Automated Grasp Recognition Using sEMG: Recent Advances, Challenges, and Future Developments
Surface electromyography (sEMG)-based automated grasp recognition (AGR) has emerged as a vital technology in the field of automatic control, human-machine interfaces, prosthetics, virtual reality (VR), etc. Grasp recognition comes under the category of hand gesture recognition (HGR). However, due to...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 17 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surface electromyography (sEMG)-based automated grasp recognition (AGR) has emerged as a vital technology in the field of automatic control, human-machine interfaces, prosthetics, virtual reality (VR), etc. Grasp recognition comes under the category of hand gesture recognition (HGR). However, due to its unique characteristics, traits, and advanced applications, such as a robotic hand with 3-D-grasping capability, gaming, etc., it differs from other hand gestures in the case of force estimation and degree of freedom (DOF). This article provides a comprehensive review of available state-of-the-art methodologies for sEMG-based AGR. The review covers sensing modalities, datasets focusing on different grasps types (including power, precision, cylindrical, spherical, tripod, lateral, hook, and palmar grasps), sEMG acquisition systems, pre-processing techniques, multiresolution analysis (MRA), feature extraction process, and identification systems focusing on machine learning (ML), deep neural networks (DNNs), and model-based approaches. This review provides a detailed year-by-year chronological analysis and comparison of grasp recognition techniques with specific focus on number of subjects and types of grasps. Furthermore, some open research issues have been pointed out from the reviewed literature, and possible future prospects for these challenges have also been presented. Finally, several industry domains that can incorporate sEMG-based AGR systems in future are also discussed. |
---|---|
AbstractList | Surface electromyography (sEMG)-based automated grasp recognition (AGR) has emerged as a vital technology in the field of automatic control, human-machine interfaces, prosthetics, virtual reality (VR), etc. Grasp recognition comes under the category of hand gesture recognition (HGR). However, due to its unique characteristics, traits, and advanced applications, such as a robotic hand with 3-D-grasping capability, gaming, etc., it differs from other hand gestures in the case of force estimation and degree of freedom (DOF). This article provides a comprehensive review of available state-of-the-art methodologies for sEMG-based AGR. The review covers sensing modalities, datasets focusing on different grasps types (including power, precision, cylindrical, spherical, tripod, lateral, hook, and palmar grasps), sEMG acquisition systems, pre-processing techniques, multiresolution analysis (MRA), feature extraction process, and identification systems focusing on machine learning (ML), deep neural networks (DNNs), and model-based approaches. This review provides a detailed year-by-year chronological analysis and comparison of grasp recognition techniques with specific focus on number of subjects and types of grasps. Furthermore, some open research issues have been pointed out from the reviewed literature, and possible future prospects for these challenges have also been presented. Finally, several industry domains that can incorporate sEMG-based AGR systems in future are also discussed. |
Author | Raj Sharma, Rishi Sharma, Shivam Newaj Faisal, Kazi |
Author_xml | – sequence: 1 givenname: Shivam orcidid: 0000-0003-2770-0966 surname: Sharma fullname: Sharma, Shivam email: shivamsh.8915@gmail.com organization: Department of Electronics Engineering, Defence Institute of Advanced Technology, Pune, Maharashtra, India – sequence: 2 givenname: Kazi orcidid: 0000-0003-0546-4536 surname: Newaj Faisal fullname: Newaj Faisal, Kazi email: newajfaisal@gmail.com organization: Department of Electronics Engineering, Defence Institute of Advanced Technology, Pune, Maharashtra, India – sequence: 3 givenname: Rishi orcidid: 0000-0001-6835-003X surname: Raj Sharma fullname: Raj Sharma, Rishi email: dr.rrsrrs@gmail.com organization: Department of Electronics Engineering, Defence Institute of Advanced Technology, Pune, Maharashtra, India |
BookMark | eNpNkM9LwzAUx4NMcJvePXgIeLUzSfOj8TbmNgcbgmw3oaTp2-zo0pq0A_97W-bB0_vy-Hzfg88IDVzlAKF7SiaUEv28XW0mjDA-iblWVOkrNKRCqEhLyQZoSAhNIs2FvEGjEI6EECW5GqLPadtUJ9NAjpfehBp_gK0OrmiKyuFdKNwBh_lm-dLvwTV4mp-NsxCe8OzLlCW4Q5-Ny_GibVoP-BXOUFb1qYPDLbremzLA3d8co91ivp29Rev35Wo2XUeWcdFEew0i4znLOEAiLZUiAW4SkBykMoIRmRlNkwQUt10UsclYTqXWYKyNiY3H6PFyt_bVdwuhSY9V6133Mo0pjwnTjLKOIhfK-ioED_u09sXJ-J-UkrR3mHYO095h-uewqzxcKgUA_MOVYCJJ4l_bj28S |
CODEN | IEIMAO |
Cites_doi | 10.1038/s41528-023-00273-0 10.1109/TAI.2021.3098253 10.1007/s11044-011-9285-4 10.1002/adma.201504155 10.1109/TNSRE.2019.2962189 10.1109/RBME.2021.3078190 10.1088/1741-2552/ab673f 10.1109/TRO.2008.926860 10.3233/IFS-2009-0411 10.1109/TIM.2023.3323962 10.1109/TNSRE.2011.2178039 10.1109/LSENS.2023.3326459 10.1109/ACCESS.2023.3240769 10.1109/TNNLS.2017.2754294 10.14569/IJACSA.2019.0100612 10.1109/JBHI.2013.2259594 10.3390/ma13092135 10.1109/TSP.2011.2143711 10.1016/j.bspc.2022.104216 10.1109/LSENS.2023.3268065 10.1016/j.engappai.2008.12.004 10.1186/1743-0003-6-41 10.3390/s16111782 10.1109/ACCESS.2019.2956951 10.1016/B978-0-444-64032-1.00016-3 10.1109/TNSRE.2022.3166764 10.1123/mcj.10.4.301 10.1007/s12652-021-03284-9 10.1002/adma.201204322 10.3389/fnins.2022.849991 10.1016/j.rineng.2023.101660 10.1080/10447318.2023.2280327 10.1109/TOH.2015.2417570 10.1109/TCYB.2021.3122969 10.1007/978-3-662-53692-6_8 10.1007/s11760-013-0477-7 10.1038/s41597-023-02723-w 10.1016/j.future.2018.10.005 10.1088/2058-8585/aadb56 10.3389/fnbot.2019.00042 10.1186/s12984-017-0284-4 10.1109/JSEN.2013.2259051 10.1186/s12984-018-0396-5 10.1109/THMS.2015.2470657 10.1109/LRA.2017.2651945 10.1109/TNSRE.2022.3173708 10.1109/TNSRE.2020.3022587 10.1682/jrrd.2014.09.0218 10.3390/s16040581 10.1016/j.jbiomech.2009.01.032 10.1016/j.bspc.2020.102292 10.3389/fnbot.2022.853773 10.1002/adhm.201300311 10.1109/LSENS.2019.2898257 10.1109/JAS.2021.1003865 10.3389/fnins.2021.733359 10.1109/TBME.2010.2068298 10.1109/NER.2017.8008384 10.1109/TBCAS.2019.2955641 10.1007/s10846-014-0037-6 10.1016/j.eswa.2020.113281 10.1002/ppap.201500063 10.3390/s20092467 10.1109/ACCESS.2023.3316509 10.1186/1475-925X-10-79 10.1371/journal.pone.0186132 10.1155/2021/8817480 10.1515/cdbme-2020-2011 10.1038/s41597-019-0349-2 10.1038/sdata.2014.53 10.3390/s21113786 10.1109/TMC.2022.3156939 10.1021/acsami.2c00419 10.1038/nnano.2017.125 10.3389/fphys.2021.809422 10.1109/TBME.2008.2007967 10.1038/s41597-020-0380-3 10.3389/fnbot.2020.582728 10.1088/1741-2552/aad38e 10.1016/j.robot.2016.12.014 10.1109/JBHI.2013.2261311 10.3389/fnins.2023.1129049 10.1016/j.bbe.2019.10.002 10.1080/00207454.2019.1634070 10.1109/TNSRE.2019.2959449 10.1088/1741-2552/ab0e2e 10.1152/japplphysiol.00280.2015 10.3390/bios12020057 10.1109/EMBC.2013.6610858 10.1109/ICORR.2017.8009405 10.1002/adma.202100218 10.1080/10447318.2022.2111041 10.1016/j.clinbiomech.2008.08.006 10.1109/LSENS.2022.3183284 10.3389/fnins.2019.00891 10.1038/s41427-020-00278-5 10.1515/bmt-2021-0072 10.1109/TIM.2011.2164279 10.3844/jcssp.2006.735.739 10.1016/j.eswa.2013.02.023 10.3389/fnins.2021.621885 10.1016/S0010-4825(01)00024-5 10.3389/fnins.2017.00379 10.1371/journal.pone.0127528 10.3390/s22041476 10.1007/s10514-018-9799-1 10.3390/s22052007 10.1142/S0219843611002630 10.1038/s41598-019-50112-4 10.1038/s41699-018-0064-4 10.1007/s42235-019-0037-0 10.1088/0967-3334/21/2/307 10.1109/TAI.2023.3244177 10.1109/ACCESS.2020.2991812 10.1007/s10916-015-0429-6 10.1016/j.bbe.2021.03.004 10.1109/TNSRE.2023.3247580 10.3389/fnins.2017.00343 10.1038/sdata.2014.47 10.3390/s16081304 10.1016/j.bspc.2019.02.011 10.3389/fnbot.2021.642607 10.1016/j.eswa.2022.118282 10.1109/JBHI.2022.3197831 10.1006/brln.1998.2024 10.1007/s10916-008-9219-8 10.1109/TNSRE.2014.2328495 10.3389/fnbot.2019.00007 10.1007/s11227-014-1376-6 10.2991/ijcis.d.200724.001 10.1007/s40846-016-0188-y 10.1109/TNSRE.2022.3218430 10.1007/s12652-018-0811-6 10.1016/j.jelekin.2012.10.010 10.1109/TNSRE.2023.3236982 10.1016/j.bspc.2018.05.002 10.1007/s12652-020-01980-6 10.1007/s11517-019-02024-8 10.1109/TBCAS.2012.2192932 10.1109/TMRB.2023.3310717 10.1038/s41598-023-30716-7 10.1021/acsami.9b07325 10.1109/10.204774 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2024.3497179 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 17 |
ExternalDocumentID | 10_1109_TIM_2024_3497179 10752588 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c245t-f9e5b4d2b4ee86c1658e4a8e64e67a5206ba9188e74c6ba53ab2d1699eacc30c3 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:14:12 EDT 2025 Tue Jul 01 03:07:49 EDT 2025 Wed Aug 27 02:33:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c245t-f9e5b4d2b4ee86c1658e4a8e64e67a5206ba9188e74c6ba53ab2d1699eacc30c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2770-0966 0000-0001-6835-003X 0000-0003-0546-4536 |
PQID | 3143029212 |
PQPubID | 85462 |
PageCount | 17 |
ParticipantIDs | proquest_journals_3143029212 ieee_primary_10752588 crossref_primary_10_1109_TIM_2024_3497179 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref59 ref58 ref53 ref52 (ref79) 2018 ref55 ref54 ref51 ref50 Lee (ref89) 2023 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref148 ref30 ref149 ref33 ref146 ref32 ref147 ref39 ref38 ref153 ref154 ref151 ref152 ref150 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Sapsanis (ref86) 2014 Benitez (ref83) 2020 ref13 ref12 ref15 ref128 ref14 ref129 ref97 ref126 ref96 ref11 ref124 ref10 ref98 ref125 Konrad (ref93) 2005; 1 ref17 ref16 ref19 ref18 ref133 ref92 ref134 ref95 ref131 ref94 ref132 ref130 ref91 ref90 Miljkovic (ref81) 2020 Prabhavathy (ref117) 2024; 130 ref139 ref137 ref85 ref138 ref88 ref135 ref87 ref136 Rice (ref99) 2006 ref82 ref144 ref145 ref84 ref142 ref143 ref140 ref141 ref80 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref69 ref118 ref64 ref115 ref63 ref116 ref113 ref65 ref114 Stegeman (ref66) 2007; 10 Akben (ref127) 2017; 28 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – ident: ref56 doi: 10.1038/s41528-023-00273-0 – ident: ref138 doi: 10.1109/TAI.2021.3098253 – ident: ref46 doi: 10.1007/s11044-011-9285-4 – ident: ref60 doi: 10.1002/adma.201504155 – ident: ref95 doi: 10.1109/TNSRE.2019.2962189 – ident: ref31 doi: 10.1109/RBME.2021.3078190 – ident: ref40 doi: 10.1088/1741-2552/ab673f – ident: ref47 doi: 10.1109/TRO.2008.926860 – ident: ref147 doi: 10.3233/IFS-2009-0411 – ident: ref90 doi: 10.1109/TIM.2023.3323962 – volume: 10 start-page: 8 year: 2007 ident: ref66 article-title: Standards for surface electromyography: The European project surface EMG for non-invasive assessment of muscles (SENIAM) publication-title: Enschede, Roessingh Res. Develop. – ident: ref51 doi: 10.1109/TNSRE.2011.2178039 – ident: ref36 doi: 10.1109/LSENS.2023.3326459 – ident: ref29 doi: 10.1109/ACCESS.2023.3240769 – ident: ref136 doi: 10.1109/TNNLS.2017.2754294 – ident: ref111 doi: 10.14569/IJACSA.2019.0100612 – ident: ref104 doi: 10.1109/JBHI.2013.2259594 – ident: ref70 doi: 10.3390/ma13092135 – ident: ref112 doi: 10.1109/TSP.2011.2143711 – ident: ref42 doi: 10.1016/j.bspc.2022.104216 – ident: ref9 doi: 10.1109/LSENS.2023.3268065 – ident: ref134 doi: 10.1016/j.engappai.2008.12.004 – ident: ref123 doi: 10.1186/1743-0003-6-41 – ident: ref143 doi: 10.3390/s16111782 – ident: ref97 doi: 10.1109/ACCESS.2019.2956951 – ident: ref27 doi: 10.1016/B978-0-444-64032-1.00016-3 – ident: ref43 doi: 10.1109/TNSRE.2022.3166764 – ident: ref44 doi: 10.1123/mcj.10.4.301 – ident: ref139 doi: 10.1007/s12652-021-03284-9 – ident: ref64 doi: 10.1002/adma.201204322 – ident: ref150 doi: 10.3389/fnins.2022.849991 – ident: ref132 doi: 10.1016/j.rineng.2023.101660 – ident: ref22 doi: 10.1080/10447318.2023.2280327 – ident: ref12 doi: 10.1109/TOH.2015.2417570 – ident: ref21 doi: 10.1109/TCYB.2021.3122969 – ident: ref144 doi: 10.1007/978-3-662-53692-6_8 – ident: ref110 doi: 10.1007/s11760-013-0477-7 – ident: ref85 doi: 10.1038/s41597-023-02723-w – volume: 28 start-page: 577 issue: 2 year: 2017 ident: ref127 article-title: Low-cost and easy-to-use grasp classification, using a simple 2-channel surface electromyography (sEMG) publication-title: Biomed. Res. – ident: ref98 doi: 10.1016/j.future.2018.10.005 – ident: ref62 doi: 10.1088/2058-8585/aadb56 – ident: ref128 doi: 10.3389/fnbot.2019.00042 – ident: ref76 doi: 10.1186/s12984-017-0284-4 – ident: ref141 doi: 10.1109/JSEN.2013.2259051 – ident: ref91 doi: 10.1186/s12984-018-0396-5 – ident: ref10 doi: 10.1109/THMS.2015.2470657 – ident: ref20 doi: 10.1109/LRA.2017.2651945 – ident: ref35 doi: 10.1109/TNSRE.2022.3173708 – ident: ref39 doi: 10.1109/TNSRE.2020.3022587 – ident: ref73 doi: 10.1682/jrrd.2014.09.0218 – ident: ref148 doi: 10.3390/s16040581 – ident: ref48 doi: 10.1016/j.jbiomech.2009.01.032 – ident: ref80 doi: 10.1016/j.bspc.2020.102292 – ident: ref131 doi: 10.3389/fnbot.2022.853773 – ident: ref63 doi: 10.1002/adhm.201300311 – ident: ref129 doi: 10.1109/LSENS.2019.2898257 – ident: ref32 doi: 10.1109/JAS.2021.1003865 – ident: ref106 doi: 10.3389/fnins.2021.733359 – ident: ref50 doi: 10.1109/TBME.2010.2068298 – ident: ref23 doi: 10.1109/NER.2017.8008384 – ident: ref96 doi: 10.1109/TBCAS.2019.2955641 – ident: ref142 doi: 10.1007/s10846-014-0037-6 – ident: ref121 doi: 10.1016/j.eswa.2020.113281 – ident: ref69 doi: 10.1002/ppap.201500063 – ident: ref34 doi: 10.3390/s20092467 – volume-title: EMG-EEG dataset for upper-limb gesture classification year: 2023 ident: ref89 – ident: ref153 doi: 10.1109/ACCESS.2023.3316509 – ident: ref124 doi: 10.1186/1475-925X-10-79 – ident: ref74 doi: 10.1371/journal.pone.0186132 – ident: ref149 doi: 10.1155/2021/8817480 – ident: ref137 doi: 10.1515/cdbme-2020-2011 – volume: 1 start-page: 5 issue: 2005 year: 2005 ident: ref93 article-title: The ABC of EMG publication-title: Practical Introduction Kinesiolog. Electromyogr. – ident: ref78 doi: 10.1038/s41597-019-0349-2 – ident: ref72 doi: 10.1038/sdata.2014.53 – ident: ref154 doi: 10.3390/s21113786 – volume-title: Mathematical Statistics and Data Analysis year: 2006 ident: ref99 – ident: ref14 doi: 10.1109/TMC.2022.3156939 – ident: ref58 doi: 10.1021/acsami.2c00419 – ident: ref57 doi: 10.1038/nnano.2017.125 – ident: ref26 doi: 10.3389/fphys.2021.809422 – ident: ref49 doi: 10.1109/TBME.2008.2007967 – ident: ref52 doi: 10.1038/s41597-020-0380-3 – ident: ref5 doi: 10.3389/fnbot.2020.582728 – ident: ref41 doi: 10.1088/1741-2552/aad38e – ident: ref92 doi: 10.1016/j.robot.2016.12.014 – ident: ref135 doi: 10.1109/JBHI.2013.2261311 – ident: ref6 doi: 10.3389/fnins.2023.1129049 – volume: 130 year: 2024 ident: ref117 article-title: A surface electromyography based hand gesture recognition framework leveraging variational mode decomposition technique and deep learning classifier publication-title: Eng. Appl. Artif. Intell. – ident: ref11 doi: 10.1016/j.bbe.2019.10.002 – volume-title: Surface electromyogram (sEMG) dataset recorded from forearm for 9 hand movements and three electrode array positions (version 1) year: 2020 ident: ref81 – ident: ref133 doi: 10.1080/00207454.2019.1634070 – ident: ref53 doi: 10.1109/TNSRE.2019.2959449 – ident: ref94 doi: 10.1088/1741-2552/ab0e2e – ident: ref25 doi: 10.1152/japplphysiol.00280.2015 – ident: ref130 doi: 10.3390/bios12020057 – ident: ref87 doi: 10.1109/EMBC.2013.6610858 – ident: ref75 doi: 10.1109/ICORR.2017.8009405 – ident: ref1 doi: 10.1002/adma.202100218 – ident: ref24 doi: 10.1080/10447318.2022.2111041 – ident: ref68 doi: 10.1016/j.clinbiomech.2008.08.006 – ident: ref19 doi: 10.1109/LSENS.2022.3183284 – ident: ref77 doi: 10.3389/fnins.2019.00891 – ident: ref61 doi: 10.1038/s41427-020-00278-5 – ident: ref116 doi: 10.1515/bmt-2021-0072 – ident: ref54 doi: 10.1109/TIM.2011.2164279 – ident: ref102 doi: 10.3844/jcssp.2006.735.739 – ident: ref119 doi: 10.1016/j.eswa.2013.02.023 – ident: ref33 doi: 10.3389/fnins.2021.621885 – ident: ref45 doi: 10.1016/S0010-4825(01)00024-5 – ident: ref118 doi: 10.3389/fnins.2017.00379 – volume-title: Isrmyo-I: A database for sEMG-based hand gesture recognition year: 2018 ident: ref79 – ident: ref2 doi: 10.1371/journal.pone.0127528 – ident: ref152 doi: 10.3390/s22041476 – ident: ref17 doi: 10.1007/s10514-018-9799-1 – ident: ref113 doi: 10.3390/s22052007 – ident: ref108 doi: 10.1142/S0219843611002630 – ident: ref67 doi: 10.1038/s41598-019-50112-4 – ident: ref7 doi: 10.1038/s41699-018-0064-4 – ident: ref37 doi: 10.1007/s42235-019-0037-0 – ident: ref55 doi: 10.1088/0967-3334/21/2/307 – ident: ref140 doi: 10.1109/TAI.2023.3244177 – ident: ref3 doi: 10.1109/ACCESS.2020.2991812 – ident: ref18 doi: 10.1007/s10916-015-0429-6 – ident: ref115 doi: 10.1016/j.bbe.2021.03.004 – ident: ref13 doi: 10.1109/TNSRE.2023.3247580 – ident: ref38 doi: 10.3389/fnins.2017.00343 – ident: ref82 doi: 10.1038/sdata.2014.47 – ident: ref30 doi: 10.3390/s16081304 – ident: ref84 doi: 10.1038/s41597-023-02723-w – ident: ref146 doi: 10.1016/j.bspc.2019.02.011 – ident: ref151 doi: 10.3389/fnbot.2021.642607 – ident: ref120 doi: 10.1016/j.eswa.2022.118282 – ident: ref88 doi: 10.1109/JBHI.2022.3197831 – ident: ref109 doi: 10.1006/brln.1998.2024 – ident: ref122 doi: 10.1007/s10916-008-9219-8 – ident: ref71 doi: 10.1109/TNSRE.2014.2328495 – ident: ref8 doi: 10.3389/fnbot.2019.00007 – ident: ref103 doi: 10.1007/s11227-014-1376-6 – ident: ref114 doi: 10.2991/ijcis.d.200724.001 – ident: ref126 doi: 10.1007/s40846-016-0188-y – ident: ref15 doi: 10.1109/TNSRE.2022.3218430 – ident: ref28 doi: 10.1007/s12652-018-0811-6 – year: 2014 ident: ref86 article-title: sEMG for basic hand movements – ident: ref125 doi: 10.1016/j.jelekin.2012.10.010 – year: 2020 ident: ref83 article-title: Surface electromyography signals—Finger_position – ident: ref4 doi: 10.1109/TNSRE.2023.3236982 – ident: ref101 doi: 10.1016/j.bspc.2018.05.002 – ident: ref105 doi: 10.1007/s12652-020-01980-6 – ident: ref107 doi: 10.1007/s11517-019-02024-8 – ident: ref59 doi: 10.1109/TBCAS.2012.2192932 – ident: ref16 doi: 10.1109/TMRB.2023.3310717 – ident: ref145 doi: 10.1038/s41598-023-30716-7 – ident: ref65 doi: 10.1021/acsami.9b07325 – ident: ref100 doi: 10.1109/10.204774 |
SSID | ssj0007647 |
Score | 2.424095 |
Snippet | Surface electromyography (sEMG)-based automated grasp recognition (AGR) has emerged as a vital technology in the field of automatic control, human-machine... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Automated grasp recognition (AGR) Automatic control Automation deep neural networks (DNNs) Degrees of freedom Electromyography End effectors Estimation Feature extraction Focusing Force Gesture recognition Grasping (robotics) Industries Machine learning machine learning (ML) Man-machine interfaces model-based approach Multiresolution analysis Prostheses Reviews Robot sensing systems Sensors State-of-the-art reviews surface electromyography (sEMG) Virtual reality |
Title | Automated Grasp Recognition Using sEMG: Recent Advances, Challenges, and Future Developments |
URI | https://ieeexplore.ieee.org/document/10752588 https://www.proquest.com/docview/3143029212 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5UEPTgW1xf5OBFsGubJm3jbRF3V2E9iIIHoTTJ7EXoiu1e_PVO0lZWRfAWQktCJpn5ZvJlBuAs5IZQ-zQMXL2QgCy-Dgo0KrDkAiWpsIVEFxqY3CfjJ3H3LJ_bx-r-LQwievIZ9l3T3-XbmZm7UBmd8FRymWXLsEyeW_NY60vtpoloEmRGdIIJFnR3kqG6fLydkCfIRT8WitwX9c0G-aIqvzSxNy_DTbjvJtawSl7781r3zcePnI3_nvkWbLRAkw2anbENS1juwPpC-sEdWPX0T1PtwstgXs8Iu6Jlo_eiemMPHa9oVjLPKmDVzWR05fppIDZomAPVBbvuirFQuygtG_ocJWyBi1TtwdPw5vF6HLR1FwLDhayDqUKpheVaIGaJiQikoCgyTAQmaSF5mOhCRVmGqTDUlHGhuY0SpUiJmzg08T6slLMSD4DF08jlFLPUS9jRZCqyGmOjQ2WnoZZRD847SeRvTXqN3LslocpJarmTWt5KrQd7bmEXvmvWtAfHnezy9gBWeezG5YoM8-Efvx3BGne1fH045RhW6vc5nhDAqPWp31ifVCTLqA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3BbtQwEB2VVgg4FChFLC3gQzkgkSVx7CSu1MOq7Xa37faAtlIPSCG2Zy9I2arJCsG_8Cv9to6dpNoWcazEzbLiRPZMZt7YzzMAOyE3hNpnYeDqhQTk8XVQoFGBpRAoSYUtJLqtgclZMjoXxxfyYgX-3N6FQURPPsO-a_qzfDs3C7dVRn94KrnMspZDeYK_flKEVu2ND0icHzkfHk73R0FbRCAwXMg6mCmUWliuBWKWmIg8Looiw0RgkhaSh4kuVJRlmApDTRkXmtsoUYoskolDE9N7H8EaAQ3Jm-tht4Y-TUSTkjMim0FApDsFDdWX6XhCsScX_VgoCpjUHa_ny7j8Zfu9Qxs-h-tuKRoey4_-otZ98_telsj_dq1ewHoLpdmg0f2XsILlBjxbSrC4AY89wdVUr-DbYFHPCZ2jZUdXRXXJvnbMqXnJPG-CVYeTo13XTxNjg4YbUX1m-125GWoXpWVDn4WFLbGtqk04f5CJvobVcl7iG2DxLHJZ0yz1Ejo2mYqsxtjoUNlZqGXUg0-d5PPLJoFI7gOvUOWkJbnTkrzVkh5sOkEuPdfIsAfbna7krYmp8th9lyuCHm__MewDPBlNJ6f56fjsZAuecle52G8ebcNqfbXAdwSnav3eKzWD7w-tGTcbZSqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Grasp+Recognition+Using+sEMG%3A+Recent+Advances%2C+Challenges%2C+and+Future+Developments&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Sharma%2C+Shivam&rft.au=Newaj+Faisal%2C+Kazi&rft.au=Raj+Sharma%2C+Rishi&rft.date=2025-01-01&rft.issn=0018-9456&rft.eissn=1557-9662&rft.volume=74&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1109%2FTIM.2024.3497179&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIM_2024_3497179 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |