Nonlinearity-Aware ZUPT-Aided Pedestrian Inertial Navigation Based on Cubature Kalman Filter in Urban Canyons

Urban pedestrian navigation is a challenging issue as the most popular positioning source, global navigation satellite systems (GNSSs), is severely affected by signal reflections or blockages from high-rise buildings. Unlike the GNSS, the inertial measurement unit (IMU) is less sensitive to environm...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 73; pp. 1 - 15
Main Authors Xu, Ruijie, Chen, Shichao, Bai, Shiyu, Wen, Weisong
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Urban pedestrian navigation is a challenging issue as the most popular positioning source, global navigation satellite systems (GNSSs), is severely affected by signal reflections or blockages from high-rise buildings. Unlike the GNSS, the inertial measurement unit (IMU) is less sensitive to environmental conditions but is, unfortunately, subject to drift over time. Applying the motion constraints, such as the zero-velocity update (ZUPT), is a promising solution for mitigating the drift. However, existing zero-velocity (ZV) detections can cause false results in urban scenarios involving more complex pedestrian motions. Meanwhile, the IMU-based model's nonlinearity further reduces the accuracy of the state estimation. This article proposes a nonlinearity-aware ZUPT-aided pedestrian inertial navigation in urban canyons to fill this gap. Our method begins with a gait interval (GI)-aided dual-threshold ZV detection scheme to prevent false or missed detections in complex pedestrian motions. A ZUPT-aided inertial navigation based on cubature Kalman filter (CKF) is formed to mitigate the impact of nonlinearity. Several datasets are collected to validate the effectiveness of the proposed method. The experimental results demonstrate that the proposed method can detect ZV more accurately and estimate pedestrian location more precisely with the CKF than extended Kalman filter (EKF) and unscented Kalman filter (UKF)-based methods. Meanwhile, the time consumption of the proposed method is essentially on par with the UKF-based method. It achieves a balance between computational efficiency and accuracy, which provides a low-drift self-contained real-time inertial navigation for pedestrians when external positioning data are unavailable. To benefit the research community, we open-source our dataset via GitHub: https://github.com/RuijieXu0408/PINS-datasets-based-on-Xsens-IMU .
AbstractList Urban pedestrian navigation is a challenging issue as the most popular positioning source, global navigation satellite systems (GNSSs), is severely affected by signal reflections or blockages from high-rise buildings. Unlike the GNSS, the inertial measurement unit (IMU) is less sensitive to environmental conditions but is, unfortunately, subject to drift over time. Applying the motion constraints, such as the zero-velocity update (ZUPT), is a promising solution for mitigating the drift. However, existing zero-velocity (ZV) detections can cause false results in urban scenarios involving more complex pedestrian motions. Meanwhile, the IMU-based model's nonlinearity further reduces the accuracy of the state estimation. This article proposes a nonlinearity-aware ZUPT-aided pedestrian inertial navigation in urban canyons to fill this gap. Our method begins with a gait interval (GI)-aided dual-threshold ZV detection scheme to prevent false or missed detections in complex pedestrian motions. A ZUPT-aided inertial navigation based on cubature Kalman filter (CKF) is formed to mitigate the impact of nonlinearity. Several datasets are collected to validate the effectiveness of the proposed method. The experimental results demonstrate that the proposed method can detect ZV more accurately and estimate pedestrian location more precisely with the CKF than extended Kalman filter (EKF) and unscented Kalman filter (UKF)-based methods. Meanwhile, the time consumption of the proposed method is essentially on par with the UKF-based method. It achieves a balance between computational efficiency and accuracy, which provides a low-drift self-contained real-time inertial navigation for pedestrians when external positioning data are unavailable. To benefit the research community, we open-source our dataset via GitHub: https://github.com/RuijieXu0408/PINS-datasets-based-on-Xsens-IMU .
Author Xu, Ruijie
Bai, Shiyu
Wen, Weisong
Chen, Shichao
Author_xml – sequence: 1
  givenname: Ruijie
  orcidid: 0009-0000-0221-9768
  surname: Xu
  fullname: Xu, Ruijie
  email: ruijie.xu@connect.polyu.hk
  organization: Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
– sequence: 2
  givenname: Shichao
  orcidid: 0000-0001-7677-4211
  surname: Chen
  fullname: Chen, Shichao
  email: shichao.chen@ia.ac.cn
  organization: State Key Laboratory for Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Shiyu
  orcidid: 0000-0002-3390-1185
  surname: Bai
  fullname: Bai, Shiyu
  email: shiyu.bai@polyu.edu.hk
  organization: Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
– sequence: 4
  givenname: Weisong
  orcidid: 0000-0003-4158-0913
  surname: Wen
  fullname: Wen, Weisong
  email: welson.wen@polyu.edu.hk
  organization: Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
BookMark eNpNkDFPwzAQRi0EEm1hZ2CIxJxydmwnHktFoaKUDu3CYjmxg1ylTrETUP89rtqB6e6k993p3hBdutYZhO4wjDEG8biev48JEDrOKMMsLy7QADOWp4JzcokGALhIBWX8Gg1D2AJAzmk-QLtl6xrrjPK2O6STX-VN8rlZrdOJ1UYnK6NN6LxVLpk74zurmmSpfuyX6mzrkicVIhSbaV-qro_ZN9XsIjyzTWd8Yl2y8WWcp8odWhdu0FWtmmBuz3WENrPn9fQ1XXy8zKeTRVoRyrpUl7gW2kCFuYbCqFLXGXBW1JnIRM5qSrQwmNVFVRa4FDnRVcEFh4LwjHAB2Qg9nPbuffvdxw_ktu29iydlhoEIzihjkYITVfk2BG9qufd2p_xBYpBHqTJKlUep8iw1Ru5PEWuM-YdzJgDT7A9rZ3R3
CODEN IEIMAO
Cites_doi 10.23919/ICCAS52745.2021.9649748
10.1109/PLANS.2008.4570050
10.1109/JSEN.2019.2944412
10.5081/jgps.3.1.273
10.1109/TIM.2023.3268445
10.1109/TIM.2020.3021224
10.1109/TMECH.2015.2430357
10.1109/EURONAV.2019.8714170
10.1007/BF02527052
10.3390/s22135022
10.1109/TIM.2023.3282296
10.1007/s10291-021-01196-x
10.1109/TIM.2019.2955798
10.1109/TIM.2021.3112004
10.1109/JPROC.2003.823141
10.1109/TIM.2021.3073440
10.1109/TIM.2023.3291779
10.1109/MCG.2005.140
10.1109/JSEN.2022.3232613
10.1109/ACCESS.2022.3220629
10.1109/TNSRE.2015.2457511
10.1109/ISISS.2014.6782523
10.1109/GLOBECOM38437.2019.9014070
10.1109/TAC.2009.2019800
10.1109/TVT.2008.926076
10.1109/IPIN.2010.5646936
10.1109/JSEN.2014.2382568
10.1109/TITS.2022.3167710
10.1017/S0373463313000350
10.1016/j.asr.2018.10.003
10.1049/iet-smt.2014.0056
10.3390/s17112695
10.1002/0471221082
10.1109/ICCCNT45670.2019.8944545
10.1109/JSEN.2020.2998815
10.1109/PLANS.2016.7479686
10.1109/TIM.2023.3332396
10.1109/jiot.2023.3243296
10.1109/TIM.2022.3218539
10.1109/JSEN.2017.2786587
10.1109/TIM.2014.2349211
10.1109/JSEN.2021.3070144
10.1109/PLANS.2018.8373428
10.1109/IPIN.2010.5646885
10.1109/JSEN.2022.3155817
10.1109/TIM.2022.3159950
10.1109/CCDC52312.2021.9601671
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2024.3451578
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 15
ExternalDocumentID 10_1109_TIM_2024_3451578
10659014
Genre orig-research
GrantInformation_xml – fundername: Key Research and Development Program of Rizhao
  grantid: 2023ZDYF010150033
  funderid: 10.13039/501100018526
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYOK
AAYXX
CITATION
RIG
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c245t-db1f9de0c16d08eabdf30658f393975f42d9e15f8cb81b972dc86960826326903
IEDL.DBID RIE
ISSN 0018-9456
IngestDate Mon Jun 30 10:03:44 EDT 2025
Tue Jul 01 03:07:45 EDT 2025
Wed Aug 27 02:01:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-db1f9de0c16d08eabdf30658f393975f42d9e15f8cb81b972dc86960826326903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7677-4211
0009-0000-0221-9768
0000-0003-4158-0913
0000-0002-3390-1185
PQID 3102965455
PQPubID 85462
PageCount 15
ParticipantIDs crossref_primary_10_1109_TIM_2024_3451578
ieee_primary_10659014
proquest_journals_3102965455
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Woodman (ref9) 2007
ref49
ref8
ref7
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref36
ref31
Xu (ref18) 2024
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Welch (ref37) 1995
References_xml – ident: ref16
  doi: 10.23919/ICCAS52745.2021.9649748
– ident: ref22
  doi: 10.1109/PLANS.2008.4570050
– ident: ref50
  doi: 10.1109/JSEN.2019.2944412
– ident: ref11
  doi: 10.5081/jgps.3.1.273
– ident: ref45
  doi: 10.1109/TIM.2023.3268445
– ident: ref44
  doi: 10.1109/TIM.2020.3021224
– ident: ref12
  doi: 10.1109/TMECH.2015.2430357
– ident: ref30
  doi: 10.1109/EURONAV.2019.8714170
– ident: ref25
  doi: 10.1007/BF02527052
– ident: ref32
  doi: 10.3390/s22135022
– ident: ref3
  doi: 10.1109/TIM.2023.3282296
– ident: ref19
  doi: 10.1007/s10291-021-01196-x
– ident: ref1
  doi: 10.1109/TIM.2019.2955798
– ident: ref23
  doi: 10.1109/TIM.2021.3112004
– ident: ref39
  doi: 10.1109/JPROC.2003.823141
– ident: ref41
  doi: 10.1109/TIM.2021.3073440
– ident: ref7
  doi: 10.1109/TIM.2023.3291779
– volume-title: An Introduction to Inertial Navigation
  year: 2007
  ident: ref9
– ident: ref27
  doi: 10.1109/MCG.2005.140
– ident: ref35
  doi: 10.1109/JSEN.2022.3232613
– ident: ref26
  doi: 10.1109/ACCESS.2022.3220629
– ident: ref20
  doi: 10.1109/TNSRE.2015.2457511
– ident: ref13
  doi: 10.1109/ISISS.2014.6782523
– ident: ref31
  doi: 10.1109/GLOBECOM38437.2019.9014070
– ident: ref43
  doi: 10.1109/TAC.2009.2019800
– ident: ref10
  doi: 10.1109/TVT.2008.926076
– ident: ref14
  doi: 10.1109/IPIN.2010.5646936
– ident: ref21
  doi: 10.1109/JSEN.2014.2382568
– ident: ref5
  doi: 10.1109/TITS.2022.3167710
– ident: ref6
  doi: 10.1017/S0373463313000350
– ident: ref42
  doi: 10.1016/j.asr.2018.10.003
– ident: ref17
  doi: 10.1049/iet-smt.2014.0056
– ident: ref15
  doi: 10.3390/s17112695
– ident: ref28
  doi: 10.1002/0471221082
– ident: ref49
  doi: 10.1109/ICCCNT45670.2019.8944545
– volume-title: PINS-Dataset
  year: 2024
  ident: ref18
– ident: ref34
  doi: 10.1109/JSEN.2020.2998815
– volume-title: An Introduction to the Kalman Filter
  year: 1995
  ident: ref37
– ident: ref2
  doi: 10.1109/PLANS.2016.7479686
– ident: ref4
  doi: 10.1109/TIM.2023.3332396
– ident: ref29
  doi: 10.1109/jiot.2023.3243296
– ident: ref46
  doi: 10.1109/TIM.2022.3218539
– ident: ref48
  doi: 10.1109/JSEN.2017.2786587
– ident: ref47
  doi: 10.1109/TIM.2014.2349211
– ident: ref24
  doi: 10.1109/JSEN.2021.3070144
– ident: ref36
  doi: 10.1109/PLANS.2018.8373428
– ident: ref33
  doi: 10.1109/IPIN.2010.5646885
– ident: ref8
  doi: 10.1109/JSEN.2022.3155817
– ident: ref40
  doi: 10.1109/TIM.2022.3159950
– ident: ref38
  doi: 10.1109/CCDC52312.2021.9601671
SSID ssj0007647
Score 2.3994539
Snippet Urban pedestrian navigation is a challenging issue as the most popular positioning source, global navigation satellite systems (GNSSs), is severely affected by...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Cubature Kalman filter (CKF)
Datasets
Detectors
Drift
Extended Kalman filter
Global navigation satellite system
High rise buildings
Inertial coordinates
Inertial navigation
Inertial platforms
Inertial sensing devices
inertial sensor
Kalman filters
Nonlinearity
pedestrian navigation
Pedestrians
Pins
Real time
State estimation
Street canyons
zero-velocity (ZV) detection
Title Nonlinearity-Aware ZUPT-Aided Pedestrian Inertial Navigation Based on Cubature Kalman Filter in Urban Canyons
URI https://ieeexplore.ieee.org/document/10659014
https://www.proquest.com/docview/3102965455
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PSyMxFH6oIOwe1rXbxa5dycGLh6kzmUxmcqzF0ioWDy0UL0N-QlGnUttd2L9-XzJTKbsI3hJIQshL8t5L3vs-gHMqmKKx5RHqgjhi_qFJ5jmPZGZULKnULjDP3U34aMZu5tm8SVYPuTDW2hB8Znu-GP7yzVJv_FMZnnDuUyXZPuyj51Yna71duzlnNUBmgicYzYLtn2QsLqfjO_QEKeulDNW3Z1Tb0UGBVOW_mziol-ERTLYTq6NKHnubterpP_9gNn545l_hS2Nokn69M45hz1Yt-LwDP9iCwxD-qV-_wfOkRsyQnsou6v-WK0seZvfTqL8w1pB7a2zg96jIuPKB2DjwRP4K6BzLilyhJjQEC4ONCjih5FY-PWPj4cL_xZNFRWYrhfUB3jy4y9swG15PB6OoIWKINGXZOjIqccLYWCfcxIWVyjhPOF-4VKA5kzlGjbBJ5gqt0AoWOTW64OgaFR4MHt3v9DscVMvKngChicxT7tKCCondmMLhaOocM8rlOlMduNiKpnyp8TbK4KfEokQxll6MZSPGDrT9Su-0qxe5A92tMMvmRL6WaMZSwdFezH680-0UPvnR6_eVLhysVxv7Ey2OtToLO-0vkjLRdg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9swFH90LWPdoV9rabpu06GXHZzZsixbxyw0JG1jekig7GL0CWGrU9Jkg_31fZKdEjoKu8kgyULvSe9D7_0ewAUVTNHY8ghlQRwx72iSec4jmRkVSyq1C5XnxiUfTtnVXXbXJquHXBhrbQg-s13fDG_5Zq5X3lWGJ5z7VEn2BnZQ8GdJk671fPHmnDUQmQmeYVQM1q-Ssfg2GY3RFqSsmzIU4L6m2oYUCmVV_rmLg4AZ7EO5XloTV_Kzu1qqrv77ArXxv9d-AHutqkl6DW8cwpatj-D9BgDhEbwNAaD68QPclw1mhvTF7KLeH7mw5Mf0dhL1ZsYacmuNDRU-ajKqfSg2TlzK3wGfY16T7ygLDcFGf6UCUii5lr_usfNg5l_jyawm04XC7z7ePcjnxzAdXE76w6gtxRBpyrJlZFTihLGxTriJCyuVcb7kfOFSgQpN5hg1wiaZK7RCPVjk1OiCo3FUeDh4NMDTE9iu57U9BUITmafcpQUVEocxhdPR1DlmlMt1pjrwdU2a6qFB3KiCpRKLCslYeTJWLRk7cOx3eqNfs8kdOF8Ts2rP5GOFiiwV3DPO2SvDvsC74WR8U92MyuuPsOv_1HhbzmF7uVjZT6h_LNXnwHVPqs3Uvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinearity-Aware+ZUPT-Aided+Pedestrian+Inertial+Navigation+Based+on+Cubature+Kalman+Filter+in+Urban+Canyons&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Xu%2C+Ruijie&rft.au=Chen%2C+Shichao&rft.au=Bai%2C+Shiyu&rft.au=Wen%2C+Weisong&rft.date=2024&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=73&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTIM.2024.3451578&rft.externalDocID=10659014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon