSyUpFc815yTn0N6NJpsqcqpgwOkLZYa5y1nsHWjSu2kv3KSZE9GRFz0z0_ERPVlBxIBuS9JCsbCN24Tcm7PmP1PUfqceXafHbKJpS02_txIxU |
Cites_doi | 10.1109/TPAMI.2013.50 |
ContentType | Journal Article |
Copyright | Published under licence by IOP Publishing Ltd |
Copyright_xml | – notice: Published under licence by IOP Publishing Ltd |
DBID | O3W TSCCA AAYXX CITATION |
DOI | 10.1088/1742-6596/2083/3/032094 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1742-6596 |
ExternalDocumentID | 10_1088_1742_6596_2083_3_032094 JPCS_2083_3_032094 |
GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX CITATION OVT PHGZM PHGZT ROL |
ID | FETCH-LOGICAL-c2464-a3f3dff05a68f5c9378a63c5f7724266a50a6dc39f88d88e8e8e7347cd93c2063 |
IEDL.DBID | O3W |
ISSN | 1742-6588 |
IngestDate | Tue Jul 01 00:56:14 EDT 2025 Wed Aug 21 03:42:40 EDT 2024 Tue Dec 07 22:40:54 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2464-a3f3dff05a68f5c9378a63c5f7724266a50a6dc39f88d88e8e8e7347cd93c2063 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1742-6596/2083/3/032094 |
PageCount | 7 |
ParticipantIDs | iop_journals_10_1088_1742_6596_2083_3_032094 crossref_primary_10_1088_1742_6596_2083_3_032094 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211101 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 20211101 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of physics. Conference series |
PublicationTitleAlternate | J. Phys.: Conf. Ser |
PublicationYear | 2021 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Sun (JPCS_2083_3_032094bib4) 2015 Han (JPCS_2083_3_032094bib1) 2020; 357 Han (JPCS_2083_3_032094bib11) 2019; 33 Bian (JPCS_2083_3_032094bib3) 2018; 26 Liu (JPCS_2083_3_032094bib6) 2014 Fu (JPCS_2083_3_032094bib8) 2014; 35 Bengio (JPCS_2083_3_032094bib12) 2013; 35 Hu (JPCS_2083_3_032094bib9) 2016; 37 Wang (JPCS_2083_3_032094bib10) 2019; 1 Zhang (JPCS_2083_3_032094bib7) 2013; 34 Ji (JPCS_2083_3_032094bib5); 34 Kang (JPCS_2083_3_032094bib2) 2018; 12 |
References_xml | – volume: 26 start-page: 38 year: 2018 ident: JPCS_2083_3_032094bib3 article-title: The design and implementation of publishing title selection system based on collaborative filtering algorithm [J] publication-title: Journal of Beijing Institute of Graphic Communication – year: 2015 ident: JPCS_2083_3_032094bib4 – volume: 35 start-page: 33 year: 2014 ident: JPCS_2083_3_032094bib8 article-title: Design and Implementation Based on Web Mining for the Recommended Service System of the Educational Resources [J] publication-title: Software – volume: 37 start-page: 119 year: 2016 ident: JPCS_2083_3_032094bib9 article-title: Research on Data Mining in Course Recommendation [J] publication-title: Software – volume: 33 start-page: 10 year: 2019 ident: JPCS_2083_3_032094bib11 article-title: The important role of scientific document retrieval in scientific subjects selection [J] publication-title: Jiangsu Science and Technology Information – volume: 34 start-page: 57 year: 2013 ident: JPCS_2083_3_032094bib7 article-title: E-commerce Travel Routes Recommended System Based on Data Mining Technology [J] publication-title: Software – volume: 357 start-page: 28 year: 2020 ident: JPCS_2083_3_032094bib1 article-title: The application of time series analysis on selecting book title [J] publication-title: Chinese Academic journal Electronic Publishing House – volume: 34 start-page: 40 ident: JPCS_2083_3_032094bib5 article-title: Research and application of personalized recommendation elective course in Higher Vocational School [J] publication-title: Software – start-page: 261 year: 2014 ident: JPCS_2083_3_032094bib6 article-title: The graduation design topic selection system based on web design and implementation [J] publication-title: Computer CD Software and Applications – volume: 1 start-page: 11 year: 2019 ident: JPCS_2083_3_032094bib10 article-title: The Thought and Selection of scientific subjects about think tank [J] publication-title: Journal of Documents and Data – volume: 12 start-page: 82 year: 2018 ident: JPCS_2083_3_032094bib2 article-title: The prediction model of selecting publishing titles based on neural network [J] publication-title: Information Research – volume: 35 start-page: 1798 year: 2013 ident: JPCS_2083_3_032094bib12 article-title: Representation learning: A review and new perspectives publication-title: IEEE transactions on pattern analysis and machine intelligence doi: 10.1109/TPAMI.2013.50 |
SSID | ssj0033337 |
Score | 2.2764494 |
Snippet | Selecting a proper scientific research subject is critical for scientific researchers and managers. Scientific researching data are from massive sources and... |
SourceID | crossref iop |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 32094 |
SubjectTerms | deep neural network ensemble learning large-scale data sources Select scientific research subjects |
Title | The Computer Intelligent Selection of Scientific Research Subjects Through Ensemble Learning for Large-Scale Data Sources and Deep Neural Network |
URI | https://iopscience.iop.org/article/10.1088/1742-6596/2083/3/032094 |
Volume | 2083 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7uiuBFfOL6YkCP1u1uHk2P4gMVdRdW0VtI08SLdhdbf4j_2EnainsQsYXSQhqGmWbmS_plhpAjnWn0AJxGOkl0xIyJI53jI0P0LFPnLAt5Zu_uxdUju3nmzz_3wkxnjes_wds6UXCtwoYQJ_uIoYeR4KnAibukfdr3NcBT1iGLVArpJ2Aj-tR6Y4pHUm-K9C9J2XK8fu9oLkJ1UIofAedylaw0SBFOa7nWyIIt1slSYGyacoN8ooGhrckA19-ZNSuYhNI2qG-YOghjN_CBoCXZAToLv_pSwkNdpAcuitK-Za8WmmyrL4BQFm49STyaoBEtnOtKwyQs9JegixzOrZ2Bz-yBIt7XVPJN8nh58XB2FTX1FSIzZIJFmjqaOxdzLaTjBoGK1IIa7hBx-8CteaxFbmjqpMyltP5MKEtMnlIzRGyzRbrFtLDbBLKUpTGVzibal_gbZCJ3nGVmkCHepDzrkbjVqZrVaTRU-P0tpfJmUN4MyptBUVWboUeOUfeqGVLl380P55rfjM8m8y3ULHc7_-t0lywPPYcl7D3cI93q_cPuIwipsgMfAjher0fjg_DFfQEaitDL |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYBOKCWMXOSHAkNNRLnCOiVC1LQSoIbpbj2FwgrUj5EP6YsZMgekCI5JJIjmXN2ONn53keIcc60xgBOI10kuiIGRNHOsdXhuhZps5ZFvLM3g5E75FdPfPnGdL9PgszGteh_xQfq0TBlQlrQpxsIYZuR4KnAhfukrZoy2uAp6w1zt0smedUCC_hcEefmohM8Uqqg5H-QykbntfvlU3NUrPYkh-TTneFLNdoEc6rtq2SGVuskYXA2jTlOvlEJ0OjywD97-yaExgGeRu0OYwchPEbOEHQEO0AA4bfgSnhoRLqgcuitG_Zq4U64-oLIJyFG08Uj4boSAsdPdEwDJv9Jegih461Y_DZPbCJg4pOvkEeu5cPF72o1liITJsJFmnqaO5czLWQjhsEK1ILarhD1O0nb81jLXJDUydlLqX1d0JZYvKUmjbim00yV4wKu0UgS1kaU-lsor3M31kmcsdZZs4yxJyUZ9skbmyqxlUqDRV-gUupvBuUd4PyblBUVW7YJidoe1UPq_Lv4kdTxa_uL4bTJRR2kp3_VXpIFu87XXXTH1zvkqW2p7SEo4h7ZG7y_mH3EZNMsoPQ4b4AUanSyw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Computer+Intelligent+Selection+of+Scientific+Research+Subjects+Through+Ensemble+Learning+for+Large-Scale+Data+Sources+and+Deep+Neural+Network&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Ma%2C+Yan&rft.au=Zou%2C+Lida&rft.au=Liu%2C+Ke&rft.au=Han%2C+Yingkun&rft.date=2021-11-01&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2083&rft.issue=3&rft.spage=32094&rft_id=info:doi/10.1088%2F1742-6596%2F2083%2F3%2F032094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_2083_3_032094 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |