Machine learning and artificial intelligence models development in rainfall-induced landslide prediction

In Indonesia, rainfall is one crucial triggering factor for landslides. This paper aims to build landslide event prediction models using several machine learning and artificial intelligence algorithms. The algorithms were trained with two different methods. The input of the algorithms was precipitat...

Full description

Saved in:
Bibliographic Details
Published inIAES International Journal of Artificial Intelligence Vol. 12; no. 1; p. 262
Main Authors Harsa, Hastuadi, Hidayat, Anistia Malinda, Mulsandi, Adi, Suprihadi, Bambang, Kurniawan, Roni, Habibie, Muhammad Najib, Hutapea, Thahir Daniel, Swarinoto, Yunus S., Syahputra Makmur, Erwin Eka, Fitria, Welly, Sri Sudewi, Rahayu Sapta, Praja, Alfan Sukmana
Format Journal Article
LanguageEnglish
Published Yogyakarta IAES Institute of Advanced Engineering and Science 01.03.2023
Subjects
Online AccessGet full text
ISSN2089-4872
2252-8938
2089-4872
DOI10.11591/ijai.v12.i1.pp262-270

Cover

Abstract In Indonesia, rainfall is one crucial triggering factor for landslides. This paper aims to build landslide event prediction models using several machine learning and artificial intelligence algorithms. The algorithms were trained with two different methods. The input of the algorithms was precipitation data obtained from the global satellite mapping of precipitation satellite observation, and the target was landslide event occurrence data obtained from the Indonesian National Board for Disaster Management. Each algorithm provided some model candidates with different parameter settings for each method. As a result, there were 52 and 72 model candidates for both methods. The best model was then chosen from each method. The result shows that the model generated by generalized linear model was the best model for the first method and deep learning for the second one. Furthermore, the best models at each method gained 0.828 and 0.836 for the area under receiver operating characteristics curve, and their log-loss were 0.156 and 0.154. The second method, which used input data transformation, provided better performance.
AbstractList In Indonesia, rainfall is one crucial triggering factor for landslides. This paper aims to build landslide event prediction models using several machine learning and artificial intelligence algorithms. The algorithms were trained with two different methods. The input of the algorithms was precipitation data obtained from the global satellite mapping of precipitation satellite observation, and the target was landslide event occurrence data obtained from the Indonesian National Board for Disaster Management. Each algorithm provided some model candidates with different parameter settings for each method. As a result, there were 52 and 72 model candidates for both methods. The best model was then chosen from each method. The result shows that the model generated by generalized linear model was the best model for the first method and deep learning for the second one. Furthermore, the best models at each method gained 0.828 and 0.836 for the area under receiver operating characteristics curve, and their log-loss were 0.156 and 0.154. The second method, which used input data transformation, provided better performance.
Author Kurniawan, Roni
Swarinoto, Yunus S.
Praja, Alfan Sukmana
Harsa, Hastuadi
Syahputra Makmur, Erwin Eka
Hidayat, Anistia Malinda
Mulsandi, Adi
Sri Sudewi, Rahayu Sapta
Suprihadi, Bambang
Hutapea, Thahir Daniel
Habibie, Muhammad Najib
Fitria, Welly
Author_xml – sequence: 1
  givenname: Hastuadi
  orcidid: 0000-0003-0442-2588
  surname: Harsa
  fullname: Harsa, Hastuadi
– sequence: 2
  givenname: Anistia Malinda
  orcidid: 0000-0002-9123-5125
  surname: Hidayat
  fullname: Hidayat, Anistia Malinda
– sequence: 3
  givenname: Adi
  orcidid: 0000-0003-4150-438X
  surname: Mulsandi
  fullname: Mulsandi, Adi
– sequence: 4
  givenname: Bambang
  orcidid: 0000-0001-7731-2174
  surname: Suprihadi
  fullname: Suprihadi, Bambang
– sequence: 5
  givenname: Roni
  orcidid: 0000-0001-5698-2304
  surname: Kurniawan
  fullname: Kurniawan, Roni
– sequence: 6
  givenname: Muhammad Najib
  orcidid: 0000-0002-9275-4795
  surname: Habibie
  fullname: Habibie, Muhammad Najib
– sequence: 7
  givenname: Thahir Daniel
  orcidid: 0000-0003-3138-6367
  surname: Hutapea
  fullname: Hutapea, Thahir Daniel
– sequence: 8
  givenname: Yunus S.
  orcidid: 0000-0003-3278-8202
  surname: Swarinoto
  fullname: Swarinoto, Yunus S.
– sequence: 9
  givenname: Erwin Eka
  orcidid: 0000-0001-9930-6517
  surname: Syahputra Makmur
  fullname: Syahputra Makmur, Erwin Eka
– sequence: 10
  givenname: Welly
  orcidid: 0000-0002-1130-9017
  surname: Fitria
  fullname: Fitria, Welly
– sequence: 11
  givenname: Rahayu Sapta
  orcidid: 0000-0002-5220-0771
  surname: Sri Sudewi
  fullname: Sri Sudewi, Rahayu Sapta
– sequence: 12
  givenname: Alfan Sukmana
  orcidid: 0000-0002-8301-4234
  surname: Praja
  fullname: Praja, Alfan Sukmana
BookMark eNqFUE1LAzEUDFLBWvsXJOB5a5LuZhPwIsUvqHjRc0iTt-0raXbNbgv-e1PryYun9-DNzJuZSzKKbQRCrjmbcV5pfotbi7MDFzPks64TUhSiZmdkLEQlCqXnapR3pnRRqlpckGnf44pxroWqdD0mm1frNhiBBrApYlxTGz21acAGHdpAMQ4QAq4hOqC71kPoqYcDhLbbQRzynSaLsbEhFBj93oGnIWv0AT3QLoFHN2Abr8h5xvQw_Z0T8vH48L54LpZvTy-L-2XhRClZwaEEkEJzb5uqabS3LBtvBKstV9xWTHvG9CoHs9rqFRMlA7mqK1cqyRn4-YTcnHS71H7uoR_Mtt2nmF8aUUsptarnKqPuTiiX2r5P0BiHgz36HHKaYDgzP_WaY70m12uQm596swrLdPmH3iXc2fT1H_EbTCyGWg
CitedBy_id crossref_primary_10_1007_s10064_024_03563_7
crossref_primary_10_1007_s41939_024_00417_3
ContentType Journal Article
Copyright Copyright IAES Institute of Advanced Engineering and Science 2023
Copyright_xml – notice: Copyright IAES Institute of Advanced Engineering and Science 2023
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BVBZV
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.11591/ijai.v12.i1.pp262-270
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
East & South Asia Database
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
East & South Asia Database
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2252-8938
2089-4872
ExternalDocumentID 10_11591_ijai_v12_i1_pp262_270
GroupedDBID 8FE
8FG
AAKDD
AAYXX
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K6V
K7-
P62
PHGZM
PHGZT
PQQKQ
PROAC
RNS
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
M~E
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c2460-1e4ee6291daf5ff9da0487f207a181a509d009b893a9a9b0240e6b75c48610ed3
IEDL.DBID 8FG
ISSN 2089-4872
IngestDate Sun Jun 29 16:50:06 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
Tue Jul 01 03:27:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by-sa/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2460-1e4ee6291daf5ff9da0487f207a181a509d009b893a9a9b0240e6b75c48610ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9930-6517
0000-0002-5220-0771
0000-0003-3278-8202
0000-0002-9123-5125
0000-0001-5698-2304
0000-0003-0442-2588
0000-0001-7731-2174
0000-0003-4150-438X
0000-0003-3138-6367
0000-0002-1130-9017
0000-0002-8301-4234
0000-0002-9275-4795
OpenAccessLink https://ijai.iaescore.com/index.php/IJAI/article/download/21152/13544
PQID 2766698738
PQPubID 1686339
ParticipantIDs proquest_journals_2766698738
crossref_citationtrail_10_11591_ijai_v12_i1_pp262_270
crossref_primary_10_11591_ijai_v12_i1_pp262_270
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Yogyakarta
PublicationPlace_xml – name: Yogyakarta
PublicationTitle IAES International Journal of Artificial Intelligence
PublicationYear 2023
Publisher IAES Institute of Advanced Engineering and Science
Publisher_xml – name: IAES Institute of Advanced Engineering and Science
SSID ssib011928597
ssib033899589
ssj0001341662
ssib044738854
Score 2.295108
Snippet In Indonesia, rainfall is one crucial triggering factor for landslides. This paper aims to build landslide event prediction models using several machine...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 262
SubjectTerms Algorithms
Artificial intelligence
Deep learning
Disaster management
Generalized linear models
Landslides
Machine learning
Precipitation
Prediction models
Rainfall
Satellite observation
Statistical models
Title Machine learning and artificial intelligence models development in rainfall-induced landslide prediction
URI https://www.proquest.com/docview/2766698738
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV09T8MwELWgXVgQCBCFUnlgTRsnceJMCFBLhdQKISp1i-zYgaAoDW1h5LdzdhwCC4yR5Qx357v37PtA6JIowPgxkBwieQYERQqHiyxyIkAfvgR8Eoe6OHk2D6eL4H5Jl_bCbWPTKhufaBy1XKX6jnzkRQC0gSD77Kp6c_TUKP26akdo7KIugUij7ZxN7hp7IoBeGG1fyXzdS4623dWDAP7GaGALhyGwk1H-yvPhB_GGObiwygt17Yr7O2b9dtkmDk0O0L4FkPi61vgh2lHlEXqZmZxIhe0QiGfMS4m1VdQNInD-o_MmNtNvNli2-UKwjvWsiIwXhQMsHfQtsakCLnKpcLXWzzlahcdoMRk_3U4dO0PBSb0gdB2iAqVCL9aqoFkWSw5HNso8N-IQ2znABQkoSwBq4TGPhe54pkIR0TRgAKyU9E9Qp1yV6hRh4TKRxYGSkgmAcQy4EDBcQTIg0TRUvIdoI6UktQ3G9ZyLIjFEA6SbaOkCLfeSnCRGuglIt4dG3_uqusXGvzv6jRISe-Q2SWsgZ38vn6M9PTO-TiTro852_a4uAFlsxcCYzwB1b8bzh0f4mn2OvwC5nM-f
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2V9gAXBALEjg9wDG1SZzsgxNKqBVoh1ErcjF07EFSlhRYQP8U3MpOFwgVOnCNH1vjF817smQewbxvk-CGKHFvLCAWKVpZUkW_5yD7qGvlJ6FFxcqfrtfr84ta9LcFHUQtD1yqLPTHdqPVoQP_Iq46PRBsFcj04Hj9Z5BpFp6uFhUYGi0vz_oaSbXLUPsf1PXCcZqN31rJyVwFr4HCvZtmGG-M5IU3OjaJQSwSxHzk1X2K2k5hANfIOhXlchjJU1APMeMp3BzxAqmF0Hd87BxVOFa1lqJw2utc3BYJt5EuBOzuXq1P3OnfWz51znH_g8rxUGamEXY0fZXz4ajuHMW6aY8ejapnazyz5M0mkma-5BIs5ZWUnGcaWoWSSFXjopLcwDcttJ-6ZTDQjHGYtKVj8rdcnS_12JkzPbijhc0buFJEcDq040YgwzdK642GsDRs_0wESgWYV-v8S3zUoJ6PErANTtUBFITdaBwqJY4DqCzW1siOU7a5n5Aa4RZTEIG9pTs4aQ5FKG4yuoOgKjK6IbZFGV2B0N6D6NW6cNfX4c8R2sQgi_8gnYgbJzd8f78F8q9e5Elft7uUWLJBjfXaNbRvK0-cXs4O8Zqp2czAxuPtv_H4C6mgKEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+and+artificial+intelligence+models+development+in+rainfall-induced+landslide+prediction&rft.jtitle=IAES+International+Journal+of+Artificial+Intelligence&rft.au=Harsa%2C+Hastuadi&rft.au=Anistia%2C+Malinda+Hidayat&rft.au=Mulsandi%2C+Adi&rft.au=Suprihadi%2C+Bambang&rft.date=2023-03-01&rft.pub=IAES+Institute+of+Advanced+Engineering+and+Science&rft.eissn=2089-4872&rft.volume=12&rft.issue=1&rft.spage=262&rft_id=info:doi/10.11591%2Fijai.v12.i1.pp262-270
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2089-4872&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2089-4872&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2089-4872&client=summon