Variational Deconvolution of Conically Scanned Passive Microwave Observations With Error Quantification
The deconvolution of potentially cloud-affected passive microwave brightness temperatures is an important step for utilization in direct data assimilation in cloud-resolving numerical weather prediction (NWP) models for the purpose of improving model initial conditions. Geophysical retrieval algorit...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 57; no. 2; pp. 1001 - 1014 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0196-2892 1558-0644 |
DOI | 10.1109/TGRS.2018.2864097 |
Cover
Abstract | The deconvolution of potentially cloud-affected passive microwave brightness temperatures is an important step for utilization in direct data assimilation in cloud-resolving numerical weather prediction (NWP) models for the purpose of improving model initial conditions. Geophysical retrieval algorithms, such as precipitation rate retrievals, also benefit from consistent resolution across channels. In this paper, we explore how to derive the posterior error estimates that are required for ingestion into data assimilation models or end-to-end error-quantified retrieval algorithms. To this end, we present a minimum variance, best linear-unbiased estimator approach that seeks an optimal estimate of the apparent (i.e., without the effects of antenna pattern convolution) brightness temperatures by iteratively minimizing a cost function measuring the lack of fit between observations and departures from a first guess. Both the observation and first-guess departure terms are weighed by a corresponding covariance term that estimates their relative uncertainty. The first-guess uncertainty, a Bayesian prior "belief" in the spread of the first-guess error, is estimated using geophysical fields from an NWP model in a radiative transfer model plus an antenna pattern forward operator, then iteratively improved using the posterior deconvolved brightness temperatures of actual special sensor microwave imager/sounder observations. The error for the posterior distribution, subject to the initial belief, is derived. The error-quantified results are shown to increase the spatial resolution of microwave observations. |
---|---|
AbstractList | The deconvolution of potentially cloud-affected passive microwave brightness temperatures is an important step for utilization in direct data assimilation in cloud-resolving numerical weather prediction (NWP) models for the purpose of improving model initial conditions. Geophysical retrieval algorithms, such as precipitation rate retrievals, also benefit from consistent resolution across channels. In this paper, we explore how to derive the posterior error estimates that are required for ingestion into data assimilation models or end-to-end error-quantified retrieval algorithms. To this end, we present a minimum variance, best linear-unbiased estimator approach that seeks an optimal estimate of the apparent (i.e., without the effects of antenna pattern convolution) brightness temperatures by iteratively minimizing a cost function measuring the lack of fit between observations and departures from a first guess. Both the observation and first-guess departure terms are weighed by a corresponding covariance term that estimates their relative uncertainty. The first-guess uncertainty, a Bayesian prior "belief" in the spread of the first-guess error, is estimated using geophysical fields from an NWP model in a radiative transfer model plus an antenna pattern forward operator, then iteratively improved using the posterior deconvolved brightness temperatures of actual special sensor microwave imager/sounder observations. The error for the posterior distribution, subject to the initial belief, is derived. The error-quantified results are shown to increase the spatial resolution of microwave observations. |
Author | Seo, Eun-Kyoung Kacimi, Sahra Steward, Jeffrey Hristova-Veleva, Svetla Haddad, Ziad |
Author_xml | – sequence: 1 givenname: Jeffrey orcidid: 0000-0002-1915-1242 surname: Steward fullname: Steward, Jeffrey email: jsteward@jifresse.ucla.edu organization: University of California at Los Angeles, Los Angeles, CA, USA – sequence: 2 givenname: Ziad surname: Haddad fullname: Haddad, Ziad organization: University of California at Los Angeles, Los Angeles, CA, USA – sequence: 3 givenname: Svetla orcidid: 0000-0003-2048-5167 surname: Hristova-Veleva fullname: Hristova-Veleva, Svetla organization: University of California at Los Angeles, Los Angeles, CA, USA – sequence: 4 givenname: Sahra surname: Kacimi fullname: Kacimi, Sahra organization: University of California at Los Angeles, Los Angeles, CA, USA – sequence: 5 givenname: Eun-Kyoung surname: Seo fullname: Seo, Eun-Kyoung organization: Kongju National University, Gongju, South Korea |
BookMark | eNo9kFFLwzAUhYNMcJv-APEl4HNnkqZJ-ihzTmEydVMfQ5qmmlGTmbST_XtbJz7de7nnHDjfCAycdwaAc4wmGKP8aj1_Xk0IwmJCBKMo50dgiLNMJIhROgBDhHOWEJGTEzCKcYMQphnmQ_D-qoJVjfVO1fDGaO92vm77G_oKTr2zWtX1Hq60cs6U8FHFaHcGPlgd_LfqtmURTdj9RkT4ZpsPOAvBB_jUKtfYqvP3r1NwXKk6mrO_OQYvt7P19C5ZLOf30-tFognNmkQbJXhJlEApq8pCiUqLQmeoTBUWRc40TxXHQpeIVchgVKTcMGbKLOdaU6zTMbg85G6D_2pNbOTGt6ErFyXBHLFcIII7FT6ouhIxBlPJbbCfKuwlRrLnKXuesucp_3h2nouDxxpj_vWCMiZSmv4AREV1xA |
CODEN | IGRSD2 |
Cites_doi | 10.1109/MicroRad.2014.6878929 10.1007/s00190-012-0578-z 10.1007/978-1-4612-1986-6_8 10.1109/LSP.2015.2448732 10.1175/1520-0426(1998)015<0635:EONBFO>2.0.CO;2 10.1109/36.662726 10.1256/smsqj.47811 10.1109/TAP.1978.1141919 10.1175/2009JAMC2155.1 10.1109/36.58966 10.1002/qj.953 10.3998/0472119356 10.1029/2005WR004398 10.1175/1520-0469(1998)055<0633:SVMAAO>2.0.CO;2 10.1080/10556780802370746 10.1002/9783527336289 10.1109/36.142920 10.1256/smsqj.55001 10.1117/1.JRS.9.095035 10.1002/2016JD025923 10.1109/36.225536 10.1175/JHM-D-15-0094.1 10.1002/2015JD023107 10.1109/TIP.2003.819969 10.1175/2007JAS2112.1 10.1111/j.1365-246X.1967.tb02159.x 10.2151/jmsj.87A.153 10.1007/BF01589116 10.1002/qj.2070 10.3934/ipi.2009.3.43 10.1002/2017JD026494 10.1175/JAS-D-17-0008.1 10.1109/36.134084 10.1109/36.338362 10.1111/j.1365-246X.1968.tb00216.x 10.1029/JD095iD03p02187 10.1364/AO.48.004785 10.1109/TGRS.2008.917980 10.1002/qj.49711247414 10.1175/JTECH-D-12-00144.1 10.1109/TGRS.2015.2505677 10.1175/1520-0493(1997)125<2917:VAOPDU>2.0.CO;2 10.1175/2010MWR3360.1 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2018.2864097 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 1014 |
ExternalDocumentID | 10_1109_TGRS_2018_2864097 8466834 |
Genre | orig-research |
GrantInformation_xml | – fundername: Korea Meteorological Administration funderid: 10.13039/501100003629 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c245t-cea87d2a8036fdba8fc8bc50d3a18b96c73a718cd06f0e10b37e66ed597cc41c3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Mon Jun 30 08:38:27 EDT 2025 Tue Jul 01 01:34:11 EDT 2025 Wed Aug 27 02:54:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c245t-cea87d2a8036fdba8fc8bc50d3a18b96c73a718cd06f0e10b37e66ed597cc41c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2048-5167 0000-0002-1915-1242 |
PQID | 2170698021 |
PQPubID | 85465 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2170698021 crossref_primary_10_1109_TGRS_2018_2864097 ieee_primary_8466834 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 ref14 ref53 ref52 ref11 ref10 press (ref36) 2007 ref17 ref19 ref18 ref51 steward (ref50) 2014; 9265 kalnay (ref4) 2003 ref46 ref45 shewchuk (ref37) 0 ref47 ref42 balay (ref49) 2017 ref44 ref8 ref7 ref9 ref3 ref6 ref5 ref40 volkwein (ref41) 2005 ref35 ref34 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 nocedal (ref43) 2006 stephens (ref13) 1994 kress (ref16) 2012 balay (ref48) 2016 |
References_xml | – ident: ref27 doi: 10.1109/MicroRad.2014.6878929 – ident: ref34 doi: 10.1007/s00190-012-0578-z – ident: ref47 doi: 10.1007/978-1-4612-1986-6_8 – ident: ref40 doi: 10.1109/LSP.2015.2448732 – ident: ref7 doi: 10.1175/1520-0426(1998)015<0635:EONBFO>2.0.CO;2 – year: 1994 ident: ref13 publication-title: Remote Sensing of the Lower Atmosphere An Introduction – ident: ref22 doi: 10.1109/36.662726 – ident: ref30 doi: 10.1256/smsqj.47811 – ident: ref19 doi: 10.1109/TAP.1978.1141919 – ident: ref9 doi: 10.1175/2009JAMC2155.1 – ident: ref20 doi: 10.1109/36.58966 – ident: ref52 doi: 10.1002/qj.953 – ident: ref32 doi: 10.3998/0472119356 – ident: ref10 doi: 10.1029/2005WR004398 – ident: ref44 doi: 10.1175/1520-0469(1998)055<0633:SVMAAO>2.0.CO;2 – ident: ref46 doi: 10.1080/10556780802370746 – ident: ref33 doi: 10.1002/9783527336289 – year: 2003 ident: ref4 publication-title: Atmospheric Modeling Data Assimilation and Predictability Electronic Version – year: 2017 ident: ref49 publication-title: PETSc home page – ident: ref21 doi: 10.1109/36.142920 – start-page: 203 year: 0 ident: ref37 article-title: Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator publication-title: Applied Computational Geometry Towards Geometric Engineering – ident: ref31 doi: 10.1256/smsqj.55001 – year: 2016 ident: ref48 article-title: PETSc users manual – ident: ref28 doi: 10.1117/1.JRS.9.095035 – year: 2007 ident: ref36 publication-title: Numerical Recipes The Art of Scientific Computing – year: 2006 ident: ref43 publication-title: Numerical Optimization – ident: ref15 doi: 10.1002/2016JD025923 – volume: 9265 start-page: 926507 year: 2014 ident: ref50 article-title: Assimilating scatterometer observations of tropical cyclones into an Ensemble Kalman Filter system with a robust observation operator based on canonical-correlation analysis publication-title: Remote Sensing and Modeling of the Atmosphere Oceans and Interactions – ident: ref23 doi: 10.1109/36.225536 – ident: ref11 doi: 10.1175/JHM-D-15-0094.1 – ident: ref14 doi: 10.1002/2015JD023107 – year: 2012 ident: ref16 publication-title: Linear Integral Equations – ident: ref25 doi: 10.1109/TIP.2003.819969 – ident: ref51 doi: 10.1175/2007JAS2112.1 – ident: ref17 doi: 10.1111/j.1365-246X.1967.tb02159.x – ident: ref8 doi: 10.2151/jmsj.87A.153 – ident: ref45 doi: 10.1007/BF01589116 – ident: ref53 doi: 10.1002/qj.2070 – ident: ref38 doi: 10.3934/ipi.2009.3.43 – ident: ref2 doi: 10.1002/2017JD026494 – ident: ref1 doi: 10.1175/JAS-D-17-0008.1 – ident: ref12 doi: 10.1109/36.134084 – ident: ref24 doi: 10.1109/36.338362 – ident: ref18 doi: 10.1111/j.1365-246X.1968.tb00216.x – ident: ref6 doi: 10.1029/JD095iD03p02187 – ident: ref26 doi: 10.1364/AO.48.004785 – ident: ref35 doi: 10.1109/TGRS.2008.917980 – ident: ref29 doi: 10.1002/qj.49711247414 – year: 2005 ident: ref41 article-title: Proper Orthogonal Decomposition (POD) for nonlinear dynamical systems – ident: ref5 doi: 10.1175/JTECH-D-12-00144.1 – ident: ref3 doi: 10.1109/TGRS.2015.2505677 – ident: ref42 doi: 10.1175/1520-0493(1997)125<2917:VAOPDU>2.0.CO;2 – ident: ref39 doi: 10.1175/2010MWR3360.1 |
SSID | ssj0014517 |
Score | 2.2744238 |
Snippet | The deconvolution of potentially cloud-affected passive microwave brightness temperatures is an important step for utilization in direct data assimilation in... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1001 |
SubjectTerms | Algorithms Antennas antennas and propagation Bayesian analysis Brightness Brightness temperature Clouds Convolution Covariance Data collection Deconvolution Error detection Geophysics Ingestion Initial conditions inverse problems Mathematical analysis Mathematical models Meteorological satellites Microwave antennas Microwave imaging Microwave theory and techniques modeling Precipitation rate Probability theory Radiative transfer Resolution Retrieval satellite antennas Spatial discrimination Spatial resolution Special Sensor Microwave Imager systems engineering and theory Uncertainty Weather forecasting |
Title | Variational Deconvolution of Conically Scanned Passive Microwave Observations With Error Quantification |
URI | https://ieeexplore.ieee.org/document/8466834 https://www.proquest.com/docview/2170698021 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BSpXgUNqliG0B-cCpahYnsR3niHgUVdrSlke5RX4FqlabajdbBL-eseNdrUoPvVlyEln-JvPwfDMG2C-5dFlBWaK5LhJWM4l6ULGEq7QsqBOFor7AefRZnF2xTzf8ZgU-LGphnHOBfOaGfhhy-bYxM39UdoC2UsicrcIqillXq7XIGDCextJokWAQkcUMZkrLg8uP3y48iUsOMym6_k5LNihcqvJMEwfzcroBo_nCOlbJz-Gs1UPz-FfPxv9d-St4Gf1MctgJxmtYceM-rC91H-zDi8D-NNNNuL3GiDmeCpJjHyL_iRJJmpocNaF28tcDuUAcUC2TL-hxo5YkI8_mu1c4OteL090p-f6jvSMnk0kzIV9nqmMjhak3cHV6cnl0lsQbGBKTMd4mxilZ2ExJtHO11UrWRmrDqc1VKnUpTJErNG7GUlFTl1KdF04IZzFKMYalJt-C3rgZu20gVNoyz7lVTuKMdlrwmrmCKfTIUmHNAN7PMal-d402qhCg0LLyAFYewCoCOIBNv8eLB-P2DmBnjmIVf8VplfkGQaVEX-btv996B2v47bKjYu9Ar53M3C56Gq3eCyL2BB4r0hM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTxQxFH9BiFEPgqBxEaQHT8ZZOjNtp3M0CKzK4geLcpv0a8BAdszuLAT_el873Q1RD96adCbT9PfmffT93ivAq5JLlxWUJZrrImE1k6gHFUu4SsuCOlEo6guch8dicMo-nPGzJXizqIVxzgXymev7Ycjl28bM_FHZLtpKIXN2D1bQ7jPeVWstcgaMp7E4WiQYRmQxh5nScnd0-PXE07hkP5Oi6_B0xwqFa1X-0sXBwByswnC-tI5Xctmftbpvfv3RtfF_174Gj6OnSd52ovEEltx4HR7d6T-4DvcD_9NMN-D8G8bM8VyQvPNB8nWUSdLUZK8J1ZNXt-QEkUDFTD6jz416kgw9n-9G4eiTXpzvTsn3H-0F2Z9Mmgn5MlMdHylMPYXTg_3R3iCJdzAkJmO8TYxTsrCZkmjpaquVrI3UhlObq1TqUpgiV2jejKWipi6lOi-cEM5inGIMS03-DJbHzdg9B0KlLfOcW-UkzminBa-ZK5hCnywV1vTg9RyT6mfXaqMKIQotKw9g5QGsIoA92PB7vHgwbm8PtuYoVvFnnFaZbxFUSvRmNv_91g48GIyGR9XR--OPL-AhfqfsiNlbsNxOZm4b_Y5Wvwzi9htEmNVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Deconvolution+of+Conically+Scanned+Passive+Microwave+Observations+With+Error+Quantification&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Steward%2C+Jeffrey&rft.au=Haddad%2C+Ziad&rft.au=Hristova-Veleva%2C+Svetla&rft.au=Kacimi%2C+Sahra&rft.date=2019-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=57&rft.issue=2&rft.spage=1001&rft_id=info:doi/10.1109%2FTGRS.2018.2864097&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |