Machine learning and artificial intelligence models development in rainfall-induced landslide prediction
In Indonesia, rainfall is one crucial triggering factor for landslides. This paper aims to build landslide event prediction models using several machine learning and artificial intelligence algorithms. The algorithms were trained with two different methods. The input of the algorithms was precipitat...
Saved in:
Published in | IAES International Journal of Artificial Intelligence Vol. 12; no. 1; p. 262 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Yogyakarta
IAES Institute of Advanced Engineering and Science
01.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2089-4872 2252-8938 2089-4872 |
DOI | 10.11591/ijai.v12.i1.pp262-270 |
Cover
Abstract | In Indonesia, rainfall is one crucial triggering factor for landslides. This paper aims to build landslide event prediction models using several machine learning and artificial intelligence algorithms. The algorithms were trained with two different methods. The input of the algorithms was precipitation data obtained from the global satellite mapping of precipitation satellite observation, and the target was landslide event occurrence data obtained from the Indonesian National Board for Disaster Management. Each algorithm provided some model candidates with different parameter settings for each method. As a result, there were 52 and 72 model candidates for both methods. The best model was then chosen from each method. The result shows that the model generated by generalized linear model was the best model for the first method and deep learning for the second one. Furthermore, the best models at each method gained 0.828 and 0.836 for the area under receiver operating characteristics curve, and their log-loss were 0.156 and 0.154. The second method, which used input data transformation, provided better performance. |
---|---|
AbstractList | In Indonesia, rainfall is one crucial triggering factor for landslides. This paper aims to build landslide event prediction models using several machine learning and artificial intelligence algorithms. The algorithms were trained with two different methods. The input of the algorithms was precipitation data obtained from the global satellite mapping of precipitation satellite observation, and the target was landslide event occurrence data obtained from the Indonesian National Board for Disaster Management. Each algorithm provided some model candidates with different parameter settings for each method. As a result, there were 52 and 72 model candidates for both methods. The best model was then chosen from each method. The result shows that the model generated by generalized linear model was the best model for the first method and deep learning for the second one. Furthermore, the best models at each method gained 0.828 and 0.836 for the area under receiver operating characteristics curve, and their log-loss were 0.156 and 0.154. The second method, which used input data transformation, provided better performance. |
Author | Kurniawan, Roni Swarinoto, Yunus S. Praja, Alfan Sukmana Harsa, Hastuadi Syahputra Makmur, Erwin Eka Hidayat, Anistia Malinda Mulsandi, Adi Sri Sudewi, Rahayu Sapta Suprihadi, Bambang Hutapea, Thahir Daniel Habibie, Muhammad Najib Fitria, Welly |
Author_xml | – sequence: 1 givenname: Hastuadi orcidid: 0000-0003-0442-2588 surname: Harsa fullname: Harsa, Hastuadi – sequence: 2 givenname: Anistia Malinda orcidid: 0000-0002-9123-5125 surname: Hidayat fullname: Hidayat, Anistia Malinda – sequence: 3 givenname: Adi orcidid: 0000-0003-4150-438X surname: Mulsandi fullname: Mulsandi, Adi – sequence: 4 givenname: Bambang orcidid: 0000-0001-7731-2174 surname: Suprihadi fullname: Suprihadi, Bambang – sequence: 5 givenname: Roni orcidid: 0000-0001-5698-2304 surname: Kurniawan fullname: Kurniawan, Roni – sequence: 6 givenname: Muhammad Najib orcidid: 0000-0002-9275-4795 surname: Habibie fullname: Habibie, Muhammad Najib – sequence: 7 givenname: Thahir Daniel orcidid: 0000-0003-3138-6367 surname: Hutapea fullname: Hutapea, Thahir Daniel – sequence: 8 givenname: Yunus S. orcidid: 0000-0003-3278-8202 surname: Swarinoto fullname: Swarinoto, Yunus S. – sequence: 9 givenname: Erwin Eka orcidid: 0000-0001-9930-6517 surname: Syahputra Makmur fullname: Syahputra Makmur, Erwin Eka – sequence: 10 givenname: Welly orcidid: 0000-0002-1130-9017 surname: Fitria fullname: Fitria, Welly – sequence: 11 givenname: Rahayu Sapta orcidid: 0000-0002-5220-0771 surname: Sri Sudewi fullname: Sri Sudewi, Rahayu Sapta – sequence: 12 givenname: Alfan Sukmana orcidid: 0000-0002-8301-4234 surname: Praja fullname: Praja, Alfan Sukmana |
BookMark | eNqFUE1LAzEUDFLBWvsXJOB5a5LuZhPwIsUvqHjRc0iTt-0raXbNbgv-e1PryYun9-DNzJuZSzKKbQRCrjmbcV5pfotbi7MDFzPks64TUhSiZmdkLEQlCqXnapR3pnRRqlpckGnf44pxroWqdD0mm1frNhiBBrApYlxTGz21acAGHdpAMQ4QAq4hOqC71kPoqYcDhLbbQRzynSaLsbEhFBj93oGnIWv0AT3QLoFHN2Abr8h5xvQw_Z0T8vH48L54LpZvTy-L-2XhRClZwaEEkEJzb5uqabS3LBtvBKstV9xWTHvG9CoHs9rqFRMlA7mqK1cqyRn4-YTcnHS71H7uoR_Mtt2nmF8aUUsptarnKqPuTiiX2r5P0BiHgz36HHKaYDgzP_WaY70m12uQm596swrLdPmH3iXc2fT1H_EbTCyGWg |
CitedBy_id | crossref_primary_10_1007_s10064_024_03563_7 crossref_primary_10_1007_s41939_024_00417_3 |
ContentType | Journal Article |
Copyright | Copyright IAES Institute of Advanced Engineering and Science 2023 |
Copyright_xml | – notice: Copyright IAES Institute of Advanced Engineering and Science 2023 |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BVBZV CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.11591/ijai.v12.i1.pp262-270 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection East & South Asia Database ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection East & South Asia Database Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2252-8938 2089-4872 |
ExternalDocumentID | 10_11591_ijai_v12_i1_pp262_270 |
GroupedDBID | 8FE 8FG AAKDD AAYXX ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ BPHCQ BVBZV CCPQU CITATION DWQXO GNUQQ HCIFZ K6V K7- P62 PHGZM PHGZT PQQKQ PROAC RNS 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N M~E PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c2460-1e4ee6291daf5ff9da0487f207a181a509d009b893a9a9b0240e6b75c48610ed3 |
IEDL.DBID | 8FG |
ISSN | 2089-4872 |
IngestDate | Sun Jun 29 16:50:06 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 Tue Jul 01 03:27:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://creativecommons.org/licenses/by-sa/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2460-1e4ee6291daf5ff9da0487f207a181a509d009b893a9a9b0240e6b75c48610ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9930-6517 0000-0002-5220-0771 0000-0003-3278-8202 0000-0002-9123-5125 0000-0001-5698-2304 0000-0003-0442-2588 0000-0001-7731-2174 0000-0003-4150-438X 0000-0003-3138-6367 0000-0002-1130-9017 0000-0002-8301-4234 0000-0002-9275-4795 |
OpenAccessLink | https://ijai.iaescore.com/index.php/IJAI/article/download/21152/13544 |
PQID | 2766698738 |
PQPubID | 1686339 |
ParticipantIDs | proquest_journals_2766698738 crossref_citationtrail_10_11591_ijai_v12_i1_pp262_270 crossref_primary_10_11591_ijai_v12_i1_pp262_270 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 20230301 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Yogyakarta |
PublicationPlace_xml | – name: Yogyakarta |
PublicationTitle | IAES International Journal of Artificial Intelligence |
PublicationYear | 2023 |
Publisher | IAES Institute of Advanced Engineering and Science |
Publisher_xml | – name: IAES Institute of Advanced Engineering and Science |
SSID | ssib011928597 ssib033899589 ssj0001341662 ssib044738854 |
Score | 2.295108 |
Snippet | In Indonesia, rainfall is one crucial triggering factor for landslides. This paper aims to build landslide event prediction models using several machine... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 262 |
SubjectTerms | Algorithms Artificial intelligence Deep learning Disaster management Generalized linear models Landslides Machine learning Precipitation Prediction models Rainfall Satellite observation Statistical models |
Title | Machine learning and artificial intelligence models development in rainfall-induced landslide prediction |
URI | https://www.proquest.com/docview/2766698738 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV09T8MwELWgXVgQCBCFUnlgTRsnceJMCFBLhdQKISp1i-zYgaAoDW1h5LdzdhwCC4yR5Qx357v37PtA6JIowPgxkBwieQYERQqHiyxyIkAfvgR8Eoe6OHk2D6eL4H5Jl_bCbWPTKhufaBy1XKX6jnzkRQC0gSD77Kp6c_TUKP26akdo7KIugUij7ZxN7hp7IoBeGG1fyXzdS4623dWDAP7GaGALhyGwk1H-yvPhB_GGObiwygt17Yr7O2b9dtkmDk0O0L4FkPi61vgh2lHlEXqZmZxIhe0QiGfMS4m1VdQNInD-o_MmNtNvNli2-UKwjvWsiIwXhQMsHfQtsakCLnKpcLXWzzlahcdoMRk_3U4dO0PBSb0gdB2iAqVCL9aqoFkWSw5HNso8N-IQ2znABQkoSwBq4TGPhe54pkIR0TRgAKyU9E9Qp1yV6hRh4TKRxYGSkgmAcQy4EDBcQTIg0TRUvIdoI6UktQ3G9ZyLIjFEA6SbaOkCLfeSnCRGuglIt4dG3_uqusXGvzv6jRISe-Q2SWsgZ38vn6M9PTO-TiTro852_a4uAFlsxcCYzwB1b8bzh0f4mn2OvwC5nM-f |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2V9gAXBALEjg9wDG1SZzsgxNKqBVoh1ErcjF07EFSlhRYQP8U3MpOFwgVOnCNH1vjF817smQewbxvk-CGKHFvLCAWKVpZUkW_5yD7qGvlJ6FFxcqfrtfr84ta9LcFHUQtD1yqLPTHdqPVoQP_Iq46PRBsFcj04Hj9Z5BpFp6uFhUYGi0vz_oaSbXLUPsf1PXCcZqN31rJyVwFr4HCvZtmGG-M5IU3OjaJQSwSxHzk1X2K2k5hANfIOhXlchjJU1APMeMp3BzxAqmF0Hd87BxVOFa1lqJw2utc3BYJt5EuBOzuXq1P3OnfWz51znH_g8rxUGamEXY0fZXz4ajuHMW6aY8ejapnazyz5M0mkma-5BIs5ZWUnGcaWoWSSFXjopLcwDcttJ-6ZTDQjHGYtKVj8rdcnS_12JkzPbijhc0buFJEcDq040YgwzdK642GsDRs_0wESgWYV-v8S3zUoJ6PErANTtUBFITdaBwqJY4DqCzW1siOU7a5n5Aa4RZTEIG9pTs4aQ5FKG4yuoOgKjK6IbZFGV2B0N6D6NW6cNfX4c8R2sQgi_8gnYgbJzd8f78F8q9e5Elft7uUWLJBjfXaNbRvK0-cXs4O8Zqp2czAxuPtv_H4C6mgKEA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+and+artificial+intelligence+models+development+in+rainfall-induced+landslide+prediction&rft.jtitle=IAES+International+Journal+of+Artificial+Intelligence&rft.au=Harsa%2C+Hastuadi&rft.au=Anistia%2C+Malinda+Hidayat&rft.au=Mulsandi%2C+Adi&rft.au=Suprihadi%2C+Bambang&rft.date=2023-03-01&rft.pub=IAES+Institute+of+Advanced+Engineering+and+Science&rft.eissn=2089-4872&rft.volume=12&rft.issue=1&rft.spage=262&rft_id=info:doi/10.11591%2Fijai.v12.i1.pp262-270 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2089-4872&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2089-4872&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2089-4872&client=summon |