Automated Grasp Recognition Using sEMG: Recent Advances, Challenges, and Future Developments

Surface electromyography (sEMG)-based automated grasp recognition (AGR) has emerged as a vital technology in the field of automatic control, human-machine interfaces, prosthetics, virtual reality (VR), etc. Grasp recognition comes under the category of hand gesture recognition (HGR). However, due to...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 17
Main Authors Sharma, Shivam, Newaj Faisal, Kazi, Raj Sharma, Rishi
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Surface electromyography (sEMG)-based automated grasp recognition (AGR) has emerged as a vital technology in the field of automatic control, human-machine interfaces, prosthetics, virtual reality (VR), etc. Grasp recognition comes under the category of hand gesture recognition (HGR). However, due to its unique characteristics, traits, and advanced applications, such as a robotic hand with 3-D-grasping capability, gaming, etc., it differs from other hand gestures in the case of force estimation and degree of freedom (DOF). This article provides a comprehensive review of available state-of-the-art methodologies for sEMG-based AGR. The review covers sensing modalities, datasets focusing on different grasps types (including power, precision, cylindrical, spherical, tripod, lateral, hook, and palmar grasps), sEMG acquisition systems, pre-processing techniques, multiresolution analysis (MRA), feature extraction process, and identification systems focusing on machine learning (ML), deep neural networks (DNNs), and model-based approaches. This review provides a detailed year-by-year chronological analysis and comparison of grasp recognition techniques with specific focus on number of subjects and types of grasps. Furthermore, some open research issues have been pointed out from the reviewed literature, and possible future prospects for these challenges have also been presented. Finally, several industry domains that can incorporate sEMG-based AGR systems in future are also discussed.
AbstractList Surface electromyography (sEMG)-based automated grasp recognition (AGR) has emerged as a vital technology in the field of automatic control, human-machine interfaces, prosthetics, virtual reality (VR), etc. Grasp recognition comes under the category of hand gesture recognition (HGR). However, due to its unique characteristics, traits, and advanced applications, such as a robotic hand with 3-D-grasping capability, gaming, etc., it differs from other hand gestures in the case of force estimation and degree of freedom (DOF). This article provides a comprehensive review of available state-of-the-art methodologies for sEMG-based AGR. The review covers sensing modalities, datasets focusing on different grasps types (including power, precision, cylindrical, spherical, tripod, lateral, hook, and palmar grasps), sEMG acquisition systems, pre-processing techniques, multiresolution analysis (MRA), feature extraction process, and identification systems focusing on machine learning (ML), deep neural networks (DNNs), and model-based approaches. This review provides a detailed year-by-year chronological analysis and comparison of grasp recognition techniques with specific focus on number of subjects and types of grasps. Furthermore, some open research issues have been pointed out from the reviewed literature, and possible future prospects for these challenges have also been presented. Finally, several industry domains that can incorporate sEMG-based AGR systems in future are also discussed.
Author Raj Sharma, Rishi
Sharma, Shivam
Newaj Faisal, Kazi
Author_xml – sequence: 1
  givenname: Shivam
  orcidid: 0000-0003-2770-0966
  surname: Sharma
  fullname: Sharma, Shivam
  email: shivamsh.8915@gmail.com
  organization: Department of Electronics Engineering, Defence Institute of Advanced Technology, Pune, Maharashtra, India
– sequence: 2
  givenname: Kazi
  orcidid: 0000-0003-0546-4536
  surname: Newaj Faisal
  fullname: Newaj Faisal, Kazi
  email: newajfaisal@gmail.com
  organization: Department of Electronics Engineering, Defence Institute of Advanced Technology, Pune, Maharashtra, India
– sequence: 3
  givenname: Rishi
  orcidid: 0000-0001-6835-003X
  surname: Raj Sharma
  fullname: Raj Sharma, Rishi
  email: dr.rrsrrs@gmail.com
  organization: Department of Electronics Engineering, Defence Institute of Advanced Technology, Pune, Maharashtra, India
BookMark eNpNkM9LwzAUx4NMcJvePXgIeLUzSfOj8TbmNgcbgmw3oaTp2-zo0pq0A_97W-bB0_vy-Hzfg88IDVzlAKF7SiaUEv28XW0mjDA-iblWVOkrNKRCqEhLyQZoSAhNIs2FvEGjEI6EECW5GqLPadtUJ9NAjpfehBp_gK0OrmiKyuFdKNwBh_lm-dLvwTV4mp-NsxCe8OzLlCW4Q5-Ny_GibVoP-BXOUFb1qYPDLbremzLA3d8co91ivp29Rev35Wo2XUeWcdFEew0i4znLOEAiLZUiAW4SkBykMoIRmRlNkwQUt10UsclYTqXWYKyNiY3H6PFyt_bVdwuhSY9V6133Mo0pjwnTjLKOIhfK-ioED_u09sXJ-J-UkrR3mHYO095h-uewqzxcKgUA_MOVYCJJ4l_bj28S
CODEN IEIMAO
Cites_doi 10.1038/s41528-023-00273-0
10.1109/TAI.2021.3098253
10.1007/s11044-011-9285-4
10.1002/adma.201504155
10.1109/TNSRE.2019.2962189
10.1109/RBME.2021.3078190
10.1088/1741-2552/ab673f
10.1109/TRO.2008.926860
10.3233/IFS-2009-0411
10.1109/TIM.2023.3323962
10.1109/TNSRE.2011.2178039
10.1109/LSENS.2023.3326459
10.1109/ACCESS.2023.3240769
10.1109/TNNLS.2017.2754294
10.14569/IJACSA.2019.0100612
10.1109/JBHI.2013.2259594
10.3390/ma13092135
10.1109/TSP.2011.2143711
10.1016/j.bspc.2022.104216
10.1109/LSENS.2023.3268065
10.1016/j.engappai.2008.12.004
10.1186/1743-0003-6-41
10.3390/s16111782
10.1109/ACCESS.2019.2956951
10.1016/B978-0-444-64032-1.00016-3
10.1109/TNSRE.2022.3166764
10.1123/mcj.10.4.301
10.1007/s12652-021-03284-9
10.1002/adma.201204322
10.3389/fnins.2022.849991
10.1016/j.rineng.2023.101660
10.1080/10447318.2023.2280327
10.1109/TOH.2015.2417570
10.1109/TCYB.2021.3122969
10.1007/978-3-662-53692-6_8
10.1007/s11760-013-0477-7
10.1038/s41597-023-02723-w
10.1016/j.future.2018.10.005
10.1088/2058-8585/aadb56
10.3389/fnbot.2019.00042
10.1186/s12984-017-0284-4
10.1109/JSEN.2013.2259051
10.1186/s12984-018-0396-5
10.1109/THMS.2015.2470657
10.1109/LRA.2017.2651945
10.1109/TNSRE.2022.3173708
10.1109/TNSRE.2020.3022587
10.1682/jrrd.2014.09.0218
10.3390/s16040581
10.1016/j.jbiomech.2009.01.032
10.1016/j.bspc.2020.102292
10.3389/fnbot.2022.853773
10.1002/adhm.201300311
10.1109/LSENS.2019.2898257
10.1109/JAS.2021.1003865
10.3389/fnins.2021.733359
10.1109/TBME.2010.2068298
10.1109/NER.2017.8008384
10.1109/TBCAS.2019.2955641
10.1007/s10846-014-0037-6
10.1016/j.eswa.2020.113281
10.1002/ppap.201500063
10.3390/s20092467
10.1109/ACCESS.2023.3316509
10.1186/1475-925X-10-79
10.1371/journal.pone.0186132
10.1155/2021/8817480
10.1515/cdbme-2020-2011
10.1038/s41597-019-0349-2
10.1038/sdata.2014.53
10.3390/s21113786
10.1109/TMC.2022.3156939
10.1021/acsami.2c00419
10.1038/nnano.2017.125
10.3389/fphys.2021.809422
10.1109/TBME.2008.2007967
10.1038/s41597-020-0380-3
10.3389/fnbot.2020.582728
10.1088/1741-2552/aad38e
10.1016/j.robot.2016.12.014
10.1109/JBHI.2013.2261311
10.3389/fnins.2023.1129049
10.1016/j.bbe.2019.10.002
10.1080/00207454.2019.1634070
10.1109/TNSRE.2019.2959449
10.1088/1741-2552/ab0e2e
10.1152/japplphysiol.00280.2015
10.3390/bios12020057
10.1109/EMBC.2013.6610858
10.1109/ICORR.2017.8009405
10.1002/adma.202100218
10.1080/10447318.2022.2111041
10.1016/j.clinbiomech.2008.08.006
10.1109/LSENS.2022.3183284
10.3389/fnins.2019.00891
10.1038/s41427-020-00278-5
10.1515/bmt-2021-0072
10.1109/TIM.2011.2164279
10.3844/jcssp.2006.735.739
10.1016/j.eswa.2013.02.023
10.3389/fnins.2021.621885
10.1016/S0010-4825(01)00024-5
10.3389/fnins.2017.00379
10.1371/journal.pone.0127528
10.3390/s22041476
10.1007/s10514-018-9799-1
10.3390/s22052007
10.1142/S0219843611002630
10.1038/s41598-019-50112-4
10.1038/s41699-018-0064-4
10.1007/s42235-019-0037-0
10.1088/0967-3334/21/2/307
10.1109/TAI.2023.3244177
10.1109/ACCESS.2020.2991812
10.1007/s10916-015-0429-6
10.1016/j.bbe.2021.03.004
10.1109/TNSRE.2023.3247580
10.3389/fnins.2017.00343
10.1038/sdata.2014.47
10.3390/s16081304
10.1016/j.bspc.2019.02.011
10.3389/fnbot.2021.642607
10.1016/j.eswa.2022.118282
10.1109/JBHI.2022.3197831
10.1006/brln.1998.2024
10.1007/s10916-008-9219-8
10.1109/TNSRE.2014.2328495
10.3389/fnbot.2019.00007
10.1007/s11227-014-1376-6
10.2991/ijcis.d.200724.001
10.1007/s40846-016-0188-y
10.1109/TNSRE.2022.3218430
10.1007/s12652-018-0811-6
10.1016/j.jelekin.2012.10.010
10.1109/TNSRE.2023.3236982
10.1016/j.bspc.2018.05.002
10.1007/s12652-020-01980-6
10.1007/s11517-019-02024-8
10.1109/TBCAS.2012.2192932
10.1109/TMRB.2023.3310717
10.1038/s41598-023-30716-7
10.1021/acsami.9b07325
10.1109/10.204774
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3497179
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 17
ExternalDocumentID 10_1109_TIM_2024_3497179
10752588
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c245t-f9e5b4d2b4ee86c1658e4a8e64e67a5206ba9188e74c6ba53ab2d1699eacc30c3
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:14:12 EDT 2025
Tue Jul 01 03:07:49 EDT 2025
Wed Aug 27 02:33:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-f9e5b4d2b4ee86c1658e4a8e64e67a5206ba9188e74c6ba53ab2d1699eacc30c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2770-0966
0000-0001-6835-003X
0000-0003-0546-4536
PQID 3143029212
PQPubID 85462
PageCount 17
ParticipantIDs proquest_journals_3143029212
ieee_primary_10752588
crossref_primary_10_1109_TIM_2024_3497179
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
ref52
(ref79) 2018
ref55
ref54
ref51
ref50
Lee (ref89) 2023
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref148
ref30
ref149
ref33
ref146
ref32
ref147
ref39
ref38
ref153
ref154
ref151
ref152
ref150
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Sapsanis (ref86) 2014
Benitez (ref83) 2020
ref13
ref12
ref15
ref128
ref14
ref129
ref97
ref126
ref96
ref11
ref124
ref10
ref98
ref125
Konrad (ref93) 2005; 1
ref17
ref16
ref19
ref18
ref133
ref92
ref134
ref95
ref131
ref94
ref132
ref130
ref91
ref90
Miljkovic (ref81) 2020
Prabhavathy (ref117) 2024; 130
ref139
ref137
ref85
ref138
ref88
ref135
ref87
ref136
Rice (ref99) 2006
ref82
ref144
ref145
ref84
ref142
ref143
ref140
ref141
ref80
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref69
ref118
ref64
ref115
ref63
ref116
ref113
ref65
ref114
Stegeman (ref66) 2007; 10
Akben (ref127) 2017; 28
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref56
  doi: 10.1038/s41528-023-00273-0
– ident: ref138
  doi: 10.1109/TAI.2021.3098253
– ident: ref46
  doi: 10.1007/s11044-011-9285-4
– ident: ref60
  doi: 10.1002/adma.201504155
– ident: ref95
  doi: 10.1109/TNSRE.2019.2962189
– ident: ref31
  doi: 10.1109/RBME.2021.3078190
– ident: ref40
  doi: 10.1088/1741-2552/ab673f
– ident: ref47
  doi: 10.1109/TRO.2008.926860
– ident: ref147
  doi: 10.3233/IFS-2009-0411
– ident: ref90
  doi: 10.1109/TIM.2023.3323962
– volume: 10
  start-page: 8
  year: 2007
  ident: ref66
  article-title: Standards for surface electromyography: The European project surface EMG for non-invasive assessment of muscles (SENIAM)
  publication-title: Enschede, Roessingh Res. Develop.
– ident: ref51
  doi: 10.1109/TNSRE.2011.2178039
– ident: ref36
  doi: 10.1109/LSENS.2023.3326459
– ident: ref29
  doi: 10.1109/ACCESS.2023.3240769
– ident: ref136
  doi: 10.1109/TNNLS.2017.2754294
– ident: ref111
  doi: 10.14569/IJACSA.2019.0100612
– ident: ref104
  doi: 10.1109/JBHI.2013.2259594
– ident: ref70
  doi: 10.3390/ma13092135
– ident: ref112
  doi: 10.1109/TSP.2011.2143711
– ident: ref42
  doi: 10.1016/j.bspc.2022.104216
– ident: ref9
  doi: 10.1109/LSENS.2023.3268065
– ident: ref134
  doi: 10.1016/j.engappai.2008.12.004
– ident: ref123
  doi: 10.1186/1743-0003-6-41
– ident: ref143
  doi: 10.3390/s16111782
– ident: ref97
  doi: 10.1109/ACCESS.2019.2956951
– ident: ref27
  doi: 10.1016/B978-0-444-64032-1.00016-3
– ident: ref43
  doi: 10.1109/TNSRE.2022.3166764
– ident: ref44
  doi: 10.1123/mcj.10.4.301
– ident: ref139
  doi: 10.1007/s12652-021-03284-9
– ident: ref64
  doi: 10.1002/adma.201204322
– ident: ref150
  doi: 10.3389/fnins.2022.849991
– ident: ref132
  doi: 10.1016/j.rineng.2023.101660
– ident: ref22
  doi: 10.1080/10447318.2023.2280327
– ident: ref12
  doi: 10.1109/TOH.2015.2417570
– ident: ref21
  doi: 10.1109/TCYB.2021.3122969
– ident: ref144
  doi: 10.1007/978-3-662-53692-6_8
– ident: ref110
  doi: 10.1007/s11760-013-0477-7
– ident: ref85
  doi: 10.1038/s41597-023-02723-w
– volume: 28
  start-page: 577
  issue: 2
  year: 2017
  ident: ref127
  article-title: Low-cost and easy-to-use grasp classification, using a simple 2-channel surface electromyography (sEMG)
  publication-title: Biomed. Res.
– ident: ref98
  doi: 10.1016/j.future.2018.10.005
– ident: ref62
  doi: 10.1088/2058-8585/aadb56
– ident: ref128
  doi: 10.3389/fnbot.2019.00042
– ident: ref76
  doi: 10.1186/s12984-017-0284-4
– ident: ref141
  doi: 10.1109/JSEN.2013.2259051
– ident: ref91
  doi: 10.1186/s12984-018-0396-5
– ident: ref10
  doi: 10.1109/THMS.2015.2470657
– ident: ref20
  doi: 10.1109/LRA.2017.2651945
– ident: ref35
  doi: 10.1109/TNSRE.2022.3173708
– ident: ref39
  doi: 10.1109/TNSRE.2020.3022587
– ident: ref73
  doi: 10.1682/jrrd.2014.09.0218
– ident: ref148
  doi: 10.3390/s16040581
– ident: ref48
  doi: 10.1016/j.jbiomech.2009.01.032
– ident: ref80
  doi: 10.1016/j.bspc.2020.102292
– ident: ref131
  doi: 10.3389/fnbot.2022.853773
– ident: ref63
  doi: 10.1002/adhm.201300311
– ident: ref129
  doi: 10.1109/LSENS.2019.2898257
– ident: ref32
  doi: 10.1109/JAS.2021.1003865
– ident: ref106
  doi: 10.3389/fnins.2021.733359
– ident: ref50
  doi: 10.1109/TBME.2010.2068298
– ident: ref23
  doi: 10.1109/NER.2017.8008384
– ident: ref96
  doi: 10.1109/TBCAS.2019.2955641
– ident: ref142
  doi: 10.1007/s10846-014-0037-6
– ident: ref121
  doi: 10.1016/j.eswa.2020.113281
– ident: ref69
  doi: 10.1002/ppap.201500063
– ident: ref34
  doi: 10.3390/s20092467
– volume-title: EMG-EEG dataset for upper-limb gesture classification
  year: 2023
  ident: ref89
– ident: ref153
  doi: 10.1109/ACCESS.2023.3316509
– ident: ref124
  doi: 10.1186/1475-925X-10-79
– ident: ref74
  doi: 10.1371/journal.pone.0186132
– ident: ref149
  doi: 10.1155/2021/8817480
– ident: ref137
  doi: 10.1515/cdbme-2020-2011
– volume: 1
  start-page: 5
  issue: 2005
  year: 2005
  ident: ref93
  article-title: The ABC of EMG
  publication-title: Practical Introduction Kinesiolog. Electromyogr.
– ident: ref78
  doi: 10.1038/s41597-019-0349-2
– ident: ref72
  doi: 10.1038/sdata.2014.53
– ident: ref154
  doi: 10.3390/s21113786
– volume-title: Mathematical Statistics and Data Analysis
  year: 2006
  ident: ref99
– ident: ref14
  doi: 10.1109/TMC.2022.3156939
– ident: ref58
  doi: 10.1021/acsami.2c00419
– ident: ref57
  doi: 10.1038/nnano.2017.125
– ident: ref26
  doi: 10.3389/fphys.2021.809422
– ident: ref49
  doi: 10.1109/TBME.2008.2007967
– ident: ref52
  doi: 10.1038/s41597-020-0380-3
– ident: ref5
  doi: 10.3389/fnbot.2020.582728
– ident: ref41
  doi: 10.1088/1741-2552/aad38e
– ident: ref92
  doi: 10.1016/j.robot.2016.12.014
– ident: ref135
  doi: 10.1109/JBHI.2013.2261311
– ident: ref6
  doi: 10.3389/fnins.2023.1129049
– volume: 130
  year: 2024
  ident: ref117
  article-title: A surface electromyography based hand gesture recognition framework leveraging variational mode decomposition technique and deep learning classifier
  publication-title: Eng. Appl. Artif. Intell.
– ident: ref11
  doi: 10.1016/j.bbe.2019.10.002
– volume-title: Surface electromyogram (sEMG) dataset recorded from forearm for 9 hand movements and three electrode array positions (version 1)
  year: 2020
  ident: ref81
– ident: ref133
  doi: 10.1080/00207454.2019.1634070
– ident: ref53
  doi: 10.1109/TNSRE.2019.2959449
– ident: ref94
  doi: 10.1088/1741-2552/ab0e2e
– ident: ref25
  doi: 10.1152/japplphysiol.00280.2015
– ident: ref130
  doi: 10.3390/bios12020057
– ident: ref87
  doi: 10.1109/EMBC.2013.6610858
– ident: ref75
  doi: 10.1109/ICORR.2017.8009405
– ident: ref1
  doi: 10.1002/adma.202100218
– ident: ref24
  doi: 10.1080/10447318.2022.2111041
– ident: ref68
  doi: 10.1016/j.clinbiomech.2008.08.006
– ident: ref19
  doi: 10.1109/LSENS.2022.3183284
– ident: ref77
  doi: 10.3389/fnins.2019.00891
– ident: ref61
  doi: 10.1038/s41427-020-00278-5
– ident: ref116
  doi: 10.1515/bmt-2021-0072
– ident: ref54
  doi: 10.1109/TIM.2011.2164279
– ident: ref102
  doi: 10.3844/jcssp.2006.735.739
– ident: ref119
  doi: 10.1016/j.eswa.2013.02.023
– ident: ref33
  doi: 10.3389/fnins.2021.621885
– ident: ref45
  doi: 10.1016/S0010-4825(01)00024-5
– ident: ref118
  doi: 10.3389/fnins.2017.00379
– volume-title: Isrmyo-I: A database for sEMG-based hand gesture recognition
  year: 2018
  ident: ref79
– ident: ref2
  doi: 10.1371/journal.pone.0127528
– ident: ref152
  doi: 10.3390/s22041476
– ident: ref17
  doi: 10.1007/s10514-018-9799-1
– ident: ref113
  doi: 10.3390/s22052007
– ident: ref108
  doi: 10.1142/S0219843611002630
– ident: ref67
  doi: 10.1038/s41598-019-50112-4
– ident: ref7
  doi: 10.1038/s41699-018-0064-4
– ident: ref37
  doi: 10.1007/s42235-019-0037-0
– ident: ref55
  doi: 10.1088/0967-3334/21/2/307
– ident: ref140
  doi: 10.1109/TAI.2023.3244177
– ident: ref3
  doi: 10.1109/ACCESS.2020.2991812
– ident: ref18
  doi: 10.1007/s10916-015-0429-6
– ident: ref115
  doi: 10.1016/j.bbe.2021.03.004
– ident: ref13
  doi: 10.1109/TNSRE.2023.3247580
– ident: ref38
  doi: 10.3389/fnins.2017.00343
– ident: ref82
  doi: 10.1038/sdata.2014.47
– ident: ref30
  doi: 10.3390/s16081304
– ident: ref84
  doi: 10.1038/s41597-023-02723-w
– ident: ref146
  doi: 10.1016/j.bspc.2019.02.011
– ident: ref151
  doi: 10.3389/fnbot.2021.642607
– ident: ref120
  doi: 10.1016/j.eswa.2022.118282
– ident: ref88
  doi: 10.1109/JBHI.2022.3197831
– ident: ref109
  doi: 10.1006/brln.1998.2024
– ident: ref122
  doi: 10.1007/s10916-008-9219-8
– ident: ref71
  doi: 10.1109/TNSRE.2014.2328495
– ident: ref8
  doi: 10.3389/fnbot.2019.00007
– ident: ref103
  doi: 10.1007/s11227-014-1376-6
– ident: ref114
  doi: 10.2991/ijcis.d.200724.001
– ident: ref126
  doi: 10.1007/s40846-016-0188-y
– ident: ref15
  doi: 10.1109/TNSRE.2022.3218430
– ident: ref28
  doi: 10.1007/s12652-018-0811-6
– year: 2014
  ident: ref86
  article-title: sEMG for basic hand movements
– ident: ref125
  doi: 10.1016/j.jelekin.2012.10.010
– year: 2020
  ident: ref83
  article-title: Surface electromyography signals—Finger_position
– ident: ref4
  doi: 10.1109/TNSRE.2023.3236982
– ident: ref101
  doi: 10.1016/j.bspc.2018.05.002
– ident: ref105
  doi: 10.1007/s12652-020-01980-6
– ident: ref107
  doi: 10.1007/s11517-019-02024-8
– ident: ref59
  doi: 10.1109/TBCAS.2012.2192932
– ident: ref16
  doi: 10.1109/TMRB.2023.3310717
– ident: ref145
  doi: 10.1038/s41598-023-30716-7
– ident: ref65
  doi: 10.1021/acsami.9b07325
– ident: ref100
  doi: 10.1109/10.204774
SSID ssj0007647
Score 2.424095
Snippet Surface electromyography (sEMG)-based automated grasp recognition (AGR) has emerged as a vital technology in the field of automatic control, human-machine...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Automated grasp recognition (AGR)
Automatic control
Automation
deep neural networks (DNNs)
Degrees of freedom
Electromyography
End effectors
Estimation
Feature extraction
Focusing
Force
Gesture recognition
Grasping (robotics)
Industries
Machine learning
machine learning (ML)
Man-machine interfaces
model-based approach
Multiresolution analysis
Prostheses
Reviews
Robot sensing systems
Sensors
State-of-the-art reviews
surface electromyography (sEMG)
Virtual reality
Title Automated Grasp Recognition Using sEMG: Recent Advances, Challenges, and Future Developments
URI https://ieeexplore.ieee.org/document/10752588
https://www.proquest.com/docview/3143029212
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UEPTgW1xf5OBFsGubJm3jbRF3V2E9iIIHoTTJ7EXoiu1e_PVO0lZWRfAWQktCJpn5ZvJlBuAs5IZQ-zQMXL2QgCy-Dgo0KrDkAiWpsIVEFxqY3CfjJ3H3LJ_bx-r-LQwievIZ9l3T3-XbmZm7UBmd8FRymWXLsEyeW_NY60vtpoloEmRGdIIJFnR3kqG6fLydkCfIRT8WitwX9c0G-aIqvzSxNy_DTbjvJtawSl7781r3zcePnI3_nvkWbLRAkw2anbENS1juwPpC-sEdWPX0T1PtwstgXs8Iu6Jlo_eiemMPHa9oVjLPKmDVzWR05fppIDZomAPVBbvuirFQuygtG_ocJWyBi1TtwdPw5vF6HLR1FwLDhayDqUKpheVaIGaJiQikoCgyTAQmaSF5mOhCRVmGqTDUlHGhuY0SpUiJmzg08T6slLMSD4DF08jlFLPUS9jRZCqyGmOjQ2WnoZZRD847SeRvTXqN3LslocpJarmTWt5KrQd7bmEXvmvWtAfHnezy9gBWeezG5YoM8-Efvx3BGne1fH045RhW6vc5nhDAqPWp31ifVCTLqA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3BbtQwEB2VVgg4FChFLC3gQzkgkSVx7CSu1MOq7Xa37faAtlIPSCG2Zy9I2arJCsG_8Cv9to6dpNoWcazEzbLiRPZMZt7YzzMAOyE3hNpnYeDqhQTk8XVQoFGBpRAoSYUtJLqtgclZMjoXxxfyYgX-3N6FQURPPsO-a_qzfDs3C7dVRn94KrnMspZDeYK_flKEVu2ND0icHzkfHk73R0FbRCAwXMg6mCmUWliuBWKWmIg8Looiw0RgkhaSh4kuVJRlmApDTRkXmtsoUYoskolDE9N7H8EaAQ3Jm-tht4Y-TUSTkjMim0FApDsFDdWX6XhCsScX_VgoCpjUHa_ny7j8Zfu9Qxs-h-tuKRoey4_-otZ98_telsj_dq1ewHoLpdmg0f2XsILlBjxbSrC4AY89wdVUr-DbYFHPCZ2jZUdXRXXJvnbMqXnJPG-CVYeTo13XTxNjg4YbUX1m-125GWoXpWVDn4WFLbGtqk04f5CJvobVcl7iG2DxLHJZ0yz1Ejo2mYqsxtjoUNlZqGXUg0-d5PPLJoFI7gOvUOWkJbnTkrzVkh5sOkEuPdfIsAfbna7krYmp8th9lyuCHm__MewDPBlNJ6f56fjsZAuecle52G8ebcNqfbXAdwSnav3eKzWD7w-tGTcbZSqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Grasp+Recognition+Using+sEMG%3A+Recent+Advances%2C+Challenges%2C+and+Future+Developments&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Sharma%2C+Shivam&rft.au=Newaj+Faisal%2C+Kazi&rft.au=Raj+Sharma%2C+Rishi&rft.date=2025-01-01&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1109%2FTIM.2024.3497179&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3497179
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon