Variational Deconvolution of Conically Scanned Passive Microwave Observations With Error Quantification

The deconvolution of potentially cloud-affected passive microwave brightness temperatures is an important step for utilization in direct data assimilation in cloud-resolving numerical weather prediction (NWP) models for the purpose of improving model initial conditions. Geophysical retrieval algorit...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 57; no. 2; pp. 1001 - 1014
Main Authors Steward, Jeffrey, Haddad, Ziad, Hristova-Veleva, Svetla, Kacimi, Sahra, Seo, Eun-Kyoung
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2018.2864097

Cover

Abstract The deconvolution of potentially cloud-affected passive microwave brightness temperatures is an important step for utilization in direct data assimilation in cloud-resolving numerical weather prediction (NWP) models for the purpose of improving model initial conditions. Geophysical retrieval algorithms, such as precipitation rate retrievals, also benefit from consistent resolution across channels. In this paper, we explore how to derive the posterior error estimates that are required for ingestion into data assimilation models or end-to-end error-quantified retrieval algorithms. To this end, we present a minimum variance, best linear-unbiased estimator approach that seeks an optimal estimate of the apparent (i.e., without the effects of antenna pattern convolution) brightness temperatures by iteratively minimizing a cost function measuring the lack of fit between observations and departures from a first guess. Both the observation and first-guess departure terms are weighed by a corresponding covariance term that estimates their relative uncertainty. The first-guess uncertainty, a Bayesian prior "belief" in the spread of the first-guess error, is estimated using geophysical fields from an NWP model in a radiative transfer model plus an antenna pattern forward operator, then iteratively improved using the posterior deconvolved brightness temperatures of actual special sensor microwave imager/sounder observations. The error for the posterior distribution, subject to the initial belief, is derived. The error-quantified results are shown to increase the spatial resolution of microwave observations.
AbstractList The deconvolution of potentially cloud-affected passive microwave brightness temperatures is an important step for utilization in direct data assimilation in cloud-resolving numerical weather prediction (NWP) models for the purpose of improving model initial conditions. Geophysical retrieval algorithms, such as precipitation rate retrievals, also benefit from consistent resolution across channels. In this paper, we explore how to derive the posterior error estimates that are required for ingestion into data assimilation models or end-to-end error-quantified retrieval algorithms. To this end, we present a minimum variance, best linear-unbiased estimator approach that seeks an optimal estimate of the apparent (i.e., without the effects of antenna pattern convolution) brightness temperatures by iteratively minimizing a cost function measuring the lack of fit between observations and departures from a first guess. Both the observation and first-guess departure terms are weighed by a corresponding covariance term that estimates their relative uncertainty. The first-guess uncertainty, a Bayesian prior "belief" in the spread of the first-guess error, is estimated using geophysical fields from an NWP model in a radiative transfer model plus an antenna pattern forward operator, then iteratively improved using the posterior deconvolved brightness temperatures of actual special sensor microwave imager/sounder observations. The error for the posterior distribution, subject to the initial belief, is derived. The error-quantified results are shown to increase the spatial resolution of microwave observations.
Author Seo, Eun-Kyoung
Kacimi, Sahra
Steward, Jeffrey
Hristova-Veleva, Svetla
Haddad, Ziad
Author_xml – sequence: 1
  givenname: Jeffrey
  orcidid: 0000-0002-1915-1242
  surname: Steward
  fullname: Steward, Jeffrey
  email: jsteward@jifresse.ucla.edu
  organization: University of California at Los Angeles, Los Angeles, CA, USA
– sequence: 2
  givenname: Ziad
  surname: Haddad
  fullname: Haddad, Ziad
  organization: University of California at Los Angeles, Los Angeles, CA, USA
– sequence: 3
  givenname: Svetla
  orcidid: 0000-0003-2048-5167
  surname: Hristova-Veleva
  fullname: Hristova-Veleva, Svetla
  organization: University of California at Los Angeles, Los Angeles, CA, USA
– sequence: 4
  givenname: Sahra
  surname: Kacimi
  fullname: Kacimi, Sahra
  organization: University of California at Los Angeles, Los Angeles, CA, USA
– sequence: 5
  givenname: Eun-Kyoung
  surname: Seo
  fullname: Seo, Eun-Kyoung
  organization: Kongju National University, Gongju, South Korea
BookMark eNo9kFFLwzAUhYNMcJv-APEl4HNnkqZJ-ihzTmEydVMfQ5qmmlGTmbST_XtbJz7de7nnHDjfCAycdwaAc4wmGKP8aj1_Xk0IwmJCBKMo50dgiLNMJIhROgBDhHOWEJGTEzCKcYMQphnmQ_D-qoJVjfVO1fDGaO92vm77G_oKTr2zWtX1Hq60cs6U8FHFaHcGPlgd_LfqtmURTdj9RkT4ZpsPOAvBB_jUKtfYqvP3r1NwXKk6mrO_OQYvt7P19C5ZLOf30-tFognNmkQbJXhJlEApq8pCiUqLQmeoTBUWRc40TxXHQpeIVchgVKTcMGbKLOdaU6zTMbg85G6D_2pNbOTGt6ErFyXBHLFcIII7FT6ouhIxBlPJbbCfKuwlRrLnKXuesucp_3h2nouDxxpj_vWCMiZSmv4AREV1xA
CODEN IGRSD2
Cites_doi 10.1109/MicroRad.2014.6878929
10.1007/s00190-012-0578-z
10.1007/978-1-4612-1986-6_8
10.1109/LSP.2015.2448732
10.1175/1520-0426(1998)015<0635:EONBFO>2.0.CO;2
10.1109/36.662726
10.1256/smsqj.47811
10.1109/TAP.1978.1141919
10.1175/2009JAMC2155.1
10.1109/36.58966
10.1002/qj.953
10.3998/0472119356
10.1029/2005WR004398
10.1175/1520-0469(1998)055<0633:SVMAAO>2.0.CO;2
10.1080/10556780802370746
10.1002/9783527336289
10.1109/36.142920
10.1256/smsqj.55001
10.1117/1.JRS.9.095035
10.1002/2016JD025923
10.1109/36.225536
10.1175/JHM-D-15-0094.1
10.1002/2015JD023107
10.1109/TIP.2003.819969
10.1175/2007JAS2112.1
10.1111/j.1365-246X.1967.tb02159.x
10.2151/jmsj.87A.153
10.1007/BF01589116
10.1002/qj.2070
10.3934/ipi.2009.3.43
10.1002/2017JD026494
10.1175/JAS-D-17-0008.1
10.1109/36.134084
10.1109/36.338362
10.1111/j.1365-246X.1968.tb00216.x
10.1029/JD095iD03p02187
10.1364/AO.48.004785
10.1109/TGRS.2008.917980
10.1002/qj.49711247414
10.1175/JTECH-D-12-00144.1
10.1109/TGRS.2015.2505677
10.1175/1520-0493(1997)125<2917:VAOPDU>2.0.CO;2
10.1175/2010MWR3360.1
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2018.2864097
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1014
ExternalDocumentID 10_1109_TGRS_2018_2864097
8466834
Genre orig-research
GrantInformation_xml – fundername: Korea Meteorological Administration
  funderid: 10.13039/501100003629
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c245t-cea87d2a8036fdba8fc8bc50d3a18b96c73a718cd06f0e10b37e66ed597cc41c3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 08:38:27 EDT 2025
Tue Jul 01 01:34:11 EDT 2025
Wed Aug 27 02:54:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c245t-cea87d2a8036fdba8fc8bc50d3a18b96c73a718cd06f0e10b37e66ed597cc41c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2048-5167
0000-0002-1915-1242
PQID 2170698021
PQPubID 85465
PageCount 14
ParticipantIDs proquest_journals_2170698021
crossref_primary_10_1109_TGRS_2018_2864097
ieee_primary_8466834
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref53
ref52
ref11
ref10
press (ref36) 2007
ref17
ref19
ref18
ref51
steward (ref50) 2014; 9265
kalnay (ref4) 2003
ref46
ref45
shewchuk (ref37) 0
ref47
ref42
balay (ref49) 2017
ref44
ref8
ref7
ref9
ref3
ref6
ref5
ref40
volkwein (ref41) 2005
ref35
ref34
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
nocedal (ref43) 2006
stephens (ref13) 1994
kress (ref16) 2012
balay (ref48) 2016
References_xml – ident: ref27
  doi: 10.1109/MicroRad.2014.6878929
– ident: ref34
  doi: 10.1007/s00190-012-0578-z
– ident: ref47
  doi: 10.1007/978-1-4612-1986-6_8
– ident: ref40
  doi: 10.1109/LSP.2015.2448732
– ident: ref7
  doi: 10.1175/1520-0426(1998)015<0635:EONBFO>2.0.CO;2
– year: 1994
  ident: ref13
  publication-title: Remote Sensing of the Lower Atmosphere An Introduction
– ident: ref22
  doi: 10.1109/36.662726
– ident: ref30
  doi: 10.1256/smsqj.47811
– ident: ref19
  doi: 10.1109/TAP.1978.1141919
– ident: ref9
  doi: 10.1175/2009JAMC2155.1
– ident: ref20
  doi: 10.1109/36.58966
– ident: ref52
  doi: 10.1002/qj.953
– ident: ref32
  doi: 10.3998/0472119356
– ident: ref10
  doi: 10.1029/2005WR004398
– ident: ref44
  doi: 10.1175/1520-0469(1998)055<0633:SVMAAO>2.0.CO;2
– ident: ref46
  doi: 10.1080/10556780802370746
– ident: ref33
  doi: 10.1002/9783527336289
– year: 2003
  ident: ref4
  publication-title: Atmospheric Modeling Data Assimilation and Predictability Electronic Version
– year: 2017
  ident: ref49
  publication-title: PETSc home page
– ident: ref21
  doi: 10.1109/36.142920
– start-page: 203
  year: 0
  ident: ref37
  article-title: Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator
  publication-title: Applied Computational Geometry Towards Geometric Engineering
– ident: ref31
  doi: 10.1256/smsqj.55001
– year: 2016
  ident: ref48
  article-title: PETSc users manual
– ident: ref28
  doi: 10.1117/1.JRS.9.095035
– year: 2007
  ident: ref36
  publication-title: Numerical Recipes The Art of Scientific Computing
– year: 2006
  ident: ref43
  publication-title: Numerical Optimization
– ident: ref15
  doi: 10.1002/2016JD025923
– volume: 9265
  start-page: 926507
  year: 2014
  ident: ref50
  article-title: Assimilating scatterometer observations of tropical cyclones into an Ensemble Kalman Filter system with a robust observation operator based on canonical-correlation analysis
  publication-title: Remote Sensing and Modeling of the Atmosphere Oceans and Interactions
– ident: ref23
  doi: 10.1109/36.225536
– ident: ref11
  doi: 10.1175/JHM-D-15-0094.1
– ident: ref14
  doi: 10.1002/2015JD023107
– year: 2012
  ident: ref16
  publication-title: Linear Integral Equations
– ident: ref25
  doi: 10.1109/TIP.2003.819969
– ident: ref51
  doi: 10.1175/2007JAS2112.1
– ident: ref17
  doi: 10.1111/j.1365-246X.1967.tb02159.x
– ident: ref8
  doi: 10.2151/jmsj.87A.153
– ident: ref45
  doi: 10.1007/BF01589116
– ident: ref53
  doi: 10.1002/qj.2070
– ident: ref38
  doi: 10.3934/ipi.2009.3.43
– ident: ref2
  doi: 10.1002/2017JD026494
– ident: ref1
  doi: 10.1175/JAS-D-17-0008.1
– ident: ref12
  doi: 10.1109/36.134084
– ident: ref24
  doi: 10.1109/36.338362
– ident: ref18
  doi: 10.1111/j.1365-246X.1968.tb00216.x
– ident: ref6
  doi: 10.1029/JD095iD03p02187
– ident: ref26
  doi: 10.1364/AO.48.004785
– ident: ref35
  doi: 10.1109/TGRS.2008.917980
– ident: ref29
  doi: 10.1002/qj.49711247414
– year: 2005
  ident: ref41
  article-title: Proper Orthogonal Decomposition (POD) for nonlinear dynamical systems
– ident: ref5
  doi: 10.1175/JTECH-D-12-00144.1
– ident: ref3
  doi: 10.1109/TGRS.2015.2505677
– ident: ref42
  doi: 10.1175/1520-0493(1997)125<2917:VAOPDU>2.0.CO;2
– ident: ref39
  doi: 10.1175/2010MWR3360.1
SSID ssj0014517
Score 2.2744238
Snippet The deconvolution of potentially cloud-affected passive microwave brightness temperatures is an important step for utilization in direct data assimilation in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1001
SubjectTerms Algorithms
Antennas
antennas and propagation
Bayesian analysis
Brightness
Brightness temperature
Clouds
Convolution
Covariance
Data collection
Deconvolution
Error detection
Geophysics
Ingestion
Initial conditions
inverse problems
Mathematical analysis
Mathematical models
Meteorological satellites
Microwave antennas
Microwave imaging
Microwave theory and techniques
modeling
Precipitation rate
Probability theory
Radiative transfer
Resolution
Retrieval
satellite antennas
Spatial discrimination
Spatial resolution
Special Sensor Microwave Imager
systems engineering and theory
Uncertainty
Weather forecasting
Title Variational Deconvolution of Conically Scanned Passive Microwave Observations With Error Quantification
URI https://ieeexplore.ieee.org/document/8466834
https://www.proquest.com/docview/2170698021
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BSpXgUNqliG0B-cCpahYnsR3niHgUVdrSlke5RX4FqlabajdbBL-eseNdrUoPvVlyEln-JvPwfDMG2C-5dFlBWaK5LhJWM4l6ULGEq7QsqBOFor7AefRZnF2xTzf8ZgU-LGphnHOBfOaGfhhy-bYxM39UdoC2UsicrcIqillXq7XIGDCextJokWAQkcUMZkrLg8uP3y48iUsOMym6_k5LNihcqvJMEwfzcroBo_nCOlbJz-Gs1UPz-FfPxv9d-St4Gf1MctgJxmtYceM-rC91H-zDi8D-NNNNuL3GiDmeCpJjHyL_iRJJmpocNaF28tcDuUAcUC2TL-hxo5YkI8_mu1c4OteL090p-f6jvSMnk0kzIV9nqmMjhak3cHV6cnl0lsQbGBKTMd4mxilZ2ExJtHO11UrWRmrDqc1VKnUpTJErNG7GUlFTl1KdF04IZzFKMYalJt-C3rgZu20gVNoyz7lVTuKMdlrwmrmCKfTIUmHNAN7PMal-d402qhCg0LLyAFYewCoCOIBNv8eLB-P2DmBnjmIVf8VplfkGQaVEX-btv996B2v47bKjYu9Ar53M3C56Gq3eCyL2BB4r0hM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTxQxFH9BiFEPgqBxEaQHT8ZZOjNtp3M0CKzK4geLcpv0a8BAdszuLAT_el873Q1RD96adCbT9PfmffT93ivAq5JLlxWUJZrrImE1k6gHFUu4SsuCOlEo6guch8dicMo-nPGzJXizqIVxzgXymev7Ycjl28bM_FHZLtpKIXN2D1bQ7jPeVWstcgaMp7E4WiQYRmQxh5nScnd0-PXE07hkP5Oi6_B0xwqFa1X-0sXBwByswnC-tI5Xctmftbpvfv3RtfF_174Gj6OnSd52ovEEltx4HR7d6T-4DvcD_9NMN-D8G8bM8VyQvPNB8nWUSdLUZK8J1ZNXt-QEkUDFTD6jz416kgw9n-9G4eiTXpzvTsn3H-0F2Z9Mmgn5MlMdHylMPYXTg_3R3iCJdzAkJmO8TYxTsrCZkmjpaquVrI3UhlObq1TqUpgiV2jejKWipi6lOi-cEM5inGIMS03-DJbHzdg9B0KlLfOcW-UkzminBa-ZK5hCnywV1vTg9RyT6mfXaqMKIQotKw9g5QGsIoA92PB7vHgwbm8PtuYoVvFnnFaZbxFUSvRmNv_91g48GIyGR9XR--OPL-AhfqfsiNlbsNxOZm4b_Y5Wvwzi9htEmNVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Deconvolution+of+Conically+Scanned+Passive+Microwave+Observations+With+Error+Quantification&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Steward%2C+Jeffrey&rft.au=Haddad%2C+Ziad&rft.au=Hristova-Veleva%2C+Svetla&rft.au=Kacimi%2C+Sahra&rft.date=2019-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=57&rft.issue=2&rft.spage=1001&rft_id=info:doi/10.1109%2FTGRS.2018.2864097&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon