Nonlinearity-Aware ZUPT-Aided Pedestrian Inertial Navigation Based on Cubature Kalman Filter in Urban Canyons
Urban pedestrian navigation is a challenging issue as the most popular positioning source, global navigation satellite systems (GNSSs), is severely affected by signal reflections or blockages from high-rise buildings. Unlike the GNSS, the inertial measurement unit (IMU) is less sensitive to environm...
Saved in:
Published in | IEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 15 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Urban pedestrian navigation is a challenging issue as the most popular positioning source, global navigation satellite systems (GNSSs), is severely affected by signal reflections or blockages from high-rise buildings. Unlike the GNSS, the inertial measurement unit (IMU) is less sensitive to environmental conditions but is, unfortunately, subject to drift over time. Applying the motion constraints, such as the zero-velocity update (ZUPT), is a promising solution for mitigating the drift. However, existing zero-velocity (ZV) detections can cause false results in urban scenarios involving more complex pedestrian motions. Meanwhile, the IMU-based model's nonlinearity further reduces the accuracy of the state estimation. This article proposes a nonlinearity-aware ZUPT-aided pedestrian inertial navigation in urban canyons to fill this gap. Our method begins with a gait interval (GI)-aided dual-threshold ZV detection scheme to prevent false or missed detections in complex pedestrian motions. A ZUPT-aided inertial navigation based on cubature Kalman filter (CKF) is formed to mitigate the impact of nonlinearity. Several datasets are collected to validate the effectiveness of the proposed method. The experimental results demonstrate that the proposed method can detect ZV more accurately and estimate pedestrian location more precisely with the CKF than extended Kalman filter (EKF) and unscented Kalman filter (UKF)-based methods. Meanwhile, the time consumption of the proposed method is essentially on par with the UKF-based method. It achieves a balance between computational efficiency and accuracy, which provides a low-drift self-contained real-time inertial navigation for pedestrians when external positioning data are unavailable. To benefit the research community, we open-source our dataset via GitHub: https://github.com/RuijieXu0408/PINS-datasets-based-on-Xsens-IMU . |
---|---|
AbstractList | Urban pedestrian navigation is a challenging issue as the most popular positioning source, global navigation satellite systems (GNSSs), is severely affected by signal reflections or blockages from high-rise buildings. Unlike the GNSS, the inertial measurement unit (IMU) is less sensitive to environmental conditions but is, unfortunately, subject to drift over time. Applying the motion constraints, such as the zero-velocity update (ZUPT), is a promising solution for mitigating the drift. However, existing zero-velocity (ZV) detections can cause false results in urban scenarios involving more complex pedestrian motions. Meanwhile, the IMU-based model's nonlinearity further reduces the accuracy of the state estimation. This article proposes a nonlinearity-aware ZUPT-aided pedestrian inertial navigation in urban canyons to fill this gap. Our method begins with a gait interval (GI)-aided dual-threshold ZV detection scheme to prevent false or missed detections in complex pedestrian motions. A ZUPT-aided inertial navigation based on cubature Kalman filter (CKF) is formed to mitigate the impact of nonlinearity. Several datasets are collected to validate the effectiveness of the proposed method. The experimental results demonstrate that the proposed method can detect ZV more accurately and estimate pedestrian location more precisely with the CKF than extended Kalman filter (EKF) and unscented Kalman filter (UKF)-based methods. Meanwhile, the time consumption of the proposed method is essentially on par with the UKF-based method. It achieves a balance between computational efficiency and accuracy, which provides a low-drift self-contained real-time inertial navigation for pedestrians when external positioning data are unavailable. To benefit the research community, we open-source our dataset via GitHub: https://github.com/RuijieXu0408/PINS-datasets-based-on-Xsens-IMU . |
Author | Xu, Ruijie Bai, Shiyu Wen, Weisong Chen, Shichao |
Author_xml | – sequence: 1 givenname: Ruijie orcidid: 0009-0000-0221-9768 surname: Xu fullname: Xu, Ruijie email: ruijie.xu@connect.polyu.hk organization: Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong – sequence: 2 givenname: Shichao orcidid: 0000-0001-7677-4211 surname: Chen fullname: Chen, Shichao email: shichao.chen@ia.ac.cn organization: State Key Laboratory for Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Shiyu orcidid: 0000-0002-3390-1185 surname: Bai fullname: Bai, Shiyu email: shiyu.bai@polyu.edu.hk organization: Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong – sequence: 4 givenname: Weisong orcidid: 0000-0003-4158-0913 surname: Wen fullname: Wen, Weisong email: welson.wen@polyu.edu.hk organization: Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong |
BookMark | eNpNkDFPwzAQRi0EEm1hZ2CIxJxydmwnHktFoaKUDu3CYjmxg1ylTrETUP89rtqB6e6k993p3hBdutYZhO4wjDEG8biev48JEDrOKMMsLy7QADOWp4JzcokGALhIBWX8Gg1D2AJAzmk-QLtl6xrrjPK2O6STX-VN8rlZrdOJ1UYnK6NN6LxVLpk74zurmmSpfuyX6mzrkicVIhSbaV-qro_ZN9XsIjyzTWd8Yl2y8WWcp8odWhdu0FWtmmBuz3WENrPn9fQ1XXy8zKeTRVoRyrpUl7gW2kCFuYbCqFLXGXBW1JnIRM5qSrQwmNVFVRa4FDnRVcEFh4LwjHAB2Qg9nPbuffvdxw_ktu29iydlhoEIzihjkYITVfk2BG9qufd2p_xBYpBHqTJKlUep8iw1Ru5PEWuM-YdzJgDT7A9rZ3R3 |
CODEN | IEIMAO |
Cites_doi | 10.23919/ICCAS52745.2021.9649748 10.1109/PLANS.2008.4570050 10.1109/JSEN.2019.2944412 10.5081/jgps.3.1.273 10.1109/TIM.2023.3268445 10.1109/TIM.2020.3021224 10.1109/TMECH.2015.2430357 10.1109/EURONAV.2019.8714170 10.1007/BF02527052 10.3390/s22135022 10.1109/TIM.2023.3282296 10.1007/s10291-021-01196-x 10.1109/TIM.2019.2955798 10.1109/TIM.2021.3112004 10.1109/JPROC.2003.823141 10.1109/TIM.2021.3073440 10.1109/TIM.2023.3291779 10.1109/MCG.2005.140 10.1109/JSEN.2022.3232613 10.1109/ACCESS.2022.3220629 10.1109/TNSRE.2015.2457511 10.1109/ISISS.2014.6782523 10.1109/GLOBECOM38437.2019.9014070 10.1109/TAC.2009.2019800 10.1109/TVT.2008.926076 10.1109/IPIN.2010.5646936 10.1109/JSEN.2014.2382568 10.1109/TITS.2022.3167710 10.1017/S0373463313000350 10.1016/j.asr.2018.10.003 10.1049/iet-smt.2014.0056 10.3390/s17112695 10.1002/0471221082 10.1109/ICCCNT45670.2019.8944545 10.1109/JSEN.2020.2998815 10.1109/PLANS.2016.7479686 10.1109/TIM.2023.3332396 10.1109/jiot.2023.3243296 10.1109/TIM.2022.3218539 10.1109/JSEN.2017.2786587 10.1109/TIM.2014.2349211 10.1109/JSEN.2021.3070144 10.1109/PLANS.2018.8373428 10.1109/IPIN.2010.5646885 10.1109/JSEN.2022.3155817 10.1109/TIM.2022.3159950 10.1109/CCDC52312.2021.9601671 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/TIM.2024.3451578 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1557-9662 |
EndPage | 15 |
ExternalDocumentID | 10_1109_TIM_2024_3451578 10659014 |
Genre | orig-research |
GrantInformation_xml | – fundername: Key Research and Development Program of Rizhao grantid: 2023ZDYF010150033 funderid: 10.13039/501100018526 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYOK AAYXX CITATION RIG 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c245t-db1f9de0c16d08eabdf30658f393975f42d9e15f8cb81b972dc86960826326903 |
IEDL.DBID | RIE |
ISSN | 0018-9456 |
IngestDate | Mon Jun 30 10:03:44 EDT 2025 Tue Jul 01 03:07:45 EDT 2025 Wed Aug 27 02:01:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c245t-db1f9de0c16d08eabdf30658f393975f42d9e15f8cb81b972dc86960826326903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7677-4211 0009-0000-0221-9768 0000-0003-4158-0913 0000-0002-3390-1185 |
PQID | 3102965455 |
PQPubID | 85462 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_TIM_2024_3451578 ieee_primary_10659014 proquest_journals_3102965455 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on instrumentation and measurement |
PublicationTitleAbbrev | TIM |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Woodman (ref9) 2007 ref49 ref8 ref7 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref36 ref31 Xu (ref18) 2024 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Welch (ref37) 1995 |
References_xml | – ident: ref16 doi: 10.23919/ICCAS52745.2021.9649748 – ident: ref22 doi: 10.1109/PLANS.2008.4570050 – ident: ref50 doi: 10.1109/JSEN.2019.2944412 – ident: ref11 doi: 10.5081/jgps.3.1.273 – ident: ref45 doi: 10.1109/TIM.2023.3268445 – ident: ref44 doi: 10.1109/TIM.2020.3021224 – ident: ref12 doi: 10.1109/TMECH.2015.2430357 – ident: ref30 doi: 10.1109/EURONAV.2019.8714170 – ident: ref25 doi: 10.1007/BF02527052 – ident: ref32 doi: 10.3390/s22135022 – ident: ref3 doi: 10.1109/TIM.2023.3282296 – ident: ref19 doi: 10.1007/s10291-021-01196-x – ident: ref1 doi: 10.1109/TIM.2019.2955798 – ident: ref23 doi: 10.1109/TIM.2021.3112004 – ident: ref39 doi: 10.1109/JPROC.2003.823141 – ident: ref41 doi: 10.1109/TIM.2021.3073440 – ident: ref7 doi: 10.1109/TIM.2023.3291779 – volume-title: An Introduction to Inertial Navigation year: 2007 ident: ref9 – ident: ref27 doi: 10.1109/MCG.2005.140 – ident: ref35 doi: 10.1109/JSEN.2022.3232613 – ident: ref26 doi: 10.1109/ACCESS.2022.3220629 – ident: ref20 doi: 10.1109/TNSRE.2015.2457511 – ident: ref13 doi: 10.1109/ISISS.2014.6782523 – ident: ref31 doi: 10.1109/GLOBECOM38437.2019.9014070 – ident: ref43 doi: 10.1109/TAC.2009.2019800 – ident: ref10 doi: 10.1109/TVT.2008.926076 – ident: ref14 doi: 10.1109/IPIN.2010.5646936 – ident: ref21 doi: 10.1109/JSEN.2014.2382568 – ident: ref5 doi: 10.1109/TITS.2022.3167710 – ident: ref6 doi: 10.1017/S0373463313000350 – ident: ref42 doi: 10.1016/j.asr.2018.10.003 – ident: ref17 doi: 10.1049/iet-smt.2014.0056 – ident: ref15 doi: 10.3390/s17112695 – ident: ref28 doi: 10.1002/0471221082 – ident: ref49 doi: 10.1109/ICCCNT45670.2019.8944545 – volume-title: PINS-Dataset year: 2024 ident: ref18 – ident: ref34 doi: 10.1109/JSEN.2020.2998815 – volume-title: An Introduction to the Kalman Filter year: 1995 ident: ref37 – ident: ref2 doi: 10.1109/PLANS.2016.7479686 – ident: ref4 doi: 10.1109/TIM.2023.3332396 – ident: ref29 doi: 10.1109/jiot.2023.3243296 – ident: ref46 doi: 10.1109/TIM.2022.3218539 – ident: ref48 doi: 10.1109/JSEN.2017.2786587 – ident: ref47 doi: 10.1109/TIM.2014.2349211 – ident: ref24 doi: 10.1109/JSEN.2021.3070144 – ident: ref36 doi: 10.1109/PLANS.2018.8373428 – ident: ref33 doi: 10.1109/IPIN.2010.5646885 – ident: ref8 doi: 10.1109/JSEN.2022.3155817 – ident: ref40 doi: 10.1109/TIM.2022.3159950 – ident: ref38 doi: 10.1109/CCDC52312.2021.9601671 |
SSID | ssj0007647 |
Score | 2.3994539 |
Snippet | Urban pedestrian navigation is a challenging issue as the most popular positioning source, global navigation satellite systems (GNSSs), is severely affected by... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Cubature Kalman filter (CKF) Datasets Detectors Drift Extended Kalman filter Global navigation satellite system High rise buildings Inertial coordinates Inertial navigation Inertial platforms Inertial sensing devices inertial sensor Kalman filters Nonlinearity pedestrian navigation Pedestrians Pins Real time State estimation Street canyons zero-velocity (ZV) detection |
Title | Nonlinearity-Aware ZUPT-Aided Pedestrian Inertial Navigation Based on Cubature Kalman Filter in Urban Canyons |
URI | https://ieeexplore.ieee.org/document/10659014 https://www.proquest.com/docview/3102965455 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PSyMxFH6oIOwe1rXbxa5dycGLh6kzmUxmcqzF0ioWDy0UL0N-QlGnUttd2L9-XzJTKbsI3hJIQshL8t5L3vs-gHMqmKKx5RHqgjhi_qFJ5jmPZGZULKnULjDP3U34aMZu5tm8SVYPuTDW2hB8Znu-GP7yzVJv_FMZnnDuUyXZPuyj51Yna71duzlnNUBmgicYzYLtn2QsLqfjO_QEKeulDNW3Z1Tb0UGBVOW_mziol-ERTLYTq6NKHnubterpP_9gNn545l_hS2Nokn69M45hz1Yt-LwDP9iCwxD-qV-_wfOkRsyQnsou6v-WK0seZvfTqL8w1pB7a2zg96jIuPKB2DjwRP4K6BzLilyhJjQEC4ONCjih5FY-PWPj4cL_xZNFRWYrhfUB3jy4y9swG15PB6OoIWKINGXZOjIqccLYWCfcxIWVyjhPOF-4VKA5kzlGjbBJ5gqt0AoWOTW64OgaFR4MHt3v9DscVMvKngChicxT7tKCCondmMLhaOocM8rlOlMduNiKpnyp8TbK4KfEokQxll6MZSPGDrT9Su-0qxe5A92tMMvmRL6WaMZSwdFezH680-0UPvnR6_eVLhysVxv7Ey2OtToLO-0vkjLRdg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9swFH90LWPdoV9rabpu06GXHZzZsixbxyw0JG1jekig7GL0CWGrU9Jkg_31fZKdEjoKu8kgyULvSe9D7_0ewAUVTNHY8ghlQRwx72iSec4jmRkVSyq1C5XnxiUfTtnVXXbXJquHXBhrbQg-s13fDG_5Zq5X3lWGJ5z7VEn2BnZQ8GdJk671fPHmnDUQmQmeYVQM1q-Ssfg2GY3RFqSsmzIU4L6m2oYUCmVV_rmLg4AZ7EO5XloTV_Kzu1qqrv77ArXxv9d-AHutqkl6DW8cwpatj-D9BgDhEbwNAaD68QPclw1mhvTF7KLeH7mw5Mf0dhL1ZsYacmuNDRU-ajKqfSg2TlzK3wGfY16T7ygLDcFGf6UCUii5lr_usfNg5l_jyawm04XC7z7ePcjnxzAdXE76w6gtxRBpyrJlZFTihLGxTriJCyuVcb7kfOFSgQpN5hg1wiaZK7RCPVjk1OiCo3FUeDh4NMDTE9iu57U9BUITmafcpQUVEocxhdPR1DlmlMt1pjrwdU2a6qFB3KiCpRKLCslYeTJWLRk7cOx3eqNfs8kdOF8Ts2rP5GOFiiwV3DPO2SvDvsC74WR8U92MyuuPsOv_1HhbzmF7uVjZT6h_LNXnwHVPqs3Uvw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinearity-Aware+ZUPT-Aided+Pedestrian+Inertial+Navigation+Based+on+Cubature+Kalman+Filter+in+Urban+Canyons&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Xu%2C+Ruijie&rft.au=Chen%2C+Shichao&rft.au=Bai%2C+Shiyu&rft.au=Wen%2C+Weisong&rft.date=2024&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=73&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTIM.2024.3451578&rft.externalDocID=10659014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |