Federated Best Arm Identification With Heterogeneous Clients

We study best arm identification in a federated multi-armed bandit setting with a central server and multiple clients, when each client has access to a subset of arms and each arm yields independent Gaussian observations. The goal is to identify the best arm of each client subject to an upper bound...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 70; no. 6; pp. 4258 - 4279
Main Authors Chen, Zhirui, Karthik, P. N., Tan, Vincent Y. F., Chee, Yeow Meng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study best arm identification in a federated multi-armed bandit setting with a central server and multiple clients, when each client has access to a subset of arms and each arm yields independent Gaussian observations. The goal is to identify the best arm of each client subject to an upper bound on the error probability; here, the best arm is one that has the largest average value of the means averaged across all clients having access to the arm. Our interest is in the asymptotics as the error probability vanishes. We provide an asymptotic lower bound on the growth rate of the expected stopping time of any algorithm. Furthermore, we show that for any algorithm whose upper bound on the expected stopping time matches with the lower bound up to a multiplicative constant (almost-optimal algorithm), the ratio of any two consecutive communication time instants must be bounded, a result that is of independent interest. We thereby infer that an algorithm can communicate no more sparsely than at exponential time instants in order to be almost-optimal. For the class of almost-optimal algorithms, we present the first-of-its-kind asymptotic lower bound on the expected number of communication rounds until stoppage. We propose a novel algorithm that communicates at exponential time instants, and demonstrate that it is asymptotically almost-optimal.
AbstractList We study best arm identification in a federated multi-armed bandit setting with a central server and multiple clients, when each client has access to a subset of arms and each arm yields independent Gaussian observations. The goal is to identify the best arm of each client subject to an upper bound on the error probability; here, the best arm is one that has the largest average value of the means averaged across all clients having access to the arm. Our interest is in the asymptotics as the error probability vanishes. We provide an asymptotic lower bound on the growth rate of the expected stopping time of any algorithm. Furthermore, we show that for any algorithm whose upper bound on the expected stopping time matches with the lower bound up to a multiplicative constant (almost-optimal algorithm), the ratio of any two consecutive communication time instants must be bounded, a result that is of independent interest. We thereby infer that an algorithm can communicate no more sparsely than at exponential time instants in order to be almost-optimal. For the class of almost-optimal algorithms, we present the first-of-its-kind asymptotic lower bound on the expected number of communication rounds until stoppage. We propose a novel algorithm that communicates at exponential time instants, and demonstrate that it is asymptotically almost-optimal.
Author Chee, Yeow Meng
Tan, Vincent Y. F.
Karthik, P. N.
Chen, Zhirui
Author_xml – sequence: 1
  givenname: Zhirui
  orcidid: 0009-0000-4684-9999
  surname: Chen
  fullname: Chen, Zhirui
  email: zhiruichen@u.nus.edu
  organization: Department of Industrial Systems Engineering and Management, National University of Singapore, Queenstown, Singapore
– sequence: 2
  givenname: P. N.
  orcidid: 0000-0001-7798-1159
  surname: Karthik
  fullname: Karthik, P. N.
  email: pnkarthik1992@gmail.com
  organization: Department of Artificial Intelligence, Indian Institute of Technology Hyderabad, Hyderabad, India
– sequence: 3
  givenname: Vincent Y. F.
  orcidid: 0000-0002-5008-4527
  surname: Tan
  fullname: Tan, Vincent Y. F.
  email: vtan@nus.edu.sg
  organization: Department of Mathematics and the Department of Electrical and Computer Engineering, National University of Singapore, Hyderabad, Singapore
– sequence: 4
  givenname: Yeow Meng
  surname: Chee
  fullname: Chee, Yeow Meng
  email: ymchee@nus.edu.sg
  organization: Department of Industrial Systems Engineering and Management, National University of Singapore, Queenstown, Singapore
BookMark eNpNkEFLAzEQRoNUsK3ePXhY8Lw1ySRNFrzUYm2h4KXiMWw3E93SbmqSPfjvTWkPnoaB930zvBEZdL5DQu4ZnTBGq6fNajPhlMMEADTl6ooMmZSqrKZSDMiQUqbLSgh9Q0Yx7vIqJOND8rxAi6FOaIsXjKmYhUOxstil1rVNnVrfFZ9t-i6WmDD4L-zQ97GY79uMxFty7ep9xLvLHJOPxetmvizX72-r-WxdNlzIVDp0DLacSqHsVjMunKOaO6CWKpw2qgGrmprLilo3tVwI24BmwHRlreLIYUwez73H4H_6_KbZ-T50-aQBKjWvBAORKXqmmuBjDOjMMbSHOvwaRs3JkcmOzMmRuTjKkYdzpEXEfziAVIzDH4gQYzg
CODEN IETTAW
Cites_doi 10.1109/FOCS.2019.00017
10.1109/TIT.2022.3230939
10.1145/2043932.2044016
10.1109/ICASSP43922.2022.9747833
10.1017/CBO9780511804526
10.1561/2200000083
10.1007/3-540-29587-9
10.1609/aaai.v35i11.17156
10.1017/9781108571401
10.1145/3410220.3453919
10.1017/CBO9781139020411
10.1109/FOCS46700.2020.00024
10.1017/CBO9780511755538
10.1109/JSAIT.2022.3231459
10.1016/j.tcs.2010.12.059
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2023.3338027
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 4279
ExternalDocumentID 10_1109_TIT_2023_3338027
10335712
Genre orig-research
GrantInformation_xml – fundername: Singapore Ministry of Education Academic Research Fund Tier 2
  grantid: A-8000423-00-00
  funderid: 10.13039/501100001459
– fundername: National Research Foundation Singapore and DSO National Laboratories through the AI Singapore Programme under AISG
  grantid: AISG2-RP-2020-018
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c245t-fef13b20547db8124ff082f30d07e6c7c3d7ca2590df6d244dc3813189dd72e23
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Sun Jun 29 13:12:39 EDT 2025
Tue Jul 01 02:16:23 EDT 2025
Wed Aug 27 02:05:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-fef13b20547db8124ff082f30d07e6c7c3d7ca2590df6d244dc3813189dd72e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5008-4527
0009-0000-4684-9999
0000-0001-7798-1159
PQID 3058294134
PQPubID 36024
PageCount 22
ParticipantIDs ieee_primary_10335712
proquest_journals_3058294134
crossref_primary_10_1109_TIT_2023_3338027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
Dubey (ref19); 33
Mitra (ref20) 2021
ref11
Wang (ref29) 2019
ref33
Audibert (ref4)
ref10
ref32
ref2
Mayekar (ref30)
Garivier (ref13)
Moulos (ref14); 32
ref16
Stevens (ref31) 2003; 1
McMahan (ref6)
Hillel (ref24); 26
Karpov (ref25) 2022
Jamieson (ref3)
ref23
Wang (ref12)
Kaufmann (ref15) 2016; 17
ref22
ref28
Mitra (ref27)
ref8
ref7
Hanna (ref26)
ref9
Yang (ref17) 2022
ref5
Reddy (ref21)
Shi (ref18)
Even-Dar (ref1) 2006; 7
References_xml – start-page: 41
  volume-title: Proc. Conf. Learn. Theory
  ident: ref4
  article-title: Best arm identification in multi-armed bandits
– start-page: 864
  volume-title: Proc. 18th Int. Conf. Auton. Agents MultiAgent Syst.
  ident: ref12
  article-title: Your 2 is my 1, your 3 is my 9: Handling arbitrary miscalibrations in ratings
– ident: ref22
  doi: 10.1109/FOCS.2019.00017
– ident: ref16
  doi: 10.1109/TIT.2022.3230939
– ident: ref33
  doi: 10.1145/2043932.2044016
– volume: 33
  start-page: 6003
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref19
  article-title: Differentially-private federated linear bandits
– ident: ref10
  doi: 10.1109/ICASSP43922.2022.9747833
– year: 2022
  ident: ref17
  article-title: Optimal clustering with bandit feedback
  publication-title: arXiv:2202.04294
– volume: 7
  start-page: 1
  issue: 6
  year: 2006
  ident: ref1
  article-title: Action elimination and stopping conditions for the multi-armed bandit and reinforcement learning problems
  publication-title: J. Mach. Learn. Res.
– ident: ref34
  doi: 10.1017/CBO9780511804526
– volume: 1
  volume-title: UNIX Network Programming: The SocketsNetworking API
  year: 2003
  ident: ref31
– volume: 32
  start-page: 5606
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref14
  article-title: Optimal best Markovian arm identification with fixed confidence
– year: 2022
  ident: ref25
  article-title: Collaborative best arm identification with limited communication on non-IID data
  publication-title: arXiv:2207.08015
– ident: ref7
  doi: 10.1561/2200000083
– start-page: 1387
  volume-title: Proc. Learn. Dyn. Control Conf.
  ident: ref27
  article-title: Linear stochastic bandits over a bit-constrained channel
– ident: ref35
  doi: 10.1007/3-540-29587-9
– ident: ref9
  doi: 10.1609/aaai.v35i11.17156
– start-page: 2917
  volume-title: Proc. Int. Conf. Artif. Intell. Statist.
  ident: ref18
  article-title: Federated multi-armed bandits with personalization
– ident: ref2
  doi: 10.1017/9781108571401
– start-page: 998
  volume-title: Proc. Conf. Learn. Theory
  ident: ref13
  article-title: Optimal best arm identification with fixed confidence
– volume: 26
  start-page: 854
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref24
  article-title: Distributed exploration in multi-armed bandits
– year: 2019
  ident: ref29
  article-title: Distributed bandit learning: Near-optimal regret with efficient communication
  publication-title: arXiv:1904.06309
– volume: 17
  start-page: 1
  issue: 1
  year: 2016
  ident: ref15
  article-title: On the complexity of bestarm identification in multi-armed bandit models
  publication-title: J. Mach. Learn. Res.
– start-page: 8378
  volume-title: Proc. 37th AAAI Conf. Artif. Intell.
  ident: ref21
  article-title: Almost cost-free communication in federated best arm identification
– ident: ref8
  doi: 10.1145/3410220.3453919
– ident: ref32
  doi: 10.1017/CBO9781139020411
– start-page: 1273
  volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist.
  ident: ref6
  article-title: Communication-efficient learning of deep networks from decentralized data
– year: 2021
  ident: ref20
  article-title: Exploiting heterogeneity in robust federated best-arm identification
  publication-title: arXiv:2109.05700
– start-page: 11215
  volume-title: Proc. Int. Conf. Artif. Intell. Statist.
  ident: ref26
  article-title: Solving multi-arm bandit using a few bits of communication
– ident: ref23
  doi: 10.1109/FOCS46700.2020.00024
– start-page: 423
  volume-title: Proc. Conf. Learn. Theory
  ident: ref3
  article-title: lil’ucb: An optimal exploration algorithm for multi-armed bandits
– ident: ref11
  doi: 10.1017/CBO9780511755538
– start-page: 24236
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref30
  article-title: Communication-constrained bandits under additive Gaussian noise
– ident: ref28
  doi: 10.1109/JSAIT.2022.3231459
– ident: ref5
  doi: 10.1016/j.tcs.2010.12.059
SSID ssj0014512
Score 2.4556339
Snippet We study best arm identification in a federated multi-armed bandit setting with a central server and multiple clients, when each client has access to a subset...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 4258
SubjectTerms Algorithms
Asymptotic properties
best arm identification
Clients
Costs
Error probability
federated learning
Lower bounds
Multi-armed bandits
Optimization
Servers
Surveys
Upper bound
Upper bounds
Voting
Title Federated Best Arm Identification With Heterogeneous Clients
URI https://ieeexplore.ieee.org/document/10335712
https://www.proquest.com/docview/3058294134
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwwUShGFgjywMCS4dhInEgsgqoJEp1Z0ixw_BAIaRJOFX8_ZTlAFQmLLEFuW7873ffY9EDpLNWGCxSRIC66BoKgkSBUtAkWMBIAgjHRZrg_TZDKP7hfxoklWd7kwWmsXfKZD--ne8lUpa3tVBhbOWMxtT-FNYG4-Wev7ySCKR740-AgsGEhH-yZJsovZ3Sy0bcJDBoSM2AYyaz7INVX5dRI79zLuomm7MB9V8hLWVRHKzx81G_-98l200wBNfOU1Yw9t6GUPddsmDrix6R7aXqtIuI8ux7a4BOBPha9hlTD8DftcXtNc7uHH5-oJT2wUTQnKp8t6hW9ebVblqo_m49vZzSRoGiwEkkZxFRhtRqyggNq4KqynNwYQgWFEEa4TySVTXAogSESZRAEQUBIcPJwCmVKcasoOUGdZLvUhwkaoiAqSaZ4CwmKiECAhZQgVEVCwdDRA5-2W5---jkbu-AfJchBPbsWTN-IZoL7dwbX__OYN0LAVUt5Y2iqH8yqlGbji6OiPYcdoC2aPfHzXEHWqj1qfAJKoilOnQV95kcN9
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6hMgADhVJEoUAGFoYEx06aRGKBiiqFtlMqukWJHwIBDaLJwq_nnAeqQEhsGWLZ8t35vs--B8CFLwlLmEtMP_UkEhQxMH1BU1MQxREgJIqXWa7T2SCcO_cLd1Enq5e5MFLKMvhMWvqzfMsXGS_0VRlaOGOup3sKb6Ljd2mVrvX9aOC4dlUc3EYbRtrRvEqS4CoaR5ZuFG4xpGREt5BZ80JlW5VfZ3HpYEZtmDVLq-JKXqwiTy3--aNq47_Xvge7NdQ0bird2IcNuexAu2njYNRW3YGdtZqEB3A90uUlEIEK4xZXicPfjCqbV9XXe8bjc_5khDqOJkP1k1mxMoavOq9y1YX56C4ahmbdYsHk1HFzU0lls5QibvNEqn29UogJFCOCeHLAPc6ExxOkSESogUAoIDi6eDwHAiE8Kik7hNYyW8ojMFQiHJqQQHo-YiyWpAmya6EITRwkYb7dg8tmy-P3qpJGXDIQEsQonliLJ67F04Ou3sG1_6rN60G_EVJc29oqxhPLpwE6Y-f4j2HnsBVG00k8Gc8eTmAbZ3KqaK8-tPKPQp4irsjTs1KbvgDevMbH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Best+Arm+Identification+With+Heterogeneous+Clients&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Chen%2C+Zhirui&rft.au=Karthik%2C+P.+N.&rft.au=Tan%2C+Vincent+Y.+F.&rft.au=Chee%2C+Yeow+Meng&rft.date=2024-06-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=70&rft.issue=6&rft.spage=4258&rft.epage=4279&rft_id=info:doi/10.1109%2FTIT.2023.3338027&rft.externalDocID=10335712
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon