Robust recognition technique for handwritten Kannada character recognition using capsule networks

Automated reading of handwritten Kannada documents is highly challenging due to the presence of vowels, consonants and its modifiers. The variable nature of handwriting styles aggravates the complexity of machine based reading of handwritten vowels and consonants. In this paper, our investigation is...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of electrical and computer engineering (Malacca, Malacca) Vol. 12; no. 1; p. 383
Main Authors Rani, N. Shobha, N., Manohar, M., Hariprasad, B. R., Pushpa
Format Journal Article
LanguageEnglish
Published Yogyakarta IAES Institute of Advanced Engineering and Science 01.02.2022
Subjects
Online AccessGet full text
ISSN2088-8708
2722-2578
2088-8708
DOI10.11591/ijece.v12i1.pp383-391

Cover

Abstract Automated reading of handwritten Kannada documents is highly challenging due to the presence of vowels, consonants and its modifiers. The variable nature of handwriting styles aggravates the complexity of machine based reading of handwritten vowels and consonants. In this paper, our investigation is inclined towards design of a deep convolution network with capsule and routing layers to efficiently recognize  Kannada handwritten characters.  Capsule network architecture is built of an input layer,  two convolution layers, primary capsule, routing capsule layers followed by tri-level dense convolution layer and an output layer.  For experimentation, datasets are collected from more than 100 users for creation of training data samples of about 7769 comprising of 49 classes. Test samples of all the 49 classes are again collected separately from 3 to 5 users creating a total of 245 samples for novel patterns. It is inferred from performance evaluation; a loss of 0.66% is obtained in the classification process and for 43 classes precision of 100% is achieved with an accuracy of 99%. An average accuracy of 95% is achieved for all remaining 6 classes with an average precision of 89%.
AbstractList Automated reading of handwritten Kannada documents is highly challenging due to the presence of vowels, consonants and its modifiers. The variable nature of handwriting styles aggravates the complexity of machine based reading of handwritten vowels and consonants. In this paper, our investigation is inclined towards design of a deep convolution network with capsule and routing layers to efficiently recognize Kannada handwritten characters. Capsule network architecture is built of an input layer, two convolution layers, primary capsule, routing capsule layers followed by tri-level dense convolution layer and an output layer. For experimentation, datasets are collected from more than 100 users for creation of training data samples of about 7769 comprising of 49 classes. Test samples of all the 49 classes are again collected separately from 3 to 5 users creating a total of 245 samples for novel patterns. It is inferred from performance evaluation; a loss of 0.66% is obtained in the classification process and for 43 classes precision of 100% is achieved with an accuracy of 99%. An average accuracy of 95% is achieved for all remaining 6 classes with an average precision of 89%.
Automated reading of handwritten Kannada documents is highly challenging due to the presence of vowels, consonants and its modifiers. The variable nature of handwriting styles aggravates the complexity of machine based reading of handwritten vowels and consonants. In this paper, our investigation is inclined towards design of a deep convolution network with capsule and routing layers to efficiently recognize  Kannada handwritten characters.  Capsule network architecture is built of an input layer,  two convolution layers, primary capsule, routing capsule layers followed by tri-level dense convolution layer and an output layer.  For experimentation, datasets are collected from more than 100 users for creation of training data samples of about 7769 comprising of 49 classes. Test samples of all the 49 classes are again collected separately from 3 to 5 users creating a total of 245 samples for novel patterns. It is inferred from performance evaluation; a loss of 0.66% is obtained in the classification process and for 43 classes precision of 100% is achieved with an accuracy of 99%. An average accuracy of 95% is achieved for all remaining 6 classes with an average precision of 89%.
Author M., Hariprasad
N., Manohar
Rani, N. Shobha
B. R., Pushpa
Author_xml – sequence: 1
  givenname: N. Shobha
  orcidid: 0000-0003-4882-1919
  surname: Rani
  fullname: Rani, N. Shobha
– sequence: 2
  givenname: Manohar
  orcidid: 0000-0001-6943-3240
  surname: N.
  fullname: N., Manohar
– sequence: 3
  givenname: Hariprasad
  surname: M.
  fullname: M., Hariprasad
– sequence: 4
  givenname: Pushpa
  orcidid: 0000-0002-2585-0613
  surname: B. R.
  fullname: B. R., Pushpa
BookMark eNqFkMtOwzAQRS0EEqX0F1Ak1il-xLEjsUEVL1EJCcHamjhO61LsYDtU_D0hZQMbVjOLe-ZxTtCh884gdEbwnBBekQu7MdrMPwi1ZN51TLKcVeQATaigNKdcyMOhx1LmUmB5jGYx2hoXhSiwKPkEwZOv-5iyYLRfOZusd1kyeu3se2-y1odsDa7ZBZuScdkDOAcNZHoNAXQy4RfXR-tWmYYu9luTOZN2PrzGU3TUwjaa2U-dopeb6-fFXb58vL1fXC1zTYuS5EJzXIIAzWklKGswr1vecsywwHWtqSwaWjDZYFJXsuKFaUVDWamxhpoDUDZF5_u5XfDD7TGpje-DG1YqWuJCSl5WZEiV-5QOPsZgWtUF-wbhUxGsRqNqNKpGo2o0qtgIXv4BtU3w_XcKYLf_4V_SboRt
CitedBy_id crossref_primary_10_1080_01969722_2023_2175145
crossref_primary_10_1109_ACCESS_2024_3355470
crossref_primary_10_1007_s11042_024_18999_y
ContentType Journal Article
Copyright Copyright IAES Institute of Advanced Engineering and Science Feb 2022
Copyright_xml – notice: Copyright IAES Institute of Advanced Engineering and Science Feb 2022
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BVBZV
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.11591/ijece.v12i1.pp383-391
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
East & South Asia Database
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
East & South Asia Database
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2722-2578
2088-8708
ExternalDocumentID 10_11591_ijece_v12i1_pp383_391
GroupedDBID .4S
.DC
8FE
8FG
AAKDD
AAYXX
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
CITATION
EOJEC
HCIFZ
I-F
K6V
K7-
KWQ
L6V
M7S
OBODZ
OK1
P62
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
TUS
AZQEC
DWQXO
GNUQQ
JQ2
PKEHL
PQEST
PQGLB
PQUKI
PRINS
ID FETCH-LOGICAL-c2461-7c506a7ac529723d05bf5f503070bbc284d2438d01b98954ef7d236c0cab5aa23
IEDL.DBID 8FG
ISSN 2088-8708
IngestDate Fri Jul 25 12:08:56 EDT 2025
Tue Jul 01 01:21:44 EDT 2025
Thu Apr 24 23:09:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2461-7c506a7ac529723d05bf5f503070bbc284d2438d01b98954ef7d236c0cab5aa23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4882-1919
0000-0001-6943-3240
0000-0002-2585-0613
OpenAccessLink https://ijece.iaescore.com/index.php/IJECE/article/download/25552/15421
PQID 2604885691
PQPubID 1686344
ParticipantIDs proquest_journals_2604885691
crossref_primary_10_11591_ijece_v12i1_pp383_391
crossref_citationtrail_10_11591_ijece_v12i1_pp383_391
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Yogyakarta
PublicationPlace_xml – name: Yogyakarta
PublicationTitle International journal of electrical and computer engineering (Malacca, Malacca)
PublicationYear 2022
Publisher IAES Institute of Advanced Engineering and Science
Publisher_xml – name: IAES Institute of Advanced Engineering and Science
SSID ssib044740765
ssj0000866295
Score 2.2909844
Snippet Automated reading of handwritten Kannada documents is highly challenging due to the presence of vowels, consonants and its modifiers. The variable nature of...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 383
SubjectTerms Accuracy
Character recognition
Classification
Computer architecture
Computer science
Convolution
Datasets
Deep learning
Experimentation
Handwriting recognition
Investigations
Machine learning
Neural networks
Performance evaluation
Vowels
Wavelet transforms
Title Robust recognition technique for handwritten Kannada character recognition using capsule networks
URI https://www.proquest.com/docview/2604885691
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LTwIxEG4ULnrwgRpRND14reyru_Rk1IBEAzFEEm6bttsaDNlFHnrztzstXZSLHjdNL9PpfN_MTudD6CoMhQJkYkTyJCKAtx4RKmFES81aYRQDBTCJYq8fd4fR44iOXMFt7toqy5hoA3VWSFMjbwLvBl-jMfNvpu_EqEaZv6tOQmMbVX1AGuPnrc7DusYCdD0OGHUPgwG4_eb4TUl1_eEHYwhRU0jPSMj8TUzaDMkWZzoHaM8RRHy7OtFDtKXyGtovxRewu4s1tPtrkuAR4oNCLOcLvO4HKnK8Hs-KgZhiUyH_nI0XwJHxE89znnEsy2nNG_tMK_wrlhzy54nC-apPfH6Mhp32y32XOPUEIs2MOJJI6sU84ZIGRlks86jQVFN7yYWQAEtZEIWtzPMFazEaKZ1kQRhLT3JBOQ_CE1TJi1ydIkxlxgwV4zpQkac1jyE2Ua2o0b3inqwjWtovlW60uFG4mKQ2xQC7p9buqbV7au2egt3rqLneN10N1_h3R6M8ntRdtnn64xpnfy-fo53AvF6wTdcNVFnMluoCOMVCXFrHuUTVu3b_eQBfva_2NyD_0NY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTuswEB2hsoC74H3FGy9gaZo4cVIvEOKpcgsVQiCxM7ZjoyKUFlpA_BTfyDhNeukGVqyj2YyPZ844M2cAtqNIW8xMghqVxhTzbUC1TQV1xolGFCdIAXyheNFOmjfxv1t-OwEf1SyMb6usYmIRqLOu8W_kdeTdiDWeiHC_90T91ij_d7VaoTGERcu-v2HJ1t87O8bz3WHs9OT6qEnLrQLUeO00mhoeJCpVhjO_cSsLuHbc8QL8WhsM1xmLo0YWhFo0BI-tSzMWJSYwSnOlvNABhvzJ2E-01mDy8KR9eTV61cECIWGCl6PISBXCeufBGrv7GrIOBsUeFoQ0EuF4FhxPAkVmO52DmZKSkoMhhuZhwuYLMFuteyDl7V-AP1-0CxdBXXX1S39ARh1I3ZyMBGEJUmHi3-TfnjsDZOWkpfJcZYqYSh96zM43398To7Bif7QkH3am95fg5lc8-xdqeTe3y0C4yYQnf8oxGwfOqQSjIXeW-01bKjArwCv_SVOKmfudGo-yKGrQ77Lwuyz8Lgu_S_T7CtRHdr2hnMePFuvV8cjyevflfzCufv95C6aa1xfn8vys3VqDaeZnJ4qW73WoDZ5f7AYymoHeLGFE4O63kfsJfVULIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+recognition+technique+for+handwritten+Kannada+character+recognition+using+capsule+networks&rft.jtitle=International+journal+of+electrical+and+computer+engineering+%28Malacca%2C+Malacca%29&rft.au=N.+Shobha+Rani&rft.au=Manohar%2C+N&rft.au=Hariprasad%2C+M&rft.au=Pushpa%2C+B+R&rft.date=2022-02-01&rft.pub=IAES+Institute+of+Advanced+Engineering+and+Science&rft.eissn=2088-8708&rft.volume=12&rft.issue=1&rft.spage=383&rft_id=info:doi/10.11591%2Fijece.v12i1.pp383-391
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-8708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-8708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-8708&client=summon